1
|
Holani R, Babbar A, Blyth GAD, Lopes F, Jijon H, McKay DM, Hollenberg MD, Cobo ER. Cathelicidin-mediated lipopolysaccharide signaling via intracellular TLR4 in colonic epithelial cells evokes CXCL8 production. Gut Microbes 2020; 12:1785802. [PMID: 32658599 PMCID: PMC7524372 DOI: 10.1080/19490976.2020.1785802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that the antimicrobial peptide cathelicidin has a physiological role in regulating gut inflammatory homeostasis. We determined that cathelicidin synergizes with LPS to facilitate its internalization and signaling via endosomic TLR4 in colonic epithelium, evoking synthesis of the human neutrophil chemoattractant, CXCL8 (or murine homolog, CXCL1). Interaction of cathelicidin with LPS in the control of CXCL8/CXCL1 synthesis was assessed in human colon epithelial cells, murine colonoids and cathelicidin-null mice (Camp-/- ). Mechanistically, human cathelicidin (LL-37), as an extracellular complex with LPS, interacted with lipid raft-associated GM1 gangliosides to internalize and activate intracellular TLR4. Two signaling pathways converged on CXCL8/CXCL1 production: (1) a p38MAPK-dependent pathway regulated by Src-EGFR kinases; and, (2) a p38MAPK-independent, NF-κB-dependent pathway, regulated by MEK1/2-MAPK. Increased cathelicidin-dependent CXCL8 secretion in the colonic mucosa activated human blood-derived neutrophils. These cathelicidin effects occurred in vitro at concentrations well below those needed for microbicidal function. The important immunomodulatory role of cathelicidins was evident in cathelicidin-null/Camp-/- mice, which had diminished colonic CXCL1 secretion, decreased neutrophil recruitment-activation and reduced bacterial clearance when challenged with the colitis-inducing murine pathogen, Citrobacter rodentium. We conclude that in addition to its known microbicidal action, cathelicidin has a unique pathogen-sensing role, facilitating LPS-mediated intestinal responses, including the production of CXCL8/CXCL1 that would contribute to an integrated tissue response to recruit neutrophils during colitis.
Collapse
Affiliation(s)
- Ravi Holani
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Anshu Babbar
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Graham A. D. Blyth
- Microbiology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Lopes
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Humberto Jijon
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M. McKay
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Morley D. Hollenberg
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eduardo R. Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada,CONTACT Eduardo R. Cobo Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| |
Collapse
|
2
|
Moss J, Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 61:303-79. [PMID: 3128060 DOI: 10.1002/9780470123072.ch6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Moss
- Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
3
|
Brady RO, Fishman PH. Biotransducers of membrane-mediated information. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 50:303-23. [PMID: 386721 DOI: 10.1002/9780470122952.ch6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Holleran BJ, Barbar E, Payet MD, Dupuis G. Differential recruitment of alpha2beta1 and alpha4beta1 integrins to lipid rafts in Jurkat T lymphocytes exposed to collagen type IV and fibronectin. J Leukoc Biol 2003; 73:243-52. [PMID: 12554801 DOI: 10.1189/jlb.0902439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Collagen type IV (CnIV) and fibronectin (Fn) were used as ligands to study the distribution of alpha(2)beta(1) and alpha(4)beta(1) integrins in low-density, detergent-resistant microdomains (DRM) of Jurkat lymphocytes. CnIV-coated microspheres induced (optical trapping) the redistribution of GM(1)-associated fluorescence from the cell periphery to the area of contact. This was not observed in cells treated with beta-methyl cyclodextrin (MCD). Fn- or bovine serum albumin-coated microspheres did not modify the peripheral distribution of fluorescence. These observations were confirmed by confocal microscopy. Western blot analysis of cells exposed to surfaces coated with CnIV revealed that the alpha(2)-subunit was initially present at low levels in DRM, became strongly associated after 40 min, and returned to basal levels after 75 min. Fn induced a slight recruitment of the beta(1)-integrin alpha(4)-subunit in DRM after 5 and 10 min, followed by a return to basal levels. Neither CnIV nor Fn triggered significant changes in the distribution of the beta(1)-subunit in DRM. Fn- and CnIV-coated microspheres or surfaces coated with these ligands triggered a MCD-sensitive mobilization of Ca(2)(+). MCD did not alter the state of the Ca(2)(+) reserves. The differential distributions of the alpha(2)beta(1) and alpha(4)beta(1) integrins in DRM may provide one additional step in the regulation of outside-in signaling involving these integrins.
