1
|
Kim YJ, Jang S, Hwang YH. Qualitative and Quantitative Analysis of Phytochemicals in Sayeok-Tang via UPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Pharmaceuticals (Basel) 2024; 17:1130. [PMID: 39338295 PMCID: PMC11435331 DOI: 10.3390/ph17091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Sayeok-tang (SYT) is a traditional herbal formula comprising three medicinal herbs: Glycyrrhiza uralensis, Zingiber officinale, and Aconitum carmichaeli. Several studies have employed liquid chromatography-mass spectrometry (LC-MS) to qualitatively analyze the components and metabolites of SYT in vitro and in vivo; however, studies on quantitative analysis of SYT, which is important for quality control, are absent or limited to only a few components. In this study, ultrahigh-performance liquid chromatography coupled with quadrupole (UPLC-Q)-Orbitrap-MS was used to screen the phytochemicals of SYT, revealing a total of 42 compounds. Among them, 24 compounds were simultaneously quantified within 20 min via UPLC-TQ-MS/MS in the multiple reaction monitoring mode. The developed analytical method was validated for its linearity (r2 ≥ 0.9992), precision (0.36-2.96%), accuracy (-6.52-4.64%), and recovery (94.39-119.07%) for all analytes, exhibiting acceptable results. The validated method was applied in the analysis of SYT extracts, and the 24 compounds were quantified in the range of 0.004-6.882 mg/g (CV ≤ 3.746%). Among them, liquiritin apioside (6.870-6.933 mg/g), glycyrrhizic acid (5.418-5.540 mg/g), and liquiritin (1.303-1.331 mg/g) from G. uralensis were identified as the relatively abundant compounds. The presented validated analytical method is highly promising for the comprehensive quality control of SYT, offering fast, highly sensitive, and reliable analysis.
Collapse
Affiliation(s)
- Yu Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
2
|
Qiu Z, Wei C, Kang L, Zhou L, Lai C, Li X, Yan B, Xu J, Wang S, Huang L. Sensitive quantitation of ultra-trace toxic aconitines in complex matrices by perfusion nano-electrospray ionization mass spectrometry combined with gas-liquid microextraction. Talanta 2024; 269:125402. [PMID: 37979510 DOI: 10.1016/j.talanta.2023.125402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
The accurate analysis of ultra-trace (e.g. <10-4 ng/mL) substances in complex matrices is a burdensome but vital problem in pharmaceutical analysis, with important implications for precise quality control of drugs, discovery of innovative medicines and elucidation of pharmacological mechanisms. Herein, an innovative constant-flow perfusion nano-electrospray ionization (PnESI) technique was developed firstly features significant quantitative advantages in high-sensitivity ambient MS analysis of complex matrix sample. More importantly, double-labeled addition enrichment quantitation strategies of gas-liquid microextraction (GLME) were proposed for the first time, allowing highly selective extraction and enrichment of specific target analytes in a green and ultra-efficient (>1000-fold) manner. Using complex processed Aconitum herbs as example, PnESI-MS directly enabled the qualitative and absolute quantitative analysis of the processed Aconitum extracts and characterized the target toxic diester alkaloids with high sensitivity, high stability, wide linearity range, and strong resistance to matrix interference. Further, GLME device was applied to obtain the highly specific enrichment of the target diester alkaloids more than 1000-fold, and accurate absolute quantitation of trace aconitine, mesaconitine, and hypaconitine in the extracts of Heishunpian, Zhichuanwu and Zhicaowu was accomplished (e.g., 0.098 pg/mL and 0.143 pg/mL), with the quantitation results well below the LODs of aconitines from any analytical instruments available. This study built a systematic strategy for accurate quantitation of ultra-trace substances in complex matrix sample and expected to provide a technological revolution in many fields of pharmaceutical research.
