1
|
Rahimpoor R, Soleymani-Ghoozhdi D, Firoozichahak A, Alizadeh S. Needle trap device technique: From fabrication to sampling. Talanta 2024; 276:126255. [PMID: 38776771 DOI: 10.1016/j.talanta.2024.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Needle Trap Device (NTD) as a novel, versatile, and eco-friendly technique has played an important role in analytical and environmental chemistry. The distinctive role of this interdisciplinary technique can be defended through the sampling and analysis of biological samples and industrial pollutants in gaseous and liquid environments. In recent years, significant efforts have been made to enhance the performance of the needle trap device resulting in the development of novel extraction routes by various packing materials with improved selectivity and enhanced adsorption characteristics. These achievements can lead to the facilitated pre-concentration of desired analytes. This review tries to have a comparative and comprehensive survey of the three important areas of NTD technique: I) Fabrication and preparation procedures of NTDs; II) Sampling techniques of pollutants using NTDs; and III) Employed materials as adsorbents in NTDs. In the packing-material section, the commercial and synthetic adsorbents such as carbon materials, metal-organic frameworks, aerogel, and polymers are considered. Furthermore, the limitations and potential areas for future development of the NTD technique are presented.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Hashemi M, Bahrami A, Ghorbani-Shahna F, Afkhami A, Farhadian M, Poormohamadi A. Development of a needle trap device packed with modified PAF-6-MNPs for sampling and analysis of polycyclic aromatic compounds in air. RSC Adv 2024; 14:18588-18598. [PMID: 38860255 PMCID: PMC11163952 DOI: 10.1039/d4ra01651c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The aim of this study was to develop a new method for sampling and analyzing polycyclic aromatic hydrocarbons in the air. This was achieved by utilizing a needle trap device packed with a modified porous aromatic framework coated with magnetic nanoparticles (PAF-6-MNPs). The modified adsorbent underwent qualitative evaluation using Fourier-transform infrared spectroscopy and X-ray diffraction, as well as scanning and transmission electron microscopy. The optimal conditions for sampling polycyclic aromatic hydrocarbons compounds were determined using a dynamic atmosphere chamber. The method was validated by taking various samples from the standard chamber, and then analyzed under different environmental sampling conditions using a gas chromatography device. The limit of detection (LOD) and limit of quantification (LOQ) values for the analytes of interest, including naphthalene, anthracene, and pyrene, ranged from 0.0034-0.0051 and 0.010-0.015 μg L-1, respectively. Also, the repeatability and reproducibility of the method expressed as relative standard deviation, for the mentioned analyses were found to be in the range of 17.8-20.5% and 20-22.9%. The results indicated that over a 20 day storage period (with the needle trap device containing the analytes of interest kept in the refrigerator), there was no significant decrease in the amount of analytes compared to the initial amount. These findings suggest that, the needle trap packed with the proposed adsorbent offers a reliable, highly-sensitive, easy-to-use, and cost-effective method for sampling polycyclic aromatic hydrocarbons in the air compared to the conventional method recommended by the National Institute of Occupational Safety and Health (NIOSH), method 5515.
Collapse
Affiliation(s)
- Mobina Hashemi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Farshid Ghorbani-Shahna
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abas Afkhami
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences Hamadan Iran
| | - Ali Poormohamadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
3
|
Żuchowska K, Filipiak W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. J Pharm Anal 2024; 14:100898. [PMID: 38634063 PMCID: PMC11022102 DOI: 10.1016/j.jpha.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Pathogenic microorganisms produce numerous metabolites, including volatile organic compounds (VOCs). Monitoring these metabolites in biological matrices (e.g., urine, blood, or breath) can reveal the presence of specific microorganisms, enabling the early diagnosis of infections and the timely implementation of targeted therapy. However, complex matrices only contain trace levels of VOCs, and their constituent components can hinder determination of these compounds. Therefore, modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed. In this paper, we discuss bacterial VOC analysis under in vitro conditions, in animal models and disease diagnosis in humans, including techniques for offline and online analysis in clinical settings. We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis, in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species interactions, the kinetics of VOC metabolism, and species- and drug-resistance specificity.
