1
|
Chen J, Pei B, Shi S. Association between egg consumption and risk of obesity: A comprehensive review: EGG CONSUMPTION AND OBESITY. Poult Sci 2024; 104:104660. [PMID: 39721264 DOI: 10.1016/j.psj.2024.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Eggs serve as a vital source of high-quality protein and lipids in the human diet, contributing significantly to nutritional intake; however, the relation between egg intake and health risks has been controversial. This study aimed to assess the relationship between egg intake and obesity and the effects of the various nutrients in eggs on obesity were separately investigated. This review involved searching Scopus, PubMed, Google Scholar for relevant articles from 2002 to 2022. Studies suggested that moderate egg consumption exerts little effect on blood lipid levels, that due to the body regulates endogenous cholesterol production in response to the external cholesterol intake. Furthermore, certain studies also verified that the presence of other nutrients in eggs, such as lecithin, unsaturated fatty acids, and apolipoproteins, not only does not contribute to elevated blood lipids but also plays a role in regulating lipid metabolism to prevent obesity. Additionally, the study reveals that different cooking methods significantly impact the nutritional composition of eggs, with soft-boiled eggs generally being the most advantageous for human health. This article reveals that dietary cholesterol or moderate egg intake was not significantly associated with a higher risk of obesity in healthy adults. Nevertheless, cholesterol-sensitive individuals should ensure moderate cholesterol intake.
Collapse
Affiliation(s)
- Jinglong Chen
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| | - Bixuan Pei
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| | - Shourong Shi
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| |
Collapse
|
2
|
Zhang F, Ma Y, Zhu H, Li J, Gu L, Chang C, Su Y, Yang Y. Different effects of low- and high-density lipoproteins in egg yolk on lipid metabolism of mouse: Role of phospholipids-to-cholesterol intake ratio. J Food Sci 2024; 89:9751-9765. [PMID: 39656662 DOI: 10.1111/1750-3841.17566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
Recent evidence increasingly indicates that moderate egg consumption (up to one egg per day) poses no significant risk of cardiovascular diseases in healthy individuals, leading researchers to speculate whether other lipids in eggs affect lipid metabolism. In this research, C57BL/6J mice were given chow diets containing egg yolk low-density lipoprotein (LDL) and high-density lipoprotein (HDL), two natural components with different proportions of phospholipids and cholesterol, to explore the effects of the phospholipids-to-cholesterol intake ratio on lipid metabolism. Increases in liver weight and liver index were observed following LDL intake, while body weight and epididymal fat decreased after HDL intake in a dose-dependent manner. The food efficiency of chow diets decreased with increasing phospholipids content. Lipid biomarkers indicated that LDL intake significantly increased plasma LDL cholesterol and liver cholesterol levels. At equivalent cholesterol doses, the cholesterol-raising effects of HDL were weaker than those of LDL. Higher protein expression of cytochrome P450 family 7 subfamily A member 1 in the HDL groups suggested increased bile acid excretion at higher phospholipids-to-cholesterol intake ratios. Fecal metabolite analysis revealed significant changes in lipid composition, primarily involving glycerophospholipids, sphingolipids, and sterol lipids, consistent with the lipid profiles of LDL and HDL. The upregulation of cholic acid and deoxycholic acid in feces further confirmed increased bile acid excretion. This study highlights the differences in lipid metabolism in mice under varying phospholipids-to-cholesterol intake ratios, which may be associated with changes in dietary energy supply and bile excretion following phospholipids involvement.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Ying Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Hangxin Zhu
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
3
|
Lange Y, Steck TL. How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis. Prog Lipid Res 2024; 96:101304. [PMID: 39491591 DOI: 10.1016/j.plipres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these complexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phospholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hypothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
4
|
Yang Y, Zhang F, Yu X, Wang L, Wang Z. Integrating microbial 16S rRNA sequencing and non-targeted metabolomics to reveal sexual dimorphism of the chicken cecal microbiome and serum metabolome. Front Microbiol 2024; 15:1403166. [PMID: 39101039 PMCID: PMC11294938 DOI: 10.3389/fmicb.2024.1403166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Background The gut microbiome plays a key role in the formation of livestock and poultry traits via serum metabolites, and empirical evidence has indicated these traits are sex-linked. Methods We examined 106 chickens (54 male chickens and 52 female chickens) and analyzed cecal content samples and serum samples by 16S rRNA gene sequencing and non-targeted metabolomics, respectively. Results The cecal microbiome of female chickens was more stable and more complex than that of the male chickens. Lactobacillus and Family XIII UCG-001 were enriched in male chickens, while Eubacterium_nodatum_group, Blautia, unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, and norank_Muribaculaceae were enriched in female chickens. Thirty-seven differential metabolites were identified in positive mode and 13 in negative mode, showing sex differences. Sphingomyelin metabolites possessed the strongest association with cecal microbes, while 11β-hydroxytestosterone showed a negative correlation with Blautia. Conclusion These results support the role of sexual dimorphism of the cecal microbiome and metabolome and implicate specific gender factors associated with production performance in chickens.