Collapse
Affiliation(s)
- Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chaofa Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Punia A, Joshi R, Kumar R. Identification and quantification of eight alkaloids in Aconitum heterophyllum using UHPLC-DAD-QTOF-IMS: A valuable tool for quality control. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1121-1134. [PMID: 35794832 DOI: 10.1002/pca.3164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Aconitum spp. are prime medicinal plants rich in alkaloids and have been used as the main constituents of traditional medicine in India and China. The whole plant can be toxic and creates pathophysiological conditions inside the human body. Therefore, simultaneous quantification of alkaloids within plant parts and herbal medicines associated with this genus is essential for quality control. OBJECTIVE We aimed to develop and validate methods using ultra-high-performance liquid chromatography-diode array detector-quadrupole time-of-flight ion mobility mass spectrometry (UHPLC-DAD-QTOF-IMS) and to develop an analytical strategy for the identification and quantification of alkaloid compounds (aconitine, hypaconitine, mesaconitine, aconine, benzoylmesaconitine, benzoylaconine, bulleyaconitine A, and deoxyaconitine) from Aconitum heterophyllum. METHODOLOGY We developed a simultaneous identification and quantification method for eight alkaloids using UHPLC-DAD-QTOF-IMS. The method was validated as per International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines and also in IMS mode. RESULTS The developed method has good linearity (r2 = 0.997-0.999), LOD (0.63-8.31 μg/mL), LOQ (0.63-2.80 μg/mL), recovery (86.01-104.33%), reproducibility, intra- and inter-day variability (<3.25%), and stability. Significant qualitative and quantitative variations were found among different plant parts (flower, leaf, stem, root, and tuber) and five market products of A. heterophyllum. Furthermore, a total of 21 metabolites were also profiled based on the fragmentation pattern of MS2 using the validated method. CONCLUSION An appropriate mobile phase using acetonitrile and water in a gradient elution gave a satisfactory chromatographic separation of eight Aconitum alkaloids with their adjacent peaks. Therefore, this method could provide a scientific and technical platform for quality control assurance.
Collapse
Affiliation(s)
- Ashwani Punia
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| |
Collapse
|
4
|
Zhang YY, Yao YD, Cheng QQ, Huang YF, Zhou H. Establishment of a High Content Image Platform to Measure NF-κB Nuclear Translocation in LPS-Induced RAW264.7 Macrophages for Screening Anti-inflammatory Drug Candidates. Curr Drug Metab 2022; 23:394-414. [PMID: 35410593 DOI: 10.2174/1389200223666220411121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND High content image (HCI), an automatic imaging and analysis system, provides a fast drug screening method by detecting the subcellular distribution of protein in intact cells. OBJECTIVE This study established the first standardized HCI platform for lipopolysaccharide (LPS)-induced RAW264.7 macrophages to screen anti-inflammatory compounds by measuring nuclear factor-κB (NF-κB) nuclear translocation. METHOD The influence of the cell passages, cell density, LPS induction time and concentration, antibody dilution, serum, dimethyl sulfoxide and analysis parameters on NF-κB nuclear translocation and HCI data quality was optimized. The BAY-11-7085, the positive control for inhibiting NF-κB and Western blot assay were separately employed to verify the stability and reliability of the platform. Lastly, the effect of BHA on NO release, iNOS expression, IL-1β, IL-6, and TNF-α mRNA in LPS-induced RAW264.7 cells was detected. RESULTS The optimal conditions for measuring NF-κB translocation in LPS-induced RAW264.7 cells by HCI were established. Cells that do not exceed 22 passages were seeded at a density of 10 k cells/well and pretreated with compounds following 200 ng/mL LPS for 40 min. Parameters including nuclear area of 65 μm2, cell area of 80 μm2, collar of 0.9 μm and sensitivity of 25% were recommended for image segmentation algorithms in the analysis