1
|
Yang H, Wang C, Zhu W, Jin P, Li F, Fan J. A Carboxyl Group-Functionalized Ionic Liquid Hybrid Adsorbent for Solid-Phase Extraction and Determination of Trace Diclofenac Sodium in Milk Samples. Molecules 2023; 28:6216. [PMID: 37687045 PMCID: PMC10488911 DOI: 10.3390/molecules28176216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A simple and efficient sample pretreatment technology is very important for the accurate determination of trace drug residues in foods to ensure food safety. Herein, we report a new carboxyl group-functionalized ionic liquid hybrid solid- phase adsorbent (PS-IL-COOH) for the highly efficient extraction and quantitative determination of diclofenac sodium (DS) residue in milk samples. It was found that the adsorption efficiency of PS-IL-COOH for the ppb level of DS was greater than 93.0%, the adsorption capacity was 934.1 mg/g, and the enrichment factor was 620.0, which surpass most of the previously reported values for DS adsorbents. The high concentration of salts did not interfere with the adsorption of DS. Importantly, the recovery of DS was above 90% after 16 adsorption--regeneration cycles. The synergistic effect of the multiple interactions was found to be the main factor for the high efficiency of DS adsorption. The proposed method was applied to the extraction and detection of DS in milk samples, with the relative recovery ranging from 88.2 to 103.0%.
Collapse
Affiliation(s)
- Hongrui Yang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; (H.Y.); (C.W.); (W.Z.); (P.J.); (F.L.)
- College of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Chen Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; (H.Y.); (C.W.); (W.Z.); (P.J.); (F.L.)
| | - Wenjuan Zhu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; (H.Y.); (C.W.); (W.Z.); (P.J.); (F.L.)
| | - Pingning Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; (H.Y.); (C.W.); (W.Z.); (P.J.); (F.L.)
| | - Fei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; (H.Y.); (C.W.); (W.Z.); (P.J.); (F.L.)
| | - Jing Fan
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; (H.Y.); (C.W.); (W.Z.); (P.J.); (F.L.)
| |
Collapse
|
2
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
3
|
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Karimi-Maleh H. A review on magnetic sensors for monitoring of hazardous pollutants in water resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153844. [PMID: 35176366 DOI: 10.1016/j.scitotenv.2022.153844] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Water resources have long been of interest to humans and have become a serious issue in all aspects of human life. The disposal of hazardous pollutants in water resources is one of the biggest global concerns and poses many risks to human health and aquatic life. Therefore, the control of hazardous pollutants in water resources plays an important role, when it comes to evaluating water quality. Due to low toxicity, good electrical conductivity, facile functionalization, and easy preparation, magnetic materials have become a good alternative in recent years to control hazardous pollutants in water resources. In the present study, the idea of using magnetic sensors in controlling and monitoring of pharmaceuticals, pesticides, heavy metals, and organic pollutants have been reviewed. The water pollutants in drinking water, groundwater, surface water, and seawater have been discussed. The toxicology of water hazardous pollutants has also been reviewed. Then, the magnetic materials were discussed as sensors for controlling and monitoring pollutants. Finally, future remarks and perspectives on magnetic nanosensors for controlling hazardous pollutants in water resources and environmental applications were explained.
Collapse
Affiliation(s)
- Akbar Hojjati-Najafabadi
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi 341000, PR China; Faculty of Materials, Metallurgy and Chemistry, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tongxiang Liang
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi 341000, PR China
| | - Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, South Africa.
| |
Collapse
|
4
|
Wang D, Chen X, Feng J, Sun M. Recent advances of ordered mesoporous silica materials for solid-phase extraction. J Chromatogr A 2022; 1675:463157. [PMID: 35623192 DOI: 10.1016/j.chroma.2022.463157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
This review mainly focuses on the development and application of ordered mesoporous silica materials for solid-phase extraction in recent years. It overviews not only bare mesoporous silica but also the functionalized mesoporous silica with organic groups, molecularly imprinted polymers, and magnetic materials. These mesoporous silica materials were used as the extraction adsorbents in cartridge solid-phase extraction, dispersive solid-phase extraction, magnetic solid-phase extraction, micro-solid-phase extraction and matrix solid phase dispersion. Coupled with atomic emission spectrometry, chromatography or other detection methods, these techniques efficiently extracted and sensitively determined various targets, such as metal ions, perfluorocarboxylic acids, pesticides, drugs, endocrine disruptors, phenols, flavanones, polycyclic aromatic hydrocarbons, parabens and so on. Based on unique advantages of mesoporous silica materials, the developed analytical method successfully analyzed different matrix samples, like environmental water samples, soil samples, food samples, biological samples and cosmetics. In addition, the prospects of these materials in solid-phase extraction are presented, which can offer an outlook for the further development and applications.