Collapse
Affiliation(s)
- Brian J Holleran
- Signal Transduction Laboratory, Graduate Program in Immunology, Clinical Research Center, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|
5
|
De Wolf MJ, Dams E, Dierick WS. Interaction of a cholera toxin derivative containing a reduced number of receptor binding sites with intact cells in culture. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1223:296-305. [PMID: 8086502 DOI: 10.1016/0167-4889(94)90240-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hybrid CTB (hCTB), having only one or two functional binding sites, has been constructed from two chemically inactivated derivatives of CTB. One inactive derivative consisted of CTB formylated in the lone Trp-88 of each beta-chain (fCTB), whereas the other inactive derivative consisted of CTB specifically succinylated in three amino groups located in or near the receptor binding site (sssCTB). hCTB, fCTB and sssCTB were able to reassociate with CTA and form the corresponding holotoxins hCT, fCT and sssCT as measured by gel filtration chromatography. In contrast to fCT and sssCT, hCT could increase the cAMP content of intact Vero cells in a time- and dose-dependent way: concentrations as low as a few nanograms of hCT per milliliter caused a significant increase in the intracellular cAMP level. The maximal cAMP level induced by hCT (1 microgram/ml) was, however, more than 2-fold lower than that elicited by its native counterpart. At saturating ligand concentrations and at 37 degrees C, the lag periods and rates of CT and hCT induced cAMP accumulation were essentially the same. Treatment of Vero and HeLa cells with GM1 did not affect their difference in response to CT and hCT. When Vero cells treated with hCT were incubated for longer periods of time, a further slow accumulation of cAMP occurred until after about 20 h cAMP levels of cells exposed to CT or hCT were essentially the same. In contrast to Vero and HeLa cells, human skin fibroblasts exhibited an almost identical response to CT as well as to hCT. Acidotropic agents such as chloroquine and monensin affected the CT and hCT induced increase in cAMP content of Vero cells, fibroblasts and GM1 treated Hela cells in a similar way. The results are consistent with the view that CT receptor recognition domains are shared between adjacent beta-chains, that pentavalent binding appears not to be essential for cytotoxicity and that in the cell types studied intracellular processing of CT, hCT is involved.
Collapse
Affiliation(s)
- M J De Wolf
- RUCA-Laboratory for Human Biochemistry, University of Antwerp, Belgium
| | | | | |
Collapse
|
6
|
|
7
|
Knobler H, Chajek-Shaul T, Stein O, Etienne J, Stein Y. Modulation of lipoprotein lipase in the intact rat by cholera toxin--an irreversible agonist of cyclic AMP. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 795:363-71. [PMID: 6089901 DOI: 10.1016/0005-2760(84)90087-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rats were injected intravenously with cholera toxin, a potent stimulator of adenylate cyclase, and lipoprotein lipase was determined in various organs and plasma. 16 h after cholera toxin injection, lipoprotein lipase activity increased 2-6-fold in heart, diaphragm and lung and decreased to one-third in adipose tissue. An increase in lipoprotein lipase activity was seen in the plasma and in the liver, as determined by antiserum to lipoprotein lipase. The increase in heart lipoprotein lipase was preceded by a rise in cyclic AMP and continued for 24 h when cyclic AMP returned to base-line levels. Both heparin-releasable and residual lipoprotein lipase increased in the heart, but to an unequal extent. The more pronounced rise in residual activity (up to 10-fold) could have contributed to an increase in the t1/2 of heart lipoprotein lipase from 1.5 to 2.6 h. The relatively lower increase in heparin-releasable lipoprotein lipase could have been due to a loss of the enzyme from this compartment into the circulation. The effect of cholera toxin on heart and adipose tissue lipoprotien lipase was observed in fasted, fed and super-fed animals and thus appears to be independent of the nutritional state of the animal. Since cholera toxin not only mimics hormonal stimulation, but causes an exaggerated response to hormones, it made studies on some aspects of regulation of both the functional and storage forms of lipoprotein lipase in the intact organism possible.