Collapse
Affiliation(s)
| | | | | | | | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Wang Y, Liu Q, Liu Y, Qiao W, Zhao J, Cao H, Liu Y, Chen L. Advances in the composition, efficacy, and mimicking of human milk phospholipids. Food Funct 2024; 15:6254-6273. [PMID: 38787648 DOI: 10.1039/d4fo00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phospholipids are the essential components of human milk, contributing to the enhancement of cognitive development, regulation of immune functions, and mitigation of elevated cholesterol levels. Infant formulas supplemented with phospholipids can change the composition, content, and globule membrane structure of milk lipids, improving their digestive properties and nutritional value. However, mimicking phospholipids in infant formulas is currently limited, and the supplemented standards of phospholipid species and amounts in infant formulas are unknown. Consequently, there is a significant difference between the phospholipids in infant formulas and those in human milk. This article reviews the recent progress in human milk phospholipid research, aiming to describe the composition, content, and positive effects of human milk phospholipids, as well as summarises the dietary sources of phospholipid supplementation and the current state of human milk phospholipid mimicking in infant formulas. This review provides clear directions for research on mimicking human milk phospholipids and evaluating the nutritional functions of phospholipids in infants.
Collapse
Affiliation(s)
- Yuru Wang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Huiru Cao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Sanyuan Foods Co. Ltd., No. 8, Yingchang Street 100076, Yinghai Town, Daxing District, Beijing, China.
| |
Collapse
|
6
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Pan J, Chen M, Li N, Han R, Yang Y, Zheng N, Zhao S, Zhang Y. Bioactive Functions of Lipids in the Milk Fat Globule Membrane: A Comprehensive Review. Foods 2023; 12:3755. [PMID: 37893646 PMCID: PMC10606317 DOI: 10.3390/foods12203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
The milk fat globule membrane (MFGM) is a complex tri-layer membrane that wraps droplets of lipids in milk. In recent years, it has attracted widespread attention due to its excellent bioactive functions and nutritional value. MFGM contains a diverse array of bioactive lipids, including cholesterol, phospholipids, and sphingolipids, which play pivotal roles in mediating the bioactivity of the MFGM. We sequentially summarize the main lipid types in the MFGM in this comprehensive review and outline the characterization methods used to employ them. In this comprehensive review, we sequentially describe the types of major lipids found in the MFGM and outline the characterization methods employed to study them. Additionally, we compare the structural disparities among glycerophospholipids, sphingolipids, and gangliosides, while introducing the formation of lipid rafts facilitated by cholesterol. The focus of this review revolves around an extensive evaluation of the current research on lipid isolates from the MFGM, as well as products containing MFGM lipids, with respect to their impact on human health. Notably, we emphasize the clinical trials encompassing a large number of participants. The summarized bioactive functions of MFGM lipids encompass the regulation of human growth and development, influence on intestinal health, inhibition of cholesterol absorption, enhancement of exercise capacity, and anticancer effects. By offering a comprehensive overview, the aim of this review is to provide valuable insights into the diverse biologically active functions exhibited by lipids in the MFGM.