workstation. Benzoylhypaconine from aconite was screened for the first time as an anti-inflammatory candidate by the established HCI platform. The inhibitory effect of benzoylhypaconine on NF-κB translocation was verified by Western blot. Furthermore, benzoylhypaconine reduced the release of NO, inhibited the expression of iNOS, decreased the mRNA levels of IL-1β, IL-6, and TNF-α. CONCLUSION The established HCI platform could be applied to screen anti-inflammatory compounds by measuring the NF-κB nuclear translocation in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Qi-Qing Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yu-Feng Huang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.,Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, P.R. China
| |
Collapse
|
5
|
Yu X, Wang Q, Lu W, Zhang M, Chen K, Xue J, Zhao Q, Wang P, Luo P, Shen Q. Fast and Specific Screening of EPA/DHA-Enriched Phospholipids in Fish Oil Extracted from Different Species by HILIC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7997-8007. [PMID: 34240600 DOI: 10.1021/acs.jafc.1c01709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eicosapentaenoic acid- and docosahexaenoic acid-enriched phospholipids (PLEPA/DHA) have versatile health-beneficial functions and can be well absorbed in the intestine. Herein, a precursor ion scan-driven hydrophilic interaction chromatography mass spectrometry (PreIS-HILIC-MS) method with the fatty acyl moieties of m/z 301.6 and 327.6 locked was established to specifically and selectively screen PLEPA/DHA in different fish oil samples, including saury, grass carp, hairtail, and yellow croaker. Taking saury oil as an example, a total of 24 PLEPA/DHA were successfully identified and quantified, including 20 PCEPA/DHA and 4 PEEPA/DHA. Finally, this method was validated in terms of sensitivity (limit of detection ≤ 4.15 μg·mL-1), linearity (≥0.9979), precision (RSDintraday ≤ 4.65%), and recovery (≥78.6%). The performance of the PreIS-HILIC-MS method was also compared with that of the traditional full-scan mode, and the former demonstrated its unique superiority in targeted screening of PLEPA/DHA in fish oils.
Collapse
Affiliation(s)
- Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qingcheng Wang
- Department of Cardiology, Hangzhou Yuhang Hospital of Traditional Chinese Medicine, Yuhang 311106, Zhejiang, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China
| | - Pingya Wang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
6
|
Yu Y, Yao C, Guo DA. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-mass spectrometry. Acta Pharm Sin B 2021; 11:1469-1492. [PMID: 34221863 PMCID: PMC8245813 DOI: 10.1016/j.apsb.2021.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been an indispensable source of drugs for curing various human diseases. However, the inherent chemical diversity and complexity of TCM restricted the safety and efficacy of its usage. Over the past few decades, the combination of liquid chromatography with mass spectrometry has contributed greatly to the TCM qualitative analysis. And novel approaches have been continuously introduced to improve the analytical performance, including both the data acquisition methods to generate a large and informative dataset, and the data post-processing tools to extract the structure-related MS information. Furthermore, the fast-developing computer techniques and big data analytics have markedly enriched the data processing tools, bringing benefits of high efficiency and accuracy. To provide an up-to-date review of the latest techniques on the TCM qualitative analysis, multiple data-independent acquisition methods and data-dependent acquisition methods (precursor ion list, dynamic exclusion, mass tag, precursor ion scan, neutral loss scan, and multiple reaction monitoring) and post-processing techniques (mass defect filtering, diagnostic ion filtering, neutral loss filtering, mass spectral trees similarity filter, molecular networking, statistical analysis, database matching, etc.) were summarized and categorized. Applications of each technique and integrated analytical strategies were highlighted, discussion and future perspectives were proposed as well.