Collapse
Affiliation(s)
- Karolina Żuchowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Wojciech Filipiak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| |
Collapse
|
4
|
Duan Y, Ao Y, Huang L, Dong X, Liang L, Liu S, Chen Z. Rapid Sampling and Determination of Low Molecular Weight Polycyclic Aromatic Hydrocarbons (PAHs) in Air by a Needle Trap Device Coupled with Gas Chromatography–Mass Spectrometry (GC–MS). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2184477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Yingming Duan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Ya Ao
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Liling Huang
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Xian Dong
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Longchao Liang
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Zhuo Chen
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
5
|
Raynie DE. Overview of Recent Development of Needle-Trap Devices for Analysis of Volatile Compounds. LCGC NORTH AMERICA 2023. [DOI: 10.56530/lcgc.na.pa9869s8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Needle-trap devices (NTDs) are another sorbent-based tool in the haystack of methods used in analytical extractions. Syringe needles, similar to those used for gas chromatography (GC) injection, can be partially filled with suitable sorbents and are used for extracting and collecting volatile organics, followed by injection into a GC instrument via thermal desorption. Although NTDs share many similarities and advantages of solid-phase microextraction (SPME), the larger sorbent bed provides robustness and offers potentially exhaustive extractions. This month, we take a look at the principles and applications of NTDs, and recent developments in their use.
Collapse
|
6
|
Hou S, Wang X, Lian L, Zhu B, Yue B, Lou D. Determination of Polychlorinated Biphenyls in Water Samples Using a Needle Trap Device Combined with Gas Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.pb8772h2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this study, a fiber-packed needle trap device (NTD) was developed by packing heat-resistant fibers with a polyethylene glycol sol-gel coating into a 21-gauge, stainless steel needle. The polyethylene glycol sol-gel coating has numerous advantages, including uniform roughness and a large specific surface area. The prepared NTD was used for headspace extraction of five polychlorinated biphenyls (PCBs) in water samples, determined by gas chromatography with a flame ionization detector (GC-FID). The main experimental parameters, including the extraction and desorption conditions, ionic strength, and fiber bundles, were investigated to improve the extraction efficiency. After optimization, satisfactory linearity (r > 0.99) in the concentration range of 0.02–500 μg/L was obtained, and the enrichment factor of NTD for the five PCBs was between 1150 and 9537 times. The limit of detection (S/N = 3) of five PCBs were measured in ranges of 0.0021–0.01 μg/L. Furthermore, the fiber-packed NTD has excellent durability, and can be reused for 60 cycles. After being stored at room temperature for three days, the storage ability of the NTD had a loss of PCBs less than 10%, and the relative standard deviation (RSD) was less than 10%. When analyzing the PCBs in real water samples, good accuracies (spiked recoveries were in the range of 92.19–98.56%) and precision (the RSD was lower than 12.8%) was obtained.
Collapse
Affiliation(s)
| | | | - Lili Lian
- Jilin Institute of Chemical Technology
| | - Bo Zhu
- Jilin Institute of Chemical Technology
| | | | - Dawei Lou
- Jilin Institute of Chemical Technology
| |
Collapse
|
7
|
Needle-trap device packed with the MIL-100(Fe) metal–organic framework for the extraction of the airborne organochlorine pesticides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Kalhor S, Zarei M, Zolfigol MA, Sepehrmansourie H, Nematollahi D, Alizadeh S, Shi H, Arjomandi J. Anodic electrosynthesis of MIL-53(Al)-N(CH 2PO 3H 2) 2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines via a cooperative vinylogous anomeric based oxidation. Sci Rep 2021; 11:19370. [PMID: 34588471 PMCID: PMC8481481 DOI: 10.1038/s41598-021-97801-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
In this paper, the MIL-53(Al)-NH2 metal-organic frameworks (MOFs) was prepared based on the anodic electrosynthesis under green conditions. The anodic electrosynthesis as an environmentally friendly procedure was performed in the aqueous solution, room temperature, atmospheric pressure, and in the short reaction time (30 min). Also, the employed procedure was accomplished without the need for the ex-situ salt and base/probase additives as cation source and ligand activating agent at the constant current mode (10.0 mA cm-2). The electrosynthesized MOFs was functionalized with phosphorus acid tags as a novel mesoporous catalyst. This mesoporous catalyst was successfully employed for synthesis of new series (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines by one-pot condensation reaction of 3-methyl-1-phenyl-1H-pyrazol-5-amine, 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile and various aromatic aldehydes (mono, bis and tripodal). This catalyst proceeded the organic synthetic reaction via a cooperative vinylogous anomeric based oxidation mechanism with a marginal decreasing its catalytic activity after recycling and reusability.