Collapse
Affiliation(s)
- Junyu Pan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Meiqing Chen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Ning Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| |
Collapse
|
8
|
Teixeira FS, Costa PT, Soares AMS, Fontes AL, Pintado ME, Vidigal SSMP, Pimentel LL, Rodríguez-Alcalá LM. Novel Lipids to Regulate Obesity and Brain Function: Comparing Available Evidence and Insights from QSAR In Silico Models. Foods 2023; 12:2576. [PMID: 37444314 DOI: 10.3390/foods12132576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Lipid molecules, such as policosanol, ergosterol, sphingomyelin, omega 3 rich phosphatidylcholine, α-tocopherol, and sodium butyrate, have emerged as novel additions to the portfolio of bioactive lipids. In this state-of-the-art review, we discuss these lipids, and their activity against obesity and mental or neurological disorders, with a focus on their proposed cellular targets and the ways in which they produce their beneficial effects. Furthermore, this available information is compared with that provided by in silico Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) models in order to understand the usefulness of these tools for the discovery of new bioactive compounds. Accordingly, it was possible to highlight how these lipids interact with various cellular targets related to the molecule transportation and absorption (e.g., α-tocopherol transfer protein for α-Tocopherol, ATP-binding cassette ABC transporters or Apolipoprotein E for sphingomyelins and phospholipids) or other processes, such as the regulation of gene expression (involving Sterol Regulatory Element-Binding Proteins for ergosterol or Peroxisome Proliferator-Activated Receptors in the case of policosanol) and inflammation (the regulation of interleukins by sodium butyrate). When comparing the literature with in silico Quantitative Structure-Activity Relationship (QSAR) models, it was observed that although they are useful for selecting bioactive molecules when compared in batch, the information they provide does not coincide when assessed individually. Our review highlights the importance of considering a broad range of lipids as potential bioactives and the need for accurate prediction of ADMET parameters in the discovery of new biomolecules. The information presented here provides a useful resource for researchers interested in developing new strategies for the treatment of obesity and mental or neurological disorders.
Collapse
Affiliation(s)
- Francisca S Teixeira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula T Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana M S Soares
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Luiza Fontes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Susana S M P Vidigal
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Lígia L Pimentel
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís M Rodríguez-Alcalá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
9
|
Zhou E, Wang Q, Li X, Zhu D, Niu Q, Li Q, Wu L. Effects of Bee Pollen Derived from Acer mono Maxim. or Phellodendron amurense Rupr. on the Lipid Composition of Royal Jelly Secreted by Honeybees. Foods 2023; 12:foods12030625. [PMID: 36766159 PMCID: PMC9914857 DOI: 10.3390/foods12030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Royal jelly is a specific product secreted by honeybees, and has been sought after to maintain health because of its valuable bioactive substances, e.g., lipids and vitamins. The lipids in royal jelly come from the bee pollen consumed by honeybees, and different plant source of bee pollen affects the lipid composition of royal jelly. However, the effect of bee pollen consumption on the lipid composition of royal jelly remains unclear. Herein, we examined the influence of two factors on the lipid composition of royal jelly: first, two plant sources of bee pollen, i.e., Acer mono Maxim. (BP-Am) and Phellodendron amurense Rupr. (BP-Pa); secondly, different feeding times. Lipidomic analyses were conducted on the royal jelly produced by honeybees fed BP-Am or BP-Pa using ultra-high performance liquid chromatography (UPLC)-Q-Exactive Orbitrap mass spectrometry. The results showed that the phospholipid and fatty acid contents differed in royal jelly produced by honeybees fed BP-Am compared to those fed BP-Pa. There were also differences between timepoints, with many lipid compounds decreasing in abundance soon after single-pollen feeding began, slowly increasing over time, then decreasing again after 30 days of single-pollen feeding. The single bee pollen diet destroyed the nutritional balance of bee colonies and affected the development of hypopharyngeal and maxillary glands, resulting in differences in royal jelly quality. This study provides guidance for optimal selection of honeybee feed for the production of high-quality royal jelly.
Collapse
Affiliation(s)
- Enning Zhou
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qi Wang
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
| | - Xiangxin Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Dan Zhu
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
10
|
Zhao F, Li R, Liu Y, Chen H. Perspectives on lecithin from egg yolk: Extraction, physicochemical properties, modification, and applications. Front Nutr 2023; 9:1082671. [PMID: 36687715 PMCID: PMC9853391 DOI: 10.3389/fnut.2022.1082671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Egg yolk lecithin has physiological activities as an antioxidant, antibacterial, anti-inflammatory, and neurologic, cardiovascular, and cerebrovascular protectant. There are several methods for extracting egg yolk lecithin, including solvent extraction and supercritical extraction. However, changes in extraction methods and functional activity of egg yolk lecithin are a matter of debate. In this review we summarized the molecular structure, extraction method, and functional activity of egg yolk lecithin to provide a good reference for the development of egg yolk lecithin products in the future.