Collapse
Affiliation(s)
- Dan Wang
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Xueguo Chen
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Juanjuan Feng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Min Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
5
|
Ali N, Hassan Riead MM, Bilal M, Yang Y, Khan A, Ali F, Karim S, Zhou C, Wenjie Y, Sher F, Iqbal HMN. Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. CHEMOSPHERE 2021; 284:131279. [PMID: 34175517 DOI: 10.1016/j.chemosphere.2021.131279] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Effective separation and remediation of environmentally hazardous pollutants are burning areas of research because of a constant increase in environmental pollution problems. An extensive number of emerging contaminants in the environmental matrices result in serious health consequences in animals, humans, and plants, even at trace levels. Therefore, it is of paramount significance to quantify these undesirable pollutants, even at a very low concentration, from the natural environment. Magnetic solid-phase extraction (MSPE) has recently achieved huge attention because of its strong magnetic domain and easy separation through an external magnetic field compared with simple solid-phase extraction. Therefore, MSPE appeared the most promising technique for removing and pre-concentration of emerging pollutants at trace level. Compared to the normal solid-phase extraction, MSPE as magnetic hybrid adsorbents offers the unique advantages of distinct nanomaterials and magnetic hybrid materials. It can exhibit efficient dispersion and rapid recycling when applying to a very complex matrix. This review highlights the possible environmental applications of magnetic hybrid nanoscale materials as effective MSPE sorbents to remediate a diverse range of environmentally toxic pollutants. We believe this study tends to evoke a variety of research thrust that may lead to novel remediation approaches in the forthcoming years.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China.
| | - Md Mahamudul Hassan Riead
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shafiul Karim
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Cao Zhou
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Ye Wenjie
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
6
|
High efficiency enrichment of organochlorine pesticides from water by nitrogenous porous carbon materials towards their extremely low concentration detection. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Gutiérrez-Serpa A, González-Martín R, Sajid M, Pino V. Greenness of magnetic nanomaterials in miniaturized extraction techniques: A review. Talanta 2020; 225:122053. [PMID: 33592775 DOI: 10.1016/j.talanta.2020.122053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
Green analytical chemistry principles should be followed, as much as possible, and particularly during the development of analytical sample preparation methods. In the past few years, outstanding materials such as ionic liquids, metal-organic frameworks, carbonaceous materials, molecularly imprinted materials, and many others, have been introduced in a wide variety of miniaturized techniques in order to reduce the amount of solvents and sorbents required during the analytical sample preparation step while pursuing more efficient extraction methods. Among them, magnetic nanomaterials (MNMs) have gained special attention due to their versatile properties. Mainly, their ability to be separated from the sample matrix using an external magnetic field (thus enormously simplifying the entire process) and their easy combination with other materials, which implies the inclusion of a countless number of different functionalities, highly specific in some cases. Therefore, MNMs can be used as sorbents or as magnetic support for other materials which do not have magnetic properties, the latter permiting their combination with novel materials. The greenness of these magnetic sorbents in miniaturized extractions techniques is generally demonstrated in terms of their ease of separation and amount of sorbent required, while the nature of the material itself is left unnoticed. However, the synthesis of MNMs is not always as green as their applications, and the resulting MNMs are not always as safe as desired. Is the analytical sample preparation field ready for using green magnetic nanomaterials? This review offers an overview, from a green analytical chemistry perspective, of the current state of the use of MNMs as sorbents in microextraction strategies, their preparation, and the analytical performance offered, together with a critical discussion on where efforts should go.
Collapse
Affiliation(s)
- Adrián Gutiérrez-Serpa
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Raúl González-Martín
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Verónica Pino
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| |
Collapse
|
8
|
Astuti MP, Jasemizad T, Padhye LP. Surface modification of coconut shell activated carbon for efficient solid-phase extraction of N-nitrosodimethylamine from water. J Sep Sci 2020; 44:618-627. [PMID: 33207072 DOI: 10.1002/jssc.202000868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022]
Abstract
A practical and cheap methodology in modifying commercial coconut shell activated carbon for solid-phase extraction of N-nitrosodimethylamine in water was developed through an understanding of activated carbon surface chemistry. In comparison with commercial activated carbon, extraction recoveries by activated carbon treated with sulfuric acid decreased by 50%, while those of activated carbon heated at 800°C improved by more than 100%. Acid treatment increased the oxygen content on the carbon's surface. In contrast, heat treatment decreased the surface oxygen content, resulting in a more hydrophobic surface, which favoured adsorption and extraction of N-nitrosodimethylamine. The influence of different activated carbon sizes, amount of modified activated carbon, and pH on the N-nitrosodimethylamine recoveries was assessed and compared with the commercial solid-phase extraction cartridge. The recommended amount of powder activated carbon treated at 800°C was 3 g to yield an optimum recovery of 130%, which was superior to the commercial solid-phase extraction cartridges. The method validation results confirmed the high accuracy, reproducibility, and precision of the method. The study indicated that chemisorption plays a significant role in the adsorption of N-nitrosodimethylamine on activated carbon, and the optimization of its surface chemistry can enhance N-nitrosodimethylamine adsorption/extraction from water.
