1
|
González-Alfonso WL, Petrosyan P, Del Razo LM, Sánchez-Peña LC, Tapia-Rodríguez M, Hernández-Muñoz R, Gonsebatt ME. Chronic Exposure to Arsenic and Fluoride Starting at Gestation Alters Liver Mitochondrial Protein Expression and Induces Early Onset of Liver Fibrosis in Male Mouse Offspring. Biol Trace Elem Res 2024:10.1007/s12011-024-04198-1. [PMID: 38676876 DOI: 10.1007/s12011-024-04198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The presence of arsenic (As) and fluoride (F-) in drinking water is of concern due to the enormous number of individuals exposed to this condition worldwide. Studies in cultured cells and animal models have shown that As- or F-induced hepatotoxicity is primarily associated with redox disturbance and altered mitochondrial homeostasis. To explore the hepatotoxic effects of chronic combined exposure to As and F- in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and/or 25 mg/L F- (sodium fluoride). The male offspring continued the exposure treatment up to 30 (P30) or 90 (P90) postnatal days. GSH levels, cysteine synthesis enzyme activities, and cysteine transporter levels were investigated in liver homogenates, as well as the expression of biomarkers of ferroptosis and mitochondrial biogenesis-related proteins. Serum transaminase levels and Hematoxylin-Eosin and Masson trichrome-stained liver tissue slices were examined. Combined exposure at P30 significantly reduced GSH levels and the mitochondrial transcription factor A (TFAM) expression while increasing lipid peroxidation, free Fe 2+, p53 expression, and serum ALT activity. At P90, the upregulation of cysteine uptake and synthesis was associated with a recovery of GSH levels. Nevertheless, the downregulation of TFAM continued and was now associated with a downstream inhibition of the expression of MT-CO2 and reduced levels of mtDNA and fibrotic liver damage. Our experimental approach using human-relevant doses gives evidence of the increased risk for early liver damage associated with elevated levels of As and F- in the diet during intrauterine and postnatal period.
Collapse
Affiliation(s)
- Wendy L González-Alfonso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Luz C Sánchez-Peña
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México.
| |
Collapse
|
2
|
Lee S, Ren L, Paranjpe A, Zhou P, Potter A, Huppert SS, Shin S. Rbpj deletion in hepatic progenitor cells attenuates endothelial responses in a mouse model of cholestatic liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589277. [PMID: 38659780 PMCID: PMC11042221 DOI: 10.1101/2024.04.13.589277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background and Aims Since the role of hepatic progenitor cells (HPCs) constituting ductular reactions in pathogenesis remains ambiguous, we aimed to establish the in vivo cause-and-effect relationship between HPCs and angiogenesis, a process associated with chronic liver disease progression. We previously demonstrated that peritumoral ductules are associated with angiogenesis in liver tumors and forkhead box L1 (Foxl1)- expressing murine HPCs secrete angiogenic factors in vitro. Therefore, we hypothesized that HPCs are capable of remodeling the vascular microenvironment and this function of HPCs is dependent on recombination signal binding protein for immunoglobulin kappa J region (RBPJ), a key effector of the Notch signaling pathway. Approach and Results We generated HPC-specific Rbpj conditional knockout mice using Foxl1-Cre and treated them with the 3,5-diethoxycarbonyl-1,4-dihydrocollidine-supplemented diet to induce cholestatic liver disease. Knockout mice displayed significant reduction of HPC proliferation and ductular reactions as well as attenuated vascular and fibrotic areas compared to control mice. Assessment of vascular endothelial growth factor A-positive areas in vivo and the effects of Rbpj shRNAs in vitro indicated that Rbpj knockout in HPCs reduces the total number of angiogenic factor-expressing cells rather than affecting angiogenic factor expression within HPCs. Single-nucleus RNA sequencing analysis indicated that conditional Rbpj knockout in HPCs induces transcriptional changes in endothelial cells and alters expression of genes involved in various functions of the endothelium. Conclusion Our findings indicate that HPCs regulate endothelial responses to cholestatic liver disease and Rbpj deletion in HPCs attenuates these responses, identifying novel targets for modulating angiogenesis during disease progression.