Collapse
Affiliation(s)
- Feng Zhao
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, Jilin, China
| | - Rongji Li
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, Jilin, China
| | - Yun Liu
- College of Life Sciences, Beijing University of Chemical Technology, Beijing, China
| | - Haiyan Chen
- College of Food Science and Engineering, Changchun Sci-Tech University, Changchun, Jilin, China,College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Haiyan Chen ✉
| |
Collapse
|
11
|
|
12
|
Zhang F, Li J, Chang C, Gu L, Xiong W, Su Y, Yang Y. The Association of Dietary Cholesterol from Egg Consumption on Cardiovascular Diseases Risk Varies from Person to Person. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14977-14988. [PMID: 36416372 DOI: 10.1021/acs.jafc.2c04634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The public and scientists remain skeptical about egg consumption, given that cardiovascular diseases (CVDs) are the leading causes of death in worldwide. This review mainly explained the recurrence of contradictory conclusions about relationships between egg consumption and CVD risk and discussed effects of egg cholesterol intake on cholesterol homeostasis. Factors including individual health status and cholesterol sensitivity, dietary pattern, region, and race should be distinguished when understanding generalized conclusions. Identified compensatory mechanisms in response to dietary cholesterol and the resulting balance in cholesterol biosynthesis, absorption, and efflux supported the view that moderate egg consumption had no substantial overall impacts on cholesterol homeostasis in healthy people. Excessive cholesterol intake is not recommended in individuals with distempered metabolism. More than cholesterol metabolism, impacts of egg consumption as a part of overall diet on CVD risk should be considered from aspects of nutrient intake, lipid metabolism, and energy supply in the future.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wen Xiong
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
13
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
14
|
Abeyrathne EDNS, Nam KC, Huang X, Ahn DU. Egg yolk lipids: separation, characterization, and utilization. Food Sci Biotechnol 2022; 31:1243-1256. [PMID: 35992319 PMCID: PMC9385935 DOI: 10.1007/s10068-022-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Egg yolk contains very high levels of lipids, which comprise 33% of whole egg yolk. Although triglyceride is the main lipid, egg yolk is the richest source of phospholipids and cholesterol in nature. The egg yolk phospholipids have a unique composition with high levels of phosphatidylcholine followed by phosphatidylethanolamine, sphingomyelin, plasmalogen, and phosphatidylinositol. All the egg yolk lipids are embedded inside the HDL and LDL micelles or granular particles. Egg yolk lipids can be easily extracted using solvents or supercritical extraction methods but their commercial applications of egg yolk lipids are limited. Egg yolk lipids have excellent potential as a food ingredient or cosmeceutical, pharmaceutical, and nutraceutical agents because they have excellent functional and biological characteristics. This review summarizes the current knowledge on egg yolk lipids' extraction methods and functions and discusses their current and future use, which will be important to increase the use and value of the egg.
Collapse
Affiliation(s)
- Edirisingha Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla, 90000 Sri Lanka
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Ki-Chang Nam
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
15
|
Ma Z, Wu W, Zhang D, Wu P, Guo Y, Li D, Yang F. Daily intake of up to two eggs for 11 weeks does not affect the cholesterol balance of Chinese young adults. Food Sci Nutr 2022; 10:1081-1092. [PMID: 35432976 PMCID: PMC9007305 DOI: 10.1002/fsn3.2734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 12/22/2022] Open
Abstract
Approximately 90% of the cholesterol content of the body is derived from de novo synthesis and the enterohepatic circulation. As numerous studies have shown previously, one egg per day intake has little impact of cholesterol balance in human body. Therefore, this study assumed that intake of up two eggs a day has little effect on biomarkers of cardiovascular diseases (CVDs) risk in Chinese young adults. With the increase in egg intake, total cholesterol, low‐density lipoprotein cholesterol (LDL‐C), high‐density lipoprotein cholesterol (HDL‐C), and choline all increased among all the groups as the study progressed from autumn to winter (p < .05). However, there were no differences in the plasma triglycerides, LDL‐C/HDL‐C ratio, glucose, liver enzymes, C‐reactive protein, and urinary microalbumin during the diet periods. Subjects who ate eggs at breakfast felt less hungry and more satisfied, which were relative with decreased fasting plasma ghrelin level (p < .05). Furthermore, egg‐derived cholesterol appeared to upregulate the mRNA levels of low‐density lipoprotein receptor and lecithin–cholesterol acyltransferase, and downregulate cholesteryl ester transfer protein and flavin‐containing monooxygenase 3 mRNA levels in isolated peripheral blood mononuclear cells. These results demonstrate that intake of up to two eggs a day had little effect on biomarkers of CVDs in young, healthy Chinese college students and provided useful evidence for the dietary guidelines regarding egg consumption.