Collapse
|
8
|
Tomasi M, D'Agnolo G, Montecucco C. Micellar gangliosides mediate the lipid insertion of cholera toxin protomer A. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 692:339-44. [PMID: 7171599 DOI: 10.1016/0005-2736(82)90382-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The topology of the interaction of cholera toxin with ganglioside and detergent micelles was studied with the technique of hydrophobic photolabelling. Cholera toxin alpha and gamma polypeptide chains appear to penetrate into the hydrophobic core of ganglioside micelles. Micelles of SDS cause the labelling also of the beta polypeptide chains, while Triton X-100 micelles have little ability to mediate the labelling of the toxin. The specific reduction of the alpha-gamma disulfide bond allows the penetration of the alpha polypeptide chain into Triton X-100 micelles, but does not affect the interaction of cholera toxin with either ganglioside or SDS micelles. Thus, ganglioside micelles appear to cause a conformational change of the native toxin, such as to induce the penetration of the alpha chain into the micelle hydrophobic core.
Collapse
|
9
|
Abstract
Gangliosides are complex glycosphingolipids that contain from one to several residues of sialic acid. They are present in the plasma membrane of vertebrate cells with their oligosaccharide chains exposed to the external environment. They have been implicated as cell surface receptors and several bacterial toxins have been shown to interact with them. Cholera toxin, which mediates its effects on cells by activating adenylate cyclase, bind with high affinity and specificity to ganglioside GM1. Toxin-resistant cells which lack GM1 can be sensitized to cholera toxin by treating them with GM1. Cholera toxin specifically protects GM1 from cell surface labeling procedures and only GM1 is recovered when toxin-receptor complexes are isolated by immunoadsorption. These results clearly demonstrate that GM1 is the specific and only receptor for cholera toxin. Although cholera toxin binds to GM1 on the external side of the plasma membrane, it activates adenylate cyclase on the cytoplasmic side of the membrane by ADP-ribosylation of the regulatory component of the cyclase. GM1 in addition to functioning as a binding site for the toxin appears to facilitate its transmembrane movement. The heat-labile enterotoxin of E. coli is very similar to cholera toxin in both form and function and can also use GM1 as a cell surface receptor. The potent neurotoxin, tetanus toxin, has a high affinity for gangliosides GD1b and GT1b and binds to neurons which contain these gangliosides. It is not yet clear whether these gangliosides are the physiological receptors for tetanus toxin. By applying the techniques that established GM1 as the receptor for cholera toxin, the role of gangliosides as receptors for tetanus toxin as well as physiological effectors may be elucidated.
Collapse
|
10
|
|
11
|
Moss J, Vaughan M. Mechanism of action of choleragen and E. coli heat-labile enterotoxin: activation of adenylate cyclase by ADP-ribosylation. Mol Cell Biochem 1981; 37:75-90. [PMID: 6268961 DOI: 10.1007/bf02354931] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
|
13
|
Vaughan M, Moss J. Mono (ADP-ribosyl)transferases and their effects on cellular metabolism. CURRENT TOPICS IN CELLULAR REGULATION 1981; 20:205-46. [PMID: 6276083 DOI: 10.1016/b978-0-12-152820-1.50010-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Daniel JW, Oleinick NL, Whistler S. Choleragen-induced cyclic nucleotide response in a lower eukaryote. FEBS Lett 1980; 122:138-42. [PMID: 6260527 DOI: 10.1016/0014-5793(80)80421-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Sellwood R. The interaction of the K88 antigen with porcine intestinal epithelial cell brush borders. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 632:326-35. [PMID: 6774765 DOI: 10.1016/0304-4165(80)90090-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The interaction of 125I-labelled K88 antigen with brush borders of the epithelial cells of the pig small intestine has been studied. The iodinated antigen bound avidly to the brush borders prepared from adhesive (receptor-positive) pigs even after pretreatment of the brush borders with formaldehyde, whereas the brush borders from non-adhesive (receptor-negative) pigs failed to bind the antigen under these conditions. Treatment with glutaraldehyde rapidly destroyed the ability of both types of brush border to bind the K88 antigen. Studies on the binding of antigen to brush borders revealed the presence of high affinity receptors, but the non-linearity of the Scatchard plot could be explained by cooperative-like interactions, which view was supported by dissociation experiments. Rapid dissociation only in the presence of unlabelled K88 antigen suggested the existence of receptor site interactions of the negatively cooperative type. Attempts to inhibit the binding of 125I-labelled K88 with simple monosaccharides and oligosaccharides suggested that the binding of antigen to brush borders involves complex interactions and that galactosyl residues may be important.