Collapse
Key Words
- BS, background subtraction
- CCS, collision cross section
- CE, collision energy
- CID, collision-induced dissociation
- DDA, data-dependent acquisition
- DE, dynamic exclusion
- DIA, data-independent acquisition
- DIF, diagnostic ion filtering
- DM, database matching
- Data acquisition
- Data post-processing
- EL, exclusion list
- EMS, enhanced mass spectrum
- EPI, enhanced product ion
- FS, full scan
- HCD, high-energy C-trap dissociation
- IDA, information dependent acquisition
- IM, ion mobility
- IPF, isotope pattern filtering
- ISCID, in-source collision-induced dissociation
- LC, liquid chromatography
- LTQ-Orbitrap, linear ion-trap/orbitrap
- Liquid chromatography−mass spectrometry
- MDF, mass defect filtering
- MIM, multiple ion monitoring
- MN, molecular networking
- MRM, multiple reaction monitoring
- MS, mass spectrometry
- MTSF, mass spectral trees similarity filter
- NL, neutral loss
- NLF, neutral loss filtering
- NLS, neutral loss scan
- NRF, nitrogen rule filtering
- PCA, principal component analysis
- PIL, precursor ion list
- PIS, precursor ion scan
- PLS-DA, partial least square-discriminant analysis
- Q-TRAP, hybrid triple quadrupole-linear ion trap
- QSRR, quantitative structure retention relationship
- QqQ, triple quadrupole
- Qualitative analysis
- RT, retention time
- SA, statistical analysis
- TCM, traditional Chinese medicine
- Traditional Chinese medicine
- UHPLC, ultra-high performance liquid chromatography
- cMRM, conventional multiple reaction monitoring
- sMRM, scheduled multiple reaction monitoring
Collapse
Affiliation(s)
- Yang Yu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Falev DI, Ul'yanovskii NV, Ovchinnikov DV, Faleva AV, Kosyakov DS. Screening and semi-quantitative determination of pentacyclic triterpenoids in plants by liquid chromatography-tandem mass spectrometry in precursor ion scan mode. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:252-261. [PMID: 32638461 DOI: 10.1002/pca.2971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Pentacyclic triterpenoids (PCTs) are secondary plant metabolites. They are of exceptional interest as biologically active substances and raw materials for a wide range of medications. Thus, the development of a methodology for rapid screening of PCTs in plant biomass is an important task. OBJECTIVE The goal of this work was to develop an approach for simultaneous screening and semi-quantitative determination of PCTs in plant tissues by liquid chromatography-tandem mass spectrometry with a precursor ion scan (PrecIS). MATERIALS AND METHODS Pressurised liquid extraction (PLE) with methanol was used for the isolation of PCTs from plant biomass. Screening and semi-quantitative determination of PCTs in the obtained extracts were carried out by reversed phase high-performance liquid chromatography-tandem mass spectrometry in a PrecIS mode. RESULTS The product ion at m/z 95 with collision energy of 40 V was used as a diagnostic ion to identify PCTs by the PrecIS mode. In plant materials, 26 PCTs and their derivatives, such as PCTs esters and glycosides, were detected and identified. Calculation of the relative response factor for nine available PCTs showed that using a betulin calibration curve allows us to estimate the semi-quantitative content of PCTs and their derivatives in plant PLE extracts. CONCLUSION The developed approach can be applied for simultaneous untargeted screening and semi-quantitative determination of PCTs and their derivatives in various plants at sub-parts per million levels.
Collapse
Affiliation(s)
- Danil I Falev
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Nikolay V Ul'yanovskii
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Denis V Ovchinnikov
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Anna V Faleva
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Dmitry S Kosyakov
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| |
Collapse
|
8
|
Shi Y, Zhao Y, Qian J, Dong Z, Wen G, Zhao D, Kennelly EJ. Aconitum Diterpenoid Alkaloid Profiling to Distinguish between the Official Traditional Chinese Medicine (TCM) Fuzi and Adulterant Species Using LC-qToF-MS with Chemometrics. JOURNAL OF NATURAL PRODUCTS 2021; 84:570-587. [PMID: 33496169 DOI: 10.1021/acs.jnatprod.0c00851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lateral roots of Aconitum carmichaelii, known in Chinese as fuzi, are officially recognized as a materia medica in the Chinese Pharmacopoeia and used culinarily to prepare herbal soups. A strategy combining UPLC-qToF-MS analysis of A. carmichaelii and its intraspecies and interspecies chemometrics study was developed to examine the distribution of Aconitum marker metabolites. Four diterpenoid alkaloids were recognized to be important markers in fuzi, and another 15 markers were identified to differentiate A. carmichaelii from adulterant species. The detected fuzi markers, mesaconitine (47) and hypaconitine (51), are known to be the principal toxins in this herb, while fuziline (6) and benzoylmesaconine (25) are associated with its medicinal properties. Additional marker compounds have been detected in other Aconitum species that are useful for identifying adulteration. This study provides a useful resource for detecting traditional Chinese medicine (TCM) adulterants and assisting in the quality control of botanical products in TCM and beyond.