Collapse
|
3
|
Felgendreff P, Hosseiniasl SM, Felgendreff L, Amiot BP, Minshew A, Ahmadzada B, Qu Z, Wilken S, Arribas Gomez I, Nyberg SL, Cook CN. Comprehensive analysis of brain injury parameters in a preclinical porcine model of acute liver failure. Front Med (Lausanne) 2024; 11:1363979. [PMID: 38606159 PMCID: PMC11007081 DOI: 10.3389/fmed.2024.1363979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction Acute liver failure (ALF) is defined as acute loss of liver function leading to hepatic encephalopathy associated with a high risk of patient death. Brain injury markers in serum and tissue can help detect and monitor ALF-associated brain injury. This study compares different brain injury parameters in plasma and tissue along with the progression of ALF. Method ALF was induced by performing an 85% liver resection. Following the resection, animals were recovered and monitored for up to 48 h or until reaching the predefined endpoint of receiving standard medical therapy (SMT). Blood and serum samples were taken at Tbaseline, T24, and upon reaching the endpoint (Tend). Control animals were euthanized by exsanguination following plasma sampling. Postmortem brain tissue samples were collected from the frontal cortex (FCTx) and cerebellum (Cb) of all animals. Glial fibrillary acidic protein (GFAP) and tau protein and mRNA levels were quantified using ELISA and qRT-PCR in all plasma and brain samples. Plasma neurofilament light (NFL) was also measured using ELISA. Results All ALF animals (n = 4) were euthanized upon showing signs of brain herniation. Evaluation of brain injury biomarkers revealed that GFAP was elevated in ALF animals at T24h and Tend, while Tau and NFL concentrations were unchanged. Moreover, plasma glial fibrillary acidic protein (GFAP) levels were negatively correlated with total protein and positively correlated with both aspartate transaminase (AST) and alkaline phosphatase (AP). Additionally, lower GFAP and tau RNA expressions were observed in the FCTx of the ALF group but not in the CB tissue. Conclusion The current large animal study has identified a strong correlation between GFAP concentration in the blood and markers of ALF. Additionally, the protein and gene expression analyses in the FCTx revealed that this area appears to be susceptible, while the CB is protected from the detrimental impacts of ALF-associated brain swelling. These results warrant further studies to investigate the mechanisms behind this process.
Collapse
Affiliation(s)
- Philipp Felgendreff
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of General, Visceral, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | | | - Lisa Felgendreff
- Department of Journalism and Communication Research, Hannover University of Music, Drama, and Media, Hanover, Germany
| | - Bruce P. Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Anna Minshew
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Zhi Qu
- Transplant Center, Hannover Medical School, Hannover, Germany
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ines Arribas Gomez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
4
|
Thomann S, Metzler T, Tóth M, Schirmacher P, Mogler C. Immunologic landscape of human hepatic hemangiomas and epithelioid hemangioendotheliomas. Hepatol Commun 2024; 8:e0359. [PMID: 38206210 PMCID: PMC10786595 DOI: 10.1097/hc9.0000000000000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The missing requirement for resection for the majority of hepatic hemangiomas (HH) and tissue scarcity for rare diseases such as hepatic epithelioid hemangioendotheliomas (HEHE) complicate the characterization of the spatial immunovascular niche of these benign and malignant vascular neoplastic diseases. METHODS Two tissue cohorts containing 98 HHs and 13 HEHEs were used to study entity-specific and disease stage-specific endothelial cell (EC) phenotype and immune cell abundance. Using semiquantitative assessment, annotation-based cell classifiers, digital cell detection on whole slides, and tissue microarrays, we quantified 23 immunologic and vascular niche-associated markers and correlated this with clinicopathologic data. RESULTS Both HH and HEHE ECs were characterized by a CD31high, CD34high, FVIII-related antigenhigh expression phenotype with entity-specific expression differences of sinusoidal EC markers Stabilin1, Stabilin2, CD32, and Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1). Cell detection identified an HH margin-prevailing immunologic response dominated by Myeloperoxidase+ (MPO+) macrophages, CD3+ and CD8+ T cell subsets, and B cells (CD20+, CD79A+). In HEHE, increased CD68+ and CD20+ cell demarcation of lesion margins was observed, while CD3+ and CD8+ T cells were equally detectable both marginally and intralesionally. Stage-specific pairwise correlation analysis of HH and HEHE revealed disease entity-specific immunologic infiltration patterns as seen by high CD117+ cell numbers in HH, while HEHE samples showed increased CD3+ T cell infiltration. CONCLUSIONS ECs in HH and HEHE share a continuous EC expression phenotype, while the expression of sinusoidal EC markers is more highly retained in HEHE. These phenotypic differences are associated with a unique and disease-specific immunovascular landscape.