Collapse
|
16
|
Fishman PH, Atikkan EE. Mechanism of action of cholera toxin: effect of receptor density and multivalent binding on activation of adenylate cyclase. J Membr Biol 1980; 54:51-60. [PMID: 6259358 DOI: 10.1007/bf01875376] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Choleragen (cholera toxin) activates adenylate cyclase in HeLa cells, which contain less than 15,000 toxin receptors per cell, in a time- and concentration-dependent manner. Activation is blocked by the addition of the oligosaccharide chain of the ganglioside GM1, the receptor for the toxin. When the cells are preincubated with choleragen at 4 degrees C and then incubated with oligosaccharide at 37 degrees C, adenylate cyclase is activated less than 10%. When the preincubation phase is above 18 degrees C, adenylate cyclase becomes activated and the amount of activation depends on the time of preincubation. This inhibitory effect of the oligosaccharide is also observed with human lymphocytes and rat glial C6 cells but not with Friend erythroleukemic and mouse neuroblastoma N18 cells. The latter two cell lines have large numbers ot toxin receptors, whereas the former two cell lines have few receptors. When the number of toxin receptors in HeLa and C6 cells is increased by treating the cells with GM1, activation of adenylate cyclase by choleragen is no longer blocked by the oligosaccharide. The oligosaccharide has a corresponding effect on the displacement of bound 125I-choleragen. When bound to cells at 4 degrees C, most of the radiotoxin is displaced from HeLa, C6, and lymphocytes but not from Friend, N18, or HeLa cells pretreated with GM1. In untreated HeLa cells, dissociation of toxin-receptor complexes by the oligosaccharide depends on the time and temperature of complex formation; above 18 degrees C, the toxin rapidly becomes stably bound to the cells. The inhibitory effect of GM1 oligosaccharide us reversible, as, once it is removed, the small amount of toxin that remains bound can activate adenylate cyclase. These results are consistent with a model in which choleragen, which is multivalent, must bind to several GM1 molecules on the cell surface in order to subsequently activate adenylate cyclase. Lateral mobility of toxin-receptor complexes may be required only to achieve multivalent binding in cells with few receptors.
Collapse
|
17
|
Abstract
The lag period for activation of adenylate cyclase by choleragen was shorter in mouse neuroblastoma N18 cells than in rat glial C6 cells. N18 cells have 500-fold more toxin receptors than C6 cells. Treatment of C6 cells with ganglioside GM1 increased the number of toxin receptors and decreased the lag phase. Choleragen concentration also effected the lag phase, which increased as the toxin concentration and the amount of toxin bound decreased. The concentration, however, required for half-maximal activation of adenylate cyclase depended on the exposure time; at 1.5, 24, and 48 hr, the values were 200, 1.1, and 0.35 PM, respectively. Under the latter conditions, each cell was exposed to 84 molecules to toxin. The length of the lag period was temperature-dependent. When exposed to choleragen at 37, 24, and 20 degrees C, C6 cells began to accumulate cyclic AMP after 50, 90, and 180 min, respectively. In GM1-treated cells, the corresponding times were 35, 60, and 120 min. Cells treated with toxin at 15 degrees C for up to 22 hr did not accumulate cAMP, whereas above this temperature they did. Antiserum to choleragen, when added prior to choleragen, completely blocked the activation of adenylate cyclase. When added after the toxin, the antitoxin lost its inhibitory capability in a time and temperature-dependent manner. Cells, however, could be preincubated with toxin at 15 degrees C, and the antitoxin was completely effective when added before the cells were warmed up. Finally, cells exposed to choleragen for less than 10 min at 37 degrees C accumulated cyclic AMP when shifted to 15 degrees C. Under optimum conditions at 37 degrees C, the minimum lag period for adenylate cyclase activation in these cells was 10 min. These findings suggest that the lag period for choleragen action represents a temperature-dependent transmembrane event, during which the toxin (or its active component) gains access to adenylate cyclase.