Collapse
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| | - Davood Nematollahi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Saber Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Jalal Arjomandi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| |
Collapse
|
9
|
Naseri AM, Zarei M, Alizadeh S, Babaee S, Zolfigol MA, Nematollahi D, Arjomandi J, Shi H. Synthesis and application of [Zr-UiO-66-PDC-SO 3H]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. Sci Rep 2021; 11:16817. [PMID: 34413353 PMCID: PMC8377142 DOI: 10.1038/s41598-021-96001-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
A metal-organic framework (MOF) with sulfonic acid tags as a novel mesoporous catalyst was synthesized. The precursor of Zr-UiO-66-PDC was synthesized both via chemical and electrochemical methods. Then, zirconium-based mesoporous metal-organic framework [Zr-UiO-66-PDC-SO3H]Cl was prepared by reaction of Zr-UiO-66-PDC and SO3HCl. The structure of [Zr-UiO-66-PDC-SO3H]Cl was confirmed by FT-IR, PXRD, FE-SEM, TEM, BET, EDX, and Mapping analysis. This mesoporous [Zr-UiO-66-PDC-SO3H]Cl was successfully applied for the synthesis of dicyanomethylene pyridine derivatives via condensation of various aldehyde, 2-aminoprop-1-ene-1,1,3-tricarbonitrile and malononitrile. At the electrochemical section, a green electrochemical method has successfully employed for rapid synthesis of the zirconium-based mesoporous metal-organic framework UiO-66-PDC at room temperature and atmospheric pressure. The synthesized UiO-66-PDC has a uniform cauliflower-like structure with a 13.5 nm mean pore diameter and 1081.6 m2 g-1 surface area. The described catalyst [Zr-UiO-66-PDC-SO3H]Cl was also employed for the convergent paired electrochemical synthesis of dihydropyridine derivatives as an environmentally friendly technique under constant current at 1.0 mA cm-2 in an undivided cell. The proposed method proceeds with moderate to good yields for the model via a cooperative vinylogous anomeric based oxidation.
Collapse
Affiliation(s)
| | - Mahmoud Zarei
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran.
| | - Saeed Babaee
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran
| | | | - Davood Nematollahi
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran.
| | - Jalal Arjomandi
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
10
|
Souri Z, Alizadeh S, Nematollahi D, Mazloum-Ardakani M, Karami A. A green and template-free electropolymerization of imipramine. The decoration of sponge-like polymer film with gold nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Bio-monitoring of non-metabolized BTEX compounds in urine by dynamic headspace-needle trap device packed with 3D Ni/Co-BTC bimetallic metal-organic framework as an efficient absorbent. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Rahimpoor R, Firoozichahak A, Nematollahi D, Alizadeh S, Alizadeh PM, Alinaghi Langari AA. Determination of halogenated hydrocarbons in urine samples using a needle trap device packed with Ni/Zn-BTC bi-MMOF via the dynamic headspace method. RSC Adv 2021; 11:21537-21547. [PMID: 35478810 PMCID: PMC9034123 DOI: 10.1039/d1ra03227e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, a nickel/zinc-BTC bi-metallic metal-organic framework (bi-MMOF) was employed as a new and efficient adsorbent in a needle trap device (NTD) for headspace (HS) sampling, extraction and analysis of halogenated hydrocarbons (trichloroethylene, tetrachloroethylene, chloroform, and tetrachloroethylene) from spiked and real urine samples. Characterization of the prepared adsorbent was accomplished by FT-IR, PXRD, EDX, elemental mapping, and FE-SEM techniques. According to experimental results, the optimal temperature and extraction time, salt content, temperature and desorption time of the response surface methodology (RSM) and Box-Behnken design (BBD) were determined to be 56 °C and 30 min, 5.5%, 350 °C and 8 min for the studied halogenated hydrocarbons, respectively. The calculated values of detection limit and quantitation limit parameters were in the range of 1.02-1.10 and 2.01-2.4.0 ng L-1, respectively. Moreover, intermediate precision and repeatability of the method were in the range of 4.90-8.20% and 1.50-4.80%, respectively. The recovery percentages of analytes were obtained to be in the range of 95.0-97.0% 10 days after the sampling and storage at 4 °C. This study showed that the proposed HS-NTD:Ni/Zn-BTC method coupled with a GC-FID can be employed as a simple, fast, and sensitive procedure for non-metabolized halogenated hydrocarbons from urine samples in biological monitoring.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences Larestan Iran
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science Gonabad Iran
| | | | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Parsa Mohammad Alizadeh
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | | |
Collapse
|
13
|