Collapse
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| | - Wei Wu
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| | - Dexin Zhang
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| | - Ping Wu
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| | - Yuanhua Guo
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| | - Deyuan Li
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| | - Fang Yang
- School of Laboratory Medicine Hubei University of Chinese Medicine Wuhan China
| |
Collapse
|
16
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
17
|
Wu HQ, Ma ZL, Zhang DX, Wu P, Guo YH, Yang F, Li DY. Sequential Extraction, Characterization, and Analysis of Pumpkin Polysaccharides for Their Hypoglycemic Activities and Effects on Gut Microbiota in Mice. Front Nutr 2021; 8:769181. [PMID: 34805250 PMCID: PMC8596442 DOI: 10.3389/fnut.2021.769181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to extract polysaccharides from pumpkin, characterize the structures of four of them, and evaluate their in vitro antioxidant and hypoglycemic activities. Additionally, an animal model of type 2 diabetes mellitus (T2DM) was established and used to determine their hypoglycemic and hypolipidemic effects in vivo, and the underlying mechanisms related to the regulation of gut microbiota. Water-extracted crude pumpkin polysaccharides (W-CPPs), water extraction and alcohol precipitation crude pumpkin polysaccharides (WA-CPPs), deproteinized pumpkin polysaccharides (DPPs), and refined pumpkin polysaccharides (RPPs) were sequentially extracted and purified from pumpkin powder by hot water extraction, water extraction, and alcohol precipitation, deproteinization and DEAE-52 cellulose gel column, respectively. The extraction and purification methods had significant influence on the extraction yield, physicochemical properties, and in vitro antioxidant and hypoglycemic activities. W-CCP and RPPs had a significant positive free radical-scavenging capacities and inhibitory activities on α-glucosidase and α-amylase. RPP-3 not only inhibited the uptake of glucose in Caco-2 monolayer but also promoted the excretion of glucose, while RPP-2 had no inhibitory effect. Animal experiment results showed that W-CPP treatment significantly improved the T2DM symptoms in mice, which included lowering of fasting blood glucose (FBG), reducing insulin resistance (IR), and lowering of blood lipid levels. It increased the diversity of intestinal flora and reduced the harmful flora of model mice, which included Clostridium, Thermoanaerobe, Symbiotic bacteria, Deinococcus, Vibrio haematococcus, Proteus gamma, and Corio. At the family level, W-CPP (1,200 mg/kg) treatment significantly reduced the abundance of Erysipelotrichaceae, and the Akkermanaceae of Verrucobacterium became a biomarker. Pumpkin polysaccharides reshaped the intestinal flora by reducing Erysipelotrichaceae and increasing Akkermansia abundance, thereby improving blood glucose and lipid metabolism in the T2DM mice. Our results suggest that W-CCP and RPP-3 possess strong antioxidant and hypoglycemic activities, and are potential candidates for food additives or natural medicines.
Collapse
Affiliation(s)
- Hui-Qing Wu
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Li Ma
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - De-Xin Zhang
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wu
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Hua Guo
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Yang
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - De-Yuan Li
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
18
|
Sugimoto K, Hosomi R, Yoshida M, Fukunaga K. Dietary Phospholipids Prepared From Scallop Internal Organs Attenuate the Serum and Liver Cholesterol Contents by Enhancing the Expression of Cholesterol Hydroxylase in the Liver of Mice. Front Nutr 2021; 8:761928. [PMID: 34778346 PMCID: PMC8578998 DOI: 10.3389/fnut.2021.761928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we successfully prepared scallop oil (SCO), which contains high levels of phospholipids (PL) and eicosapentaenoic acid (EPA), from the internal organs of the Japanese giant scallop (Patinopecten yessoensis), one of the most important underutilized fishery resources in Japan. The intake of SCO lowers the serum and liver cholesterol contents in mice; however, whether the fatty acids (FA) composition or PL of SCO exhibits any cholesterol-lowering effect remains unknown. To elucidate whether the cholesterol-lowering function is due to FA composition or PL of SCO, and investigate the cholesterol-lowering mechanism by SCO, in the present study, mice were fed SCO's PL fraction (SCO-PL), triglyceride (TG)-type oil with almost the same FA composition as SCO-PL, called SCO's TG fraction (SCO-TG), soybean oil (SOY-TG), and soybean's PL fraction (SOY-PL). Male C57BL/6J mice (5-week-old) were fed high-fat and cholesterol diets containing 3% (w/w) experimental oils (SOY-TG, SOY-PL, SCO-TG, and SCO-PL) for 28 days. The SCO-PL diet significantly decreased the serum and liver cholesterol contents compared with the SOY-TG diet, but the intake of SOY-PL and SCO-TG did not show this effect. This result indicated that the serum and liver cholesterol-lowering effect observed in the SCO intake group was due to the effect of SCO-PL. The cholesterol-lowering effect of SCO-PL was in part related to the promotion of liver cholesterol 7α-hydroxylase (CYP7A1) expression, which is the rate-limiting enzyme for bile acid synthesis. In contrast, the expression levels of the ileum farnesoid X receptor (Fxr) and fibroblast growth factor 15 (Fgf15), which inhibit the expression of liver CYP7A1, were significantly reduced in the SCO-PL group than the SOY-TG group. From these results, the increase in the liver CYP7A1 expression by dietary SCO-PL was in part through the reduction of the ileum Fxr/Fgf15 regulatory pathway. Therefore, this study showed that SCO-PL may be a health-promoting component as it lowers the serum and liver cholesterol contents by increasing the liver CYP7A1 expression, which is not seen in SOY-PL and SCO-TG.