Collapse
Affiliation(s)
- Yana Shi
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650201, People's Republic of China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Junxiang Qian
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650201, People's Republic of China
| | - Zhiyuan Dong
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650201, People's Republic of China
| | - Guosong Wen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming 650405, People's Republic of China
- School of Ecology and Environmental Science, Yunnan University, Kunming 650405, People's Republic of China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
9
|
Jian L, Yuan X, Han J, Zheng R, Peng X, Wang K. Screening for illegal addition of glucocorticoids in adulterated cosmetic products using ultra-performance liquid chromatography/tandem mass spectrometry with precursor ion scanning. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8999. [PMID: 33140453 DOI: 10.1002/rcm.8999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 05/15/2023]
Abstract
RATIONALE The screening for illegal adulteration of glucocorticoids (GCs) in cosmetics is challenging due to the vast variety of potential GCs that are present to improve the declared effects. An effective analytical method to screen illegally added GCs in cosmetics is vital to protect consumers. METHODS An ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method using precursor ion scanning (PIS) acquisition mode was developed to screen GCs in cosmetics. Forty-seven GCs were investigated to identify their common product ions formed by collision-induced dissociation. Cosmetic samples spiked with GCs were extracted using solid-phase extraction. RESULTS Four common positive product ions, m/z 121, 135, 147, and 171, were selected for PIS analysis. Limits of detection (LODs) were established for all 47 GCs. The method was validated on spiked samples to ensure its effectiveness in terms of sensitivity and selectivity. Sixty samples were analyzed. Seven GCs were detected in six samples. CONCLUSIONS An effective screening method using UPLC/MS/MS with PIS acquisition mode was developed and successfully applied to screen for targeted and untargeted GCs in cosmetic samples.
Collapse
Affiliation(s)
- Longhai Jian
- National Medical Products Administration Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Xiaoqian Yuan
- National Medical Products Administration Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Jing Han
- National Medical Products Administration Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Rong Zheng
- National Medical Products Administration Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Xingsheng Peng
- National Medical Products Administration Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Ke Wang
- National Medical Products Administration Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| |
Collapse
|
10
|
Fan B, Xu S, Bi J, Huang S, Zu Z, Qian C. Simultaneous Determination of Six Alkaloids in Rat Plasma by SPE-HPLC-MS/MS and Their Pharmacokinetics after Oral Administration of Radix aconiti Preparata Extract. ACS Pharmacol Transl Sci 2021; 4:118-127. [PMID: 33615166 DOI: 10.1021/acsptsci.0c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/28/2022]
Abstract
Simultaneous determination of the content of six alkaloids (aconitine, hypoaconitine, mesaconitine, benzoylaconine, benzoylhypaconine, and benzoylmesaconine) in rat plasma is enabled by HPLC-MS/MS combined with microsolid phase extraction (micro-SPE). To study its pharmacokinetics in rat plasma, the extracted plasma sample was passed through a C18 extraction column and eluted with acetonitrile. The six alkaloids in the Radix aconiti Preparata extract can be completely separated as peaks with good shape. The six components in the plasma sample showed a good linear relationship within their respective linear ranges (R 2 > 0.997). The analysis of the six alkaloids can be completed within 20 min. This method has high intraday and interday precision, and the room temperature stability and freeze-thaw stability are good. The matrix effect of the plasma samples is between 86.4 and 114%. The metabolism of the six Aconitum alkaloids in plasma is analyzed using a two-compartment model, which is characterized by fast absorption, slow elimination, and good linear fit, R 2 > 0.99. The peak time (T max) for aconitine, hypaconitine, and neoaconitine ranged from 29.95 to 42.07 min, while the peak time (T max) for benzoaconitine, benzohypaconitine, and benzoxinaconitine ranged from 42.88 to 73.08 min. With the increased dosage, the bioavailability of Aconitum alkaloids decreased gradually. The method for the determination of Aconitum alkaloids in rat plasma by high performance liquid chromatography-tandem mass spectrometry is sensitive and accurate, which is suitable for rat plasma analysis. The results provide a scientific basis for metabolic study of Aconitum alkaloids in vivo, and pave the way for clinical use of Aconitum medicinal materials and extracts.