Collapse
|
18
|
Tomasi M, Ausiello C, Battistini A, D'Agnolo G. Dissociation of cholera toxin functional regions after interaction with vesicles containing ganglioside GM1. FEBS Lett 1979; 106:309-12. [PMID: 499513 DOI: 10.1016/0014-5793(79)80521-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Sen KK, Azhar S, Menon KM. Receptor-mediated gonadotropin action in the ovary. Desensitization of gonadotropin binding sites, activation of adenosine 3‘:5‘-cyclic monophosphate-dependent protein kinase(s), and regulation of steroidogenesis in rat ovary. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(18)50466-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Abstract
Recent studies have begun to elucidate the nature of pathogen-host recognition mechanisms. Not only is our understanding of the nature of infection thereby growing, but there is promise of an entirely new approach to treatment--by inhibiting or preventing the contact between pathogen and target cell, the first step in the infectious process. Models have largely been elucidated for shigella infections and cholera.
Collapse
|
21
|
van Sande J, Pochet R, Dumont JE. Dissociation by cooling of hormone and cholera toxin activation of adenylate cyclase in intact cells. Biochim Biophys Acta Gen Subj 1979; 585:282-92. [PMID: 222351 DOI: 10.1016/0304-4165(79)90028-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholera toxin, through adenylate cyclase activation reproduced cyclic AMP-mediated effects of thyroid-stimulating hormone (TSH) in dog thyroid slices, i.e. protein iodination, [1-14C]glucose-oxidation and hormone secretion. Iodide and carbamylcholine decreased the cyclic AMP accumulation induced by cholera toxin as well as by TSH, which supports the hypothesis of an action of these agents beyond the steps of hormone-receptor and receptor-adenylate cyclase interaction. Cooling to 20 degrees C did not impair the TSH induced cyclic AMP accumulation in thyroid slices, but completely suppressed the cholera toxin effect. This observation has been extended to other hormones and target tissues, such as the parathyroid hormone (PTH) (kidney cortex), adrenocorticotropic hormone (ACTH) (adrenal cortex) and luteinizing hormone (LH) (ovary systems). As in thyroid, cooling dissociated the cholera toxin and hormonal effects on cyclic AMP accumulation. In homogenate, cooling decreased cyclic AMP generation in the presence of cholera toxin but at 20 degrees C and 16 degrees C a cholera toxin stimulation was still observed. These results bear strongly against the hypothesis that the glycoprotein hormones TSH and LH acetivate adenylate cyclase by a mechanism identical to cholera toxin.
Collapse
|
22
|
|
23
|
Hazelbauer GL, Harayama S. Mutants in transmission of chemotactic signals from two independent receptors of E. coli. Cell 1979; 16:617-25. [PMID: 378395 DOI: 10.1016/0092-8674(79)90035-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have characterized chemotactic mutants of E. coli that appear to be defective in a common linkage of two independent receptors to the central chemotactic components. The mutants do not respond to gradients of ribose or galactose and thus are called trg (taxis to ribose and galactose), after Ordal and Adler (1974b). These trg mutants are indistinguishable from their parent in tactic response to other attractants, swimming pattern, growth rates, and transport of ribose and galactose. The mutant cells contain the usual amounts of ribose and galactose receptors, and those proteins function normally in their other role, transport of their respective ligands. The mutations, generated by insertion of translocatable drug-resistance elements (transposons)8 are located near 31 min on the map of the E. coli chromosome, a locus far removed from the genes coding for the ribose and galactose receptors. Trg mutants do not resemble either specific receptor mutants or che mutants. The nature of the requirement for the trg product in the response to ribose and galactose is not defined, but evidence for interference of tactic signals from the ribose and galactose receptors (Strange and Koshland, 1976) supports the idea that the product functions directly in the transmission of tactic signals from the two receptors to the flagella.
Collapse
|
24
|
Azhar S, Menon KM. Receptor-mediated gonadotropin action in ovary. Differential effects of various gangliosides and cholera enterotoxin on 125I-choriogonadotropin binding, production of adenosine 3':5'-monophosphate and steroidogenesis in rat ovarian cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 94:77-85. [PMID: 220048 DOI: 10.1111/j.1432-1033.1979.tb12873.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Azhar S, Fitzpatrick P, Menon KM. Role of gangliosides in gonadotropin and cholera enterotoxin stimulated steroidogenesis in isolated rat ovarian cells. Biochem Biophys Res Commun 1978; 83:493-500. [PMID: 697835 DOI: 10.1016/0006-291x(78)91017-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Abstract
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.
Collapse
|
27
|
|
28
|
Moss J, Vaughan M. Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40578-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|