Collapse
Affiliation(s)
- Koki Sugimoto
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Munehiro Yoshida
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Kenji Fukunaga
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
19
|
Aldana-Hernández P, Azarcoya-Barrera J, van der Veen JN, Leonard KA, Zhao YY, Nelson R, Goruk S, Field CJ, Curtis JM, Richard C, Jacobs RL. Dietary phosphatidylcholine supplementation reduces atherosclerosis in Ldlr -/- male mice 2. J Nutr Biochem 2021; 92:108617. [PMID: 33705949 DOI: 10.1016/j.jnutbio.2021.108617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/10/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Choline is an essential nutrient required for various biological processes. Eggs, dairy, and meat are rich in phosphatidylcholine (PC), whereas cereal and legumes are rich in free choline. Excess dietary choline leads to increase plasma trimethylamine N-oxide (TMAO). Epidemiological studies suggest that plasma TMAO is a biomarker for atherosclerosis and it has been suggested that a lower intake of eggs and meat would reduce choline consumption and thus reduce atherosclerosis development. To investigate whether the form of dietary choline influences atherosclerosis development in Ldlr-/-, we randomly fed Ldlr-/-male mice (aged 8 - 10 wk) one of the three 40% (calories) high fat diets (with 0.5% w/w of cholesterol): Control (0.1% w/w free-choline, CON), choline-supplemented (0.4% free-choline, CS), or PC-supplemented (0.1% free-choline and 0.3% choline from PC, PCS). After 12-wk of dietary intervention, the animals were euthanized and tissues and blood collected. Aortic atherosclerotic plaque area, plasma choline, lipid metabolites, and spleen and peripheral blood cell phenotypes were quantified. Surprisingly, the PCS group had significantly lower atherosclerotic lesions while having 2-fold higher plasma TMAO levels compared with both CON and CS groups (P<0.05). In the fasting state, we found that PCS decreased plasma very low-density lipoprotein-cholesterol (VLDL-C) and apolipoprotein B48 (APOB48), and increased plasma high-density lipoprotein-cholesterol (HDL-C). However, very low-density lipoprotein (VLDL) secretion was not affected by dietary treatment. We observed lower levels of circulating pro-atherogenic chemokines in the PCS group. Our study suggests that increased dietary PC intake does not induce a pro-atherogenic phenotype.
Collapse
Affiliation(s)
- Paulina Aldana-Hernández
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kelly-Ann Leonard
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | - Yuan-Yuan Zhao
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | - Randal Nelson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Goruk
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan M Curtis
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Food and Nutritional Science, Department of Agricultural, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Tan W, Zhang Q, Dong Z, Yan Y, Fu Y, Liu X, Zhao B, Duan X. Phosphatidylcholine Ameliorates LPS-Induced Systemic Inflammation and Cognitive Impairments via Mediating the Gut-Brain Axis Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14884-14895. [PMID: 33289390 DOI: 10.1021/acs.jafc.0c06383] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Systemic inflammation will cause an imbalance in the steady state of the gut-brain axis. Phosphatidylcholine (PC) is a phospholipid found in egg yolk that has anti-inflammatory and antioxidant properties. The present research proved that PC supplementation (60 mg/kg body weight) for 35 days prevented inflammatory responses and behavioral disturbances in lipopolysaccharide (LPS)-induced mice. PC could regulate the expression of neurotrophic factors and synaptic proteins, which effectively alleviated the nerve damage and synaptic dysfunction caused by LPS. In addition, PC supplementation ameliorated gut barrier damage, altered gut genes, and improved gut health by modulating the cell adhesion molecule (CAM) pathway. Furthermore, PC remodeled the gut microbiome structure in the mice of the LPS group by increasing the relative abundance of Rikenellaceae and Lachnospiraceae. PC also increased short-chain fatty acid (SCFA) production in LPS-induced mice, which in turn ameliorated brain inflammatory responses. In conclusion, PC supplementation may be a nutritional strategy for the prevention of systemic inflammation via the gut-brain axis.