Collapse
Affiliation(s)
- Baolei Fan
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Sheng Xu
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Jianli Bi
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Shengtang Huang
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Zengyi Zu
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Chunqi Qian
- Michigan State University, 846 Service Road, East Lansing, Michigan 48864, United States
| |
Collapse
|
11
|
Liu Y, Sun H, Li C, Pu Z, Wu Z, Xu M, Li X, Zhang Y, Li H, Dong J, Bi R, Xie H, Liang D. Comparative HPLC-MS/MS-based pharmacokinetic studies of multiple diterpenoid alkaloids following the administration of Zhenwu Tang and Radix Aconiti Lateralis Praeparata extracts to rats. Xenobiotica 2021; 51:345-354. [PMID: 33332226 DOI: 10.1080/00498254.2020.1866229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstracts Zhenwu Tang (ZWT) is a traditional Chinese medicine that is primarily composed of Radix Aconiti Lateralis Praeparata (FZ) and diterpenoid alkaloids are believed to be the pharmacologically active compounds of ZWT. In this study, the pharmacokinetic profiles of hypaconitine, mesaconitine, aconitine, benzoylmesaconitine, benzoylaconitine, and benzoylhypacoitine were assessed in rats following intragastric ZWT administration. Furthermore, differences in the pharmacokinetic profiles of these six alkaloids were assessed as a function of rat sex and the administration of ZWT or FZ extracts to these animals. Plasma levels of these alkaloids were quantified via HPLC-MS/MS. Significant differences in key pharmacokinetic parameters were observed when comparing rats administered FZ or ZWT. Relative to FZ extract treatment, ZWT administration was associated with Cmax and AUC0-∞ values of benzoylmesaconitine that were about 3.5 and 5.5 times higher. Considerable variations in hypaconitine pharmacokinetic parameters were also revealed between female and male rats. The Cmax and AUC0-∞ of hypaconitine were about 2.5- and 2.7-fold elevated in female rats in comparison with male rats. These results suggested that the other compounds within ZWT can enhance the absorption of benzoylmesaconitine, while hypaconitine exhibits higher bioavailability in female rats, as compared with male rats.