Collapse
Affiliation(s)
- Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Germany
- Institute of Systems Immunology, University of Würzburg, Germany
| | - Thomas Metzler
- Institute of Pathology, School of Medicine & Health, Technical University of Munich, Germany
- Comparative Experimental Pathology (CEP), School of Medicine & Health, Technical University of Munich, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Germany
- Liver Cancer Center Heidelberg, National Center for Tumor Diseases (NCT) Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, University Hospital Heidelberg, Germany
- Institute of Pathology, School of Medicine & Health, Technical University of Munich, Germany
| |
Collapse
|
5
|
Uztimür M, Dörtbudak MB. Evaluation of brain injury in goats naturally infected with Coenurus cerebralis; brain specific biomarkers, acute inflammation, and DNA oxidation. Res Vet Sci 2023; 165:105043. [PMID: 37856943 DOI: 10.1016/j.rvsc.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
This investigate goals are to establish the utility of brain-specific biomarkers (GFAP and S100B) in vivo and to assess the brain damage in C. cerebralis-infected goats using histopathological and immunopathological methods. The animal material of the study consisted of 10 healthy and 20 Coenurus cerebralis infected female hair goats. Serum GFAP and S100B concentrations were measured to determine brain damage. Serum S100B (p < 0.037), GFAP (p < 0.012), urea (p < 0.045), GGT (p < 0.001) and ALT (p < 0.001) concentrations in the C.cerebralis group were significantly higher than the control group. There was no significant difference between the C.cerebralis group and the control group for hsTnI (p > 0.078), creatinine (p > 0.099) and CK-MB (p > 0.725). In the histopathological examination, pressure atrophy and related inflammatory changes were observed due to mechanical damage of the parasite. Immunohistochemical examinations revealed that the parasite stimulated inflammation with the expression of TNF-α and caused DNA damage with the expression of 8-OHdG. As a result, when the data collected for this study are assessed as a whole, it is thought that the use of brainspecific GFAP and S100B biomarkers may be beneficial in determining brain damage in naturally infected hair goats with C.cerebralis. Changes in the levels of brain-specific biomarkers contribute significantly to determining the prognosis of the disease in vivo. Measurement of GFAP and S100B concentrations from serum offers an important alternative to the CSF method.
Collapse
Affiliation(s)
- Murat Uztimür
- Bingöl University, Faculty of Veterinary Medicine, Department of Internal Medicine, Bingöl, Türkiye.
| | | |
Collapse
|
6
|
Seleem AA, Hussein BH. Effects of silver nanoparticles prepared by aqueous extract of Ferula communis on the developing mouse embryo after maternal exposure. Toxicol Ind Health 2023; 39:712-734. [PMID: 37871157 DOI: 10.1177/07482337231209094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) from aqueous silver nitrate has been achieved using an extract of Ferula communis leaf as a capping, reducing, and stabilizing agent. The formation and stability of the green synthesized silver nanoparticles in the colloidal solution were monitored by absorption measurements. Silver nanoparticles were characterized by different analyses such as X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and FT-IR spectroscopy. The average particle size of silver nanoparticles was determined by high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) analyses. In this experiment, pregnant female mice were divided into four groups (G); G1 was the control and received phosphate-buffered saline, G2 received orally aqueous extract of F. communis leaf, G3 received orally AgNPs chemically prepared by NaBH4, and G4 received orally AgNPs prepared by aqueous extract of F. communis leaf. The diameter of AgNPs was 20 nm. AgNPs exhibited good catalytic reduction ability toward methyl orange in the presence of sodium borohydride with a rate constant of 2.95 x 10-4 s-1. The results revealed the occurrence of resorbed embryos in G2, G3, and G4 with different percentages. The livers of mothers and embryos at E14.5 in G2, G3, and G4 showed different levels of histopathological alteration and increase in GFAP and CTGF expressions compared with the control group. The study concluded that the oral administration of small-sized AgNPs (20 nm) prepared by Ferula extract had less toxicity than those prepared by the chemical method.
Collapse
Affiliation(s)
- Amin A Seleem
- Biology Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Belal Hm Hussein
- Chemistry Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
YAMATE J. Stem cell pathology: histogenesis of malignant fibrous histiocytoma and characterization of myofibroblasts appearing in fibrotic lesions. J Vet Med Sci 2023; 85:895-906. [PMID: 37460298 PMCID: PMC10539815 DOI: 10.1292/jvms.23-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 09/05/2023] Open
Abstract
The concept of "stem cell pathology" is to establish the role of the stem cells by exploring their contribution to lesion development. The somatic stem cells are present in the body. Malignant fibrous histiocytoma (MFH; recently named "undifferentiated pleomorphic sarcoma") includes pluripotential undifferentiated mesenchymal stem cells as a cell element. An antibody (A3) generated by using rat MFH cells as the antigen labels somatic stem cells such as bone marrow stem cells and immature endothelial cells and pericytes, as well as immature epithelial cells in epithelialization. By using A3 and other antibodies recognizing somatic stem cells, it is considered that myofibroblasts appearing in rat fibrotic lesions are developed partly from immature hepatic stellate cells in hepatic fibrosis, immature pancreatic stellate cells in pancreatic fibrosis, pericytes/endothelial cells in neovascularization in injured tissues, as well as via the epithelial-mesenchymal transition. These progenitors may be in the stem cell lineage. In this review, the author introduces the histogenesis of MFH and the characteristics of myofibroblasts appearing in fibrosis, based mainly on the author's studies.