Abolghasemi MM, Piryaei M. In situ growth of copper-based metal–organic framework nanoarrays on copper wire for solid-phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Alinaghi Langari AA, Alizadeh S, Soury S, Firoozichahak A, Nematollahi D, Alizadeh PM, Sanaei N. Nano-hydroxyapatite/polyaniline composite as an efficient sorbent for sensitive determination of the polycyclic aromatic hydrocarbons in air by a needle trap device. RSC Adv 2020; 10:42267-42276. [PMID: 35516756 PMCID: PMC9057830 DOI: 10.1039/d0ra07540j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022] Open
Abstract
Hydroxyapatite is a readily available, inexpensive, environmentally friendly adsorbent with high adsorption capacity. In this study, a polyaniline-doped nano-hydroxyapatite (PANI@HA) adsorbent was synthesized and employed in a needle trap device for the extraction of polycyclic aromatic hydrocarbons such as naphthalene, fluoranthene, benzo[a]anthracene, phenanthrene, and benzo[a]pyrene for the first time. The synthesized adsorbent was characterized by X-ray diffraction, field emission scanning electron microscopy, and Fourier-transform infrared spectroscopy analysis. Initially, effective variables such as the carryover effect, storage time, accuracy, and precision of the method were examined in the laboratory. The desorption conditions were optimized using the response surface methodology and central composite design methods. From the standpoint of quantitative parameters, the limit of detection and limit of quantitation were determined to be between 0.001 and 0.003 and 0.021 and 0.051 ng mL-1, respectively, which indicates the high sensitivity of the proposed method. Additionally, no significant changes were detected after storage of analytes inside the needle at 4 °C after 60 days. The results of this study also provide a high correlation between the results of sampling with needles containing PANI@HA and with XAD-2 adsorbent tubes (standard NIOSH 5115 method) (R 2 = 0.98). Finally, the proposed method was successfully employed in the extraction and determination of polycyclic aromatic hydrocarbons in field (real) samples. In general, it can be concluded that a needle packed with PANI@HA is a reliable and high-performance method for sampling polycyclic aromatic hydrocarbons compared to the NIOSH method.
Collapse
Affiliation(s)
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Shiva Soury
- Department of Occupational Health Engineering, School of Public Health, Ilam University of Medical Sciences Ilam Iran
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Sciences Gonabad Iran
| | | | - Parsa Mohammad Alizadeh
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Nasim Sanaei
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
15
|
Alinaghi Langari AA, Firoozichahak A, Alizadeh S, Nematollahi D, Farhadian M. Efficient extraction of aromatic amines in the air by the needle trap device packed with the zirconium based metal-organic framework sorbent. RSC Adv 2020; 10:13562-13572. [PMID: 35492999 PMCID: PMC9051570 DOI: 10.1039/d0ra00687d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, development of a needle trap device (NTD) packed with UiO-66 adsorbent was used for the sampling of the aromatic amine compounds (including aniline, N,N-dimethylaniline and o-toluidine) followed by gas chromatography (GC) with flame-ionization detector (FID) analysis. The UiO-66 sorbent was synthesized and then packed inside a spinal needle (Gauge 22). The synthesized sorbent was characterized with the XRD, FE-SEM, EDS and FT-IR techniques. This study was conducted both in the laboratory and in the real samples. In the laboratory, the sampling parameters (such as temperature and humidity) and desorption parameters (including desorption temperature and desorption time) were optimized using Response Surface Methodology (RSM) by Central Composite Design (CCD). The results indicated that the performance of the sampling device decreased with increasing the sampling humidity and temperature. Moreover, the highest peak area responses of the studied analytes were observed at a desorption time of 3 minutes and desorption temperature of 270 °C. The values of the limit of detection (LOD) and limit of quantitation (LOQ) were in the range 0.01-0.02 and 0.03-0.05 ng mL-1, respectively. Our findings demonstrated that NTD packed with synthesized UiO-66 has good repeatability (RSD = 1.3-6.8%) and acceptable reproducibility (with three NTDs) (RSD = 1.3-9.7%). Comparison of the results between NTD-UiO-66 and NIOSH2002 showed a sufficient correlation (0.98-0.99) between two methods. Therefore, the results indicated that the NTD packed with the UiO-66 adsorbent can be used as a powerful technique for occupational and environmental monitoring.
Collapse
Affiliation(s)
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science Gonabad Iran
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | | | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|