Collapse
Affiliation(s)
- Wen Tan
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Qinjun Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Zhijian Dong
- Xi'an Gaoxin Hospital, Xi'an 710000, Shaanxi, China
| | - Yubin Yan
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Yukun Fu
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| |
Collapse
|
21
|
Xiao N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Tu Y. Biological Activities of Egg Yolk Lipids: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1948-1957. [PMID: 32009394 DOI: 10.1021/acs.jafc.9b06616] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As one of six dietary nutrients, lipid derived from different food matrices has been extensively studied and has an appropriate application in food, medicine, and cosmetic industry. Egg is a richly nutritive food, of which proteins and lipids possess excellent functional characteristics and biological activities. In recent years, egg yolk lipid has been successively separated and investigated, such as egg yolk oil, phospholipids, and fatty acids, which have anti-inflammatory activity, antioxidant activity, cardiovascular protection, and memory improvement, involving the regulation of cell function and physiological homeostatic balance. In this paper, the biological activities and underlying benefit of egg yolk lipids and fat-soluble components have been highlighted and summarized. Meanwhile, the quantitative data of egg yolk lipids needed to achieve any of the described biological effects and recommended concentrations relevant for dietary intake are reviewed. Finally, current challenges and crucial issues of high-efficiency utilization of egg yolk lipids are also discussed.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Yan Zhao
- Engineering Research Center of Biomass Conversion, Ministry of Education , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , People's Republic of China
| |
Collapse
|
22
|
Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 2019; 73:108224. [DOI: 10.1016/j.jnutbio.2019.108224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
23
|
Chen X, Du Y, Boni GF, Liu X, Kuang J, Geng Z. Consuming egg yolk decreases body weight and increases serum HDL and brain expression of TrkB in male SD rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3879-3885. [PMID: 30680735 DOI: 10.1002/jsfa.9610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Egg yolks contain large amounts of cholesterol and are suspected to be harmful after long-term consumption. In this experiment, 63 rats were used to evaluate the effect of egg white (EW) and egg yolk (EY) supplementation on serum lipids and brain cognition. The feeding time lasted 4 weeks after a 1-week acclimation. RESULTS Body weight was significantly higher in rats fed 132.0 g kg-1 EW and significantly lower when fed 40 g kg-1 EY (P < 0.05). Total cholesterol and low-density lipoprotein increased in rats fed 72.0 g kg-1 EW compared with rats from NC and EY groups (P < 0.05). High-density lipoprotein (HDL) was higher in rats fed 40 g kg-1 EY and decreased when fed 72.0 g kg-1 EW (P < 0.05). Rats fed a diet with EY exhibited abundant neurons in the CA1 hippocampus and complete subcellular structures. Rats fed 132 g kg-1 EW exhibited shrunken cells and swollen mitochondria. Brain-derived neurotrophic factor had constitutively low expression among groups, while tyrosine kinase B (TrkB) exhibited higher expression levels in rats fed a diet containing EY compared with other groups (P < 0.05). CONCLUSION EY consumption reduced body weight and increased HDL levels. Diet containing EY could improve cognition through enhanced trkB expression. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, PR China
| | - Yeye Du
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, PR China
| | - Grace F Boni
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
- College of Life Science, Anhui Agricultural University, Hefei, PR China
| | - Xue Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, PR China
| | - Jinlong Kuang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, PR China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
24
|
Nilsson Å, Duan RD. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am J Physiol Gastrointest Liver Physiol 2019; 316:G425-G445. [PMID: 30576217 DOI: 10.1152/ajpgi.00320.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The digestion of choline phospholipids is important for choline homeostasis, lipid signaling, postprandial lipid and energy metabolism, and interaction with intestinal bacteria. The digestion is mediated by the combined action of pancreatic and mucosal enzymes. In the proximal small intestine, hydrolysis of phosphatidylcholine (PC) to 1-lyso-PC and free fatty acid (FFA) by the pancreatic phospholipase A2 IB coincides with the digestion of the dietary triacylglycerols by lipases, but part of the PC digestion is extended and must be mediated by other enzymes as the jejunoileal brush-border phospholipase B/lipase and mucosal secreted phospholipase A2 X. Absorbed 1-lyso-PC is partitioned in the mucosal cells between degradation and reacylation into chyle PC. Reutilization of choline for hepatic bile PC synthesis, and the reacylation of 1-lyso-PC into chylomicron PC by the lyso-PC-acyl-CoA-acyltransferase 3 are important features of choline recycling and postprandial lipid metabolism. The role of mucosal enzymes is emphasized by sphingomyelin (SM) being sequentially hydrolyzed by brush-border alkaline sphingomyelinase (alk-SMase) and neutral ceramidase to sphingosine and FFA, which are well absorbed. Ceramide and sphingosine-1-phosphate are generated and are both metabolic intermediates and important lipid messengers. Alk-SMase has anti-inflammatory effects that counteract gut inflammation and tumorigenesis. These may be mediated by multiple mechanisms including generation of sphingolipid metabolites and suppression of autotaxin induction and lyso-phosphatidic acid formation. Here we summarize current knowledge on the roles of pancreatic and mucosal enzymes in PC and SM digestion, and its implications in intestinal and liver diseases, bacterial choline metabolism in the gut, and cholesterol absorption.