Collapse
Affiliation(s)
- Jyoji YAMATE
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Amer AS, Othman AA, Dawood LM, El-Nouby KA, Gobert GN, Abou Rayia DM. The interaction of Schistosoma mansoni infection with diabetes mellitus and obesity in mice. Sci Rep 2023; 13:9417. [PMID: 37296126 PMCID: PMC10256771 DOI: 10.1038/s41598-023-36112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Human schistosomiasis is one of the most prevalent parasitic diseases worldwide. Various host factors can affect the host-parasite interactions. Therefore, the aim of the present work was to determine the parasitological, histopathological, biochemical, and immunological status of Schistosoma mansoni-infected hosts with metabolic disorders to identify the underlying possible mechanisms of these comorbidities. The study animals were divided into four groups. Group I represented the control groups, namely, the normal control group, the S. mansoni-infected control group, and the noninfected type 1 diabetes (T1DM), type 2 diabetes (T2DM), and obesity groups. The mice of the other three groups underwent induction of T1DM (Group II), T2DM (Group III) and obesity (Group IV) before being infected with S. mansoni. All mice were subjected to body weight measurement, blood glucose and insulin assessment, parasitological evaluation of adult worm count, tissue egg count and intestinal oogram. Histopathological and immunohistochemical study using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells (HSCs) and image analysis of Masson's trichrome-stained liver sections using ImageJ (Fiji) software were carried out. Additionally, immunological analysis of tumour necrosis factor (TNF) beta, interleukin-5 (IL-5), IL-10, Forkhead box P3 (FOXP3) and pentraxin 3 (PTX3) levels besides biochemical study of total lipid profile were evaluated. The present study revealed a significant increase in the adult worm count and tissue egg output in the obesity group compared to the infected control group. The oogram of counted eggs showed prevalence of immature eggs in T1DM group, while T2DM and obese groups showed prevalence of mature eggs. The fibrosis area percentage showed significant increase in T2DM and obese groups while it was decreased in T1DM group in comparison to infected control group. Our data also showed significant increase in the levels of TNF-β, IL-5, PTX3 in T1DM, T2DM and obesity groups in comparison to infected control group, whilst the levels of FOXP3 and IL-10 were increased in the infected groups in comparison to their noninfected controls. Moreover, infected T1DM, T2DM and obesity groups showed higher blood glucose and lipid profile in comparison to the infected control group. However, these parameters were improved in comparison to their noninfected controls. In sum, induction of T2DM and obesity increased tissue egg counts, mature egg percentage, and fibrosis density, while schistosome infection induced changes in the lipid profile and blood glucose levels in infected diabetic and obese groups and impacted favorably insulin levels in obese mice. By better understanding the complexities of host-parasite interactions, efforts to reduce the burden of these debilitating diseases can be improved.
Collapse
Affiliation(s)
- Alaa S Amer
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Lamees M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Geoffrey N Gobert
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
9
|
Abou Rayia DM, Ashour DS, Abo Safia HS, Abdel Ghafar MT, Amer RS, Saad AE. Human umbilical cord blood mesenchymal stem cells as a potential therapy for schistosomal hepatic fibrosis: an experimental study. Pathog Glob Health 2023; 117:190-202. [PMID: 35435145 PMCID: PMC9970248 DOI: 10.1080/20477724.2022.2064795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The objective of our study was to assess the effect of human umbilical cord blood (HUCB) mesenchymal stem cells (MSCs) transplantation on schistosomal hepatic fibrosis in mice. The study animals were divided into three groups. Group I is a control group, where the mice were infected with Schistosoma mansoni cercariae and remained untreated. The mice of the other two groups were infected and treated with either praziquantel (Group II) or HUCB-MSCs (Group III). Liver function tests, as well as histopathological evaluation of liver fibrosis using hematoxylin and eosin and Masson's trichrome stains, were performed. Additionally, an immunohistochemical study was carried out using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells. Compared to the control group, the treated (praziquantel and MSCs) groups showed a substantial improvement, with a significant difference regarding the histopathological evaluation of liver fibrosis in the MSCs-treated group. In conclusion, MSCs could be a promising and efficient cell therapy for liver fibrosis.