Collapse
Affiliation(s)
- Yanhao Liu
- Wannan Medical College, Wuhu, Anhui, China
| | - Hua Sun
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Chao Li
- Wannan Medical College, Wuhu, Anhui, China
| | - Zhicheng Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zijing Wu
- Wannan Medical College, Wuhu, Anhui, China
| | - Maodi Xu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xianghong Li
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | | | - Hongjin Li
- Wannan Medical College, Wuhu, Anhui, China
| | - Jian Dong
- Wannan Medical College, Wuhu, Anhui, China
| | - Runlei Bi
- Wannan Medical College, Wuhu, Anhui, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Dahu Liang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
12
|
Pi ZF, Liu ZQ, Lu EY, Zheng Z, Liu S, Song FR, Li N. Rapid differentiation of aconiti kusnezoffii radix from different geographic origins using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_52_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Zhang K, Liu C, Yang T, Li X, Wei L, Chen D, Zhou J, Yin Y, Yu X, Li F. Systematically explore the potential hepatotoxic material basis and molecular mechanism of Radix Aconiti Lateralis based on the concept of toxicological evidence chain (TEC). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111342. [PMID: 32971455 DOI: 10.1016/j.ecoenv.2020.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Radix aconiti lateralis (Fuzi) is widely used in China as a traditional Chinese medicine for the treatment of asthenia, pain and inflammation. However, its toxic alkaloids often lead to adverse reactions. Currently, most of the toxicity studies on Fuzi are focused on the heart and nervous system, and more comprehensive toxicity studies are needed. In this study, based on the previous reports of Fuzi hepatotoxicity, serum pharmacochemistry and network toxicology were used to screen the potential toxic components of Heishunpian(HSP), a processed product of Fuzi, and to explore the possible mechanism of HSP-induced hepatotoxicity. The results obtained are expressed based on the toxicological evidence chain (TEC). It was found that 22 potential toxic components screened can affect Th17 cell differentiation, Jak-STAT signaling pathway, glutathione metabolism, and other related pathways by regulating AKT1, IL2, F2, GSR, EGFR and other related targets, which induces oxidative stress, metabolic disorders, cell apoptosis, immune response, and excessive release of inflammatory factors, eventually inducing liver damage in rats. This is the first study on HSP-induced hepatotoxicity based on the TEC concept, providing references for further studies on the toxicity mechanism of Fuzi.
Collapse
Affiliation(s)
- Kai Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Tiange Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Xinxin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Longyin Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Dongling Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Jiali Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Yihui Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Xinyu Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
14
|
Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020; 43:1978-1997. [DOI: 10.1002/jssc.201901340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Shiwen Song
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Research Institute of Translational MedicineThe First Bethune Hospital of Jilin University Changchun P. R. China
| | - Dong Sun
- Department of Biopharmacy, College of Life ScienceJilin University Changchun P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education”Yantai University Yantai P. R. China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| |
Collapse
|
15
|
A classification of liquid chromatography mass spectrometry techniques for evaluation of chemical composition and quality control of traditional medicines. J Chromatogr A 2019; 1609:460501. [PMID: 31515074 DOI: 10.1016/j.chroma.2019.460501] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Natural products (NPs) and traditional medicines (TMs) are used for treatment of various diseases and also to develop new drugs. However, identification of drug leads within the immense biodiversity of living organisms is a challenging task that requires considerable time, labor, and computational resources as well as the application of modern analytical instruments. LC-MS platforms are widely used for both drug discovery and quality control of TMs and food supplements. Moreover, a large dataset generated during LC-MS analysis contains valuable information that could be extracted and handled by means of various data mining and statistical tools. Novel sophisticated LC-MS based approaches are being introduced every year. Therefore, this review is prepared for the scientists specialized in pharmacognosy and analytical chemistry of NPs as well as working in related areas, in order to navigate them in the world of diverse LC-MS based techniques and strategies currently employed for NP discovery and dereplication, quality control, pattern recognition and sample comparison, and also in targeted and untargeted metabolomic studies. The suggested classification system includes the following LC-MS based procedures: elemental composition determination, isotopic fine structure analysis, mass defect filtering, de novo identification, clustering of the compounds in Molecular Networking (MN), diagnostic fragment ion (or neutral loss) filtering, manual dereplication using MS/MS data, database-assisted peak annotation, annotation of spectral trees, MS fingerprinting, feature extraction, bucketing of LC-MS data, peak profiling, predicted metabolite screening, targeted quantification of biomarkers, quantitative analysis of multi-component system, construction of chemical fingerprints, multi-targeted and untargeted metabolite profiling.