Collapse
Affiliation(s)
- Åke Nilsson
- Department of Clow-linical Sciences Lund, Division of Medicine, Gastroenterology, Lund University , Lund , Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Department of Clinical Sciences, Lund University , Lund , Sweden
| |
Collapse
|
25
|
Song J, Jiang X, Cao Y, Juan J, Wu T, Hu Y. Interaction between an ATP-Binding Cassette A1 (ABCA1) Variant and Egg Consumption for the Risk of Ischemic Stroke and Carotid Atherosclerosis: a Family-Based Study in the Chinese Population. J Atheroscler Thromb 2019; 26:835-845. [PMID: 30828007 PMCID: PMC6753237 DOI: 10.5551/jat.46615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: ATP-binding cassette A1 (ABCA1) plays an important role in reducing the risk of stroke. Egg is the major source of dietary cholesterol and is known to be associated with the risk of stroke and atherosclerosis. We aimed to assess the effects of interaction between an ABCA1 variant (rs2066715) and egg consumption on the risk of ischemic stroke (IS), carotid plaque, and carotid-intima media thickness (CIMT) in the Chinese population. Methods: In total, 5869 subjects (including 1213 IS cases) across 1128 families were enrolled and divided into two groups based on the median egg consumption (4 eggs per week). In the analyses for the presence of carotid plaque and CIMT, 3171 out of 4656 IS-free controls without self-reported history of coronary heart disease and lipid-lowering medications were included. Multilevel logistic regression models were used to model the genetic association of rs2066715 with the risk of IS, and mixed-effect linear regression for the genetic association of rs2066715 with carotid plaque, and CIMT. The gene-by-egg cross-product term was included in the regression model for interaction analysis. Results: We found that rs2066715 was associated with the increased risk of carotid plaque among those who consumed < 4 eggs per week after adjustment (odds ratio [95% confidence interval]: 1.61 [1.08, 2.39], P = 0.019). A significant effect of interaction between rs2066715 and egg consumption on the risk of carotid plaque was identified (P = 0.011). Conclusion: rs2066715 was found to interact with egg consumption in modifying the risk of carotid plaque in the Chinese population.
Collapse
Affiliation(s)
- Jing Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| | - Xia Jiang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health.,Unit of Cardiovascular Epidemiology, Institute of Environmental Health, Karolinska Institute
| | - Yaying Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| | - Juan Juan
- Department of Obstetrics and Gynecology, Peking University First Hospital
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| |
Collapse
|
26
|
Kuang H, Yang F, Zhang Y, Wang T, Chen G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. CHOLESTEROL 2018; 2018:6303810. [PMID: 30210871 PMCID: PMC6126094 DOI: 10.1155/2018/6303810] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Nutrient deficiencies and excess are involved in many aspects of human health. As a source of essential nutrients, eggs have been used worldwide to support the nutritional needs of human societies. On the other hand, eggs also contain a significant amount of cholesterol, a lipid molecule that has been associated with the development of cardiovascular diseases. Whether the increase of egg consumption will lead to elevated cholesterol absorption and disruption of cholesterol homeostasis has been a concern of debate for a while. Cholesterol homeostasis is regulated through its dietary intake, endogenous biosynthesis, utilization, and excretion. Recently, some research interests have been paid to the effects of egg consumption on cholesterol homeostasis through the intestinal cholesterol absorption. Nutrient components in eggs such as phospholipids may contribute to this process. The goals of this review are to summarize the recent progress in this area and to discuss some potential benefits of egg consumption.
Collapse
Affiliation(s)
- Heqian Kuang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|