Collapse
Affiliation(s)
- Maryani Paramita Astuti
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand.,Environmental Engineering Study Program, Faculty of Engineering, President University, Cikarang, Indonesia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Qin SB, Li XS, Fan YH, Mou XX, Qi SH. Facile synthesis of polydivinylbenzene coated magnetic polydopamine coupled with pressurized liquid extraction for the extraction and cleanup of polycyclic aromatic hydrocarbons in soils. J Chromatogr A 2020; 1613:460676. [PMID: 31727351 DOI: 10.1016/j.chroma.2019.460676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Accepted: 11/03/2019] [Indexed: 01/03/2023]
Abstract
Due to the trace levels of polycyclic aromatic hydrocarbons (PAHs) in soil and the complexity of soil matrices, effective sample pretreatment methods are of great significance to obtain accurate analytical results. In this paper, polydopamine (PDA) encapsulated Fe3O4 particles were used as seeds for in situ polymerization of divinylbenzene (DVB) to derive magnetic hybrid material Fe3O4@PDA@PDVB. Coupled with pressurized liquid extraction, Fe3O4@PDA@PDVB was investigated as a selective adsorbent for the extraction and cleanup of PAHs in soil. The prepared magnetic material was characterized and demonstrated to possess strong hydrophobicity and superparamagnetism. Under optimal conditions, Fe3O4@PDA@PDVB can effectively extract 15 PAHs from a 30% methanol solution within 2 min, and it is more selective for PAHs than for n-alkane in soil extracts. The matrix effect significantly decreased after extraction by the prepared material, which showed superiority to a silica gel column method (EPA 3630C Method). The developed method was linear (5-1000 ng g-1) with coefficient of determination (R2) ranging from 0.9986-0.9998, and the limits of detection were 0.13-0.54 ng g-1. Additionally, repetitive experiments indicated that the prepared material was reproducible and reusable with relative standard deviations below 8.4% and 8.6%, respectively. Finally, the new method was successfully employed to determine the concentrations of PAHs in genuine soil and standard reference material, and the results were comparable to those of widely utilized EPA methodology.
Collapse
Affiliation(s)
- Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yu-Han Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiao-Xuan Mou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
10
|
Momtazan F, Khodadoust S, Zeraatpisheh F, Behbahani M. Synthesis of mesoporous silica for adsorption of chlordiazepoxide and its determination by HPLC: Experimental design. J Sep Sci 2019; 42:3253-3260. [PMID: 31461204 DOI: 10.1002/jssc.201900373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023]
Abstract
In this work, mesoporous silica (SBA-15-NH2 ) was used as an efficient adsorbent for extraction of chlordiazepoxide from different samples based on dispersive nanomaterial-ultrasound assisted microextraction followed by high-performance liquid chromatography. The prepared sorbent was characterized by fourier transform infrared spectroscopy, scanning electron microscopy, low-angle X-ray diffraction, thermal analysis, and N2 adsorption-desorption surface area measurement. Several variables affecting the extraction efficiency of the chlordiazepoxide, including the amounts of adsorbent, time of adsorption, pH and volume of desorption solvent were optimized by central composite design combined with desirability function. The values of variables were set as 10 mg of SBA-15-NH2 , 15 min adsorption time, pH = 7.3 and 1 mL methanol. The linear response (0.998) was obtained in the range of 0.006-10 µgmL-1 with detection limit 0.0014 µg/mL and extraction recovery was in the range of 91-96% with relative standard deviation < 6%.
Collapse
Affiliation(s)
- Fatemeh Momtazan
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Saeid Khodadoust
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Fatemeh Zeraatpisheh
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Behbahani
- Faculty of Engineering, Shohadaye Hoveizeh University of Technology, Dasht-e Azadegan, Susangerd, Iran
| |
Collapse
|
11
|
Yu M, Wang L, Hu L, Li Y, Luo D, Mei S. Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Magnetic cellulose nanoparticles as sorbents for stir bar-sorptive dispersive microextraction of polychlorinated biphenyls in juice samples. Talanta 2019; 201:266-270. [DOI: 10.1016/j.talanta.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 11/15/2022]
|
13
|
Qin SB, Fan YH, Mou XX, Li XS, Qi SH. Preparation of phenyl-modified magnetic silica as a selective magnetic solid-phase extraction adsorbent for polycyclic aromatic hydrocarbons in soils. J Chromatogr A 2018; 1568:29-37. [DOI: 10.1016/j.chroma.2018.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022]
|