Collapse
|
16
|
A Comprehensive and Rapid Quality Evaluation Method of Traditional Chinese Medicine Decoction by Integrating UPLC-QTOF-MS and UFLC-QQQ-MS and its Application. Molecules 2019; 24:molecules24020374. [PMID: 30669664 PMCID: PMC6359386 DOI: 10.3390/molecules24020374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/16/2022] Open
Abstract
Decoction is one of the oldest forms of traditional Chinese medicine and it is widely used in clinical practice. However, the quality evaluation and control of traditional decoction is a challenge due to the characteristics of complicated constituents, water as solvent, and temporary preparation. ShenFu Prescription Decoction (SFPD) is a classical prescription for preventing and treating many types of cardiovascular disease. In this article, a comprehensive and rapid method for quality evaluation and control of SFPD was developed, via qualitative and quantitative analysis of the major components by integrating ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry and ultra-fast-performance liquid chromatography equipped with triple quadrupole mass spectrometry. Consequently, a total of 39 constituents were tentatively identified in qualitative analysis, of which 21 compounds were unambiguously confirmed by comparing with reference substances. We determined 13 important constituents within 7 min by multiple reaction monitoring. The validated method was applied for determining five different proportion SFPDs. It was found that different proportions generated great influence on the dissolution of constituents. This may be one of the mechanisms for which different proportions play different synergistic effects. Therefore, the developed method is a fast and useful approach for quality evaluation of SFPD.
Collapse
|
17
|
Luo C, Yi F, Xia Y, Huang Z, Zhou X, Jin X, Tang Y, Yi J. Comprehensive quality evaluation of the lateral root of Aconitum carmichaelii Debx. (Fuzi): Simultaneous determination of nine alkaloids and chemical fingerprinting coupled with chemometric analysis. J Sep Sci 2019; 42:980-990. [PMID: 30597748 DOI: 10.1002/jssc.201800937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 02/04/2023]
Abstract
Amino alcohol alkaloids are the active components in the lateral root of Aconitum carmichaelii Debx. (Fuzi), and they have a variety of pharmacological activities. However, the chemical fingerprints of the ester alkaloids reported to date were mainly obtained from high-performance liquid chromatography coupled with ultraviolet detection, and it is difficult to obtain information about amino alcohol alkaloids in Fuzi from such chromatograms. In this paper, a comprehensive fingerprinting method was established using high-performance liquid chromatography coupled with an evaporative light-scattering detector for the simultaneous quantitative analysis of both the amino alcohol alkaloids and ester alkaloids. A total of 42 samples of Fuzi from four production areas were analyzed by constructing high-performance liquid chromatography fingerprints. Then, the quantitative results of the chemical fingerprints combined with chemometrics methods were employed to reveal the factors affecting the geo-authentic Fuzi and to determine characteristic components that can be used to identify these samples. The results indicated distinct differences in the alkaloid contents among samples from the four regions; the geographical origin may be the primary factor affecting the geo-authentic Fuzi, and 15 major components (including songorine, neoline, and hypaconitine, which were quantitatively determined) were found to be characteristic components for the discrimination of Fuzi samples from various regions. Neoline might be a critical component for identifying geo-authentic Fuzi. This approach is convenient, reproducible and provides a promising method for the quality evaluation of Fuzi.
Collapse
Affiliation(s)
- Chunmei Luo
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, P. R. China
| | - Fanli Yi
- Sichuan Integrative Medicine Hospital, Chengdu, P. R. China
| | - Yanli Xia
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, P. R. China
| | - Zhifang Huang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, P. R. China
| | - Xianjian Zhou
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, P. R. China
| | - Xiaojun Jin
- The First Affiliated Hospital of Zhejiang University, Hangzhou, P. R. China
| | - Yina Tang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, P. R. China
| | - Jinhai Yi
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, P. R. China
| |
Collapse
|