Collapse
Affiliation(s)
- Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hend S Abo Safia
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Rania S Amer
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Medical Parasitology Sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
10
|
Vega JMDH, Hong HJ, Loutherback K, Stybayeva G, Revzin A. A Microfluidic Device for Long-Term Maintenance of Organotypic Liver Cultures. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201121. [PMID: 36818276 PMCID: PMC9937715 DOI: 10.1002/admt.202201121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 06/03/2023]
Abstract
Liver cultures may be used for disease modeling, testing therapies and predicting drug-induced injury. The complexity of the liver cultures has evolved from hepatocyte monocultures to co-cultures with non-parenchymal cells and finally to precision-cut liver slices. The latter culture format retains liver's native biomolecular and cellular complexity and therefore holds considerable promise for in vitro testing. However, liver slices remain functional for ~72 h in vitro and display limited utility for some disease modeling and therapy testing applications that require longer culture times. This paper describes a microfluidic device for longer-term maintenance of functional organotypic liver cultures. Our microfluidic culture system was designed to enable direct injection of liver tissue into a culture chamber through a valve-enabled side port. Liver tissue was embedded in collagen and remained functional for up to 31 days, highlighted by continued production of albumin and urea. These organotypic cultures also expressed several enzymes involved in xenobiotic metabolism. Conversely, matched liver tissue embedded in collagen in a 96-well plate lost its phenotype and function within 3-5 days. The microfluidic organotypic liver cultures described here represent a significant advance in liver cultivation and may be used for future modeling of liver diseases or for individualized liver-directed therapies.
Collapse
Affiliation(s)
- José M. de Hoyos Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kevin Loutherback
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Ezhilarasan D, Najimi M. Intercellular communication among liver cells in the perisinusoidal space of the injured liver: Pathophysiology and therapeutic directions. J Cell Physiol 2023; 238:70-81. [PMID: 36409708 DOI: 10.1002/jcp.30915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatic stellate cells (HSCs) in the perisinusoidal space are surrounded by hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and other resident immune cells. In the normal liver, HSCs communicate with these cells to maintain normal liver functions. However, after chronic liver injury, injured hepatocytes release several proinflammatory mediators, reactive oxygen species, and damage-associated molecular patterns into the perisinusoidal space. Consequently, such alteration activates quiescent HSCs to acquire a myofibroblast-like phenotype and express high amounts of transforming growth factor-β1, angiopoietins, vascular endothelial growth factors, interleukins 6 and 8, fibril forming collagens, laminin, and E-cadherin. These phenotypic and functional transdifferentiation lead to hepatic fibrosis with a typical abnormal extracellular matrix synthesis and disorganization of the perisinusoidal space of the injured liver. Those changes provide a favorable environment that regulates tumor cell proliferation, migration, adhesion, and survival in the perisinusoidal space. Such tumor cells by releasing transforming growth factor-β1 and other cytokines, will, in turn, activate and deeply interact with HSCs via a bidirectional loop. Furthermore, hepatocellular carcinoma-derived mediators convert HSCs and macrophages into protumorigenic cell populations. Thus, the perisinusoidal space serves as a critical hub for activating HSCs and their interactions with other cell types, which cause a variety of liver diseases such as hepatic inflammation, fibrosis, cirrhosis, and their complications, such as portal hypertension and hepatocellular carcinoma. Therefore, targeting the crosstalk between activated HSCs and tumor cells/immune cells in the tumor microenvironment may also support a promising therapeutic strategy.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
12
|
Monleón E, Lucía Ó, Güemes A, López-Alonso B, Arribas D, Sarnago H, Hernaez A, Burdío JM, Junquera C. Liver tissue remodeling following ablation with irreversible electroporation in a porcine model. Front Vet Sci 2022; 9:1014648. [DOI: 10.3389/fvets.2022.1014648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Irreversible electroporation (IRE) is a method of non-thermal focal tissue ablation characterized by irreversibly permeabilizing the cell membranes while preserving the extracellular matrix. This study aimed to investigate tissue remodeling after IRE in a porcine model, especially focusing on the extracellular matrix and hepatic stellate cells. IRE ablation was performed on 11 female pigs at 2,000 V/cm electric field strength using a versatile high-voltage generator and 3 cm diameter parallel-plate electrodes. The treated lobes were removed during surgery at 1, 3, 7, 14, and 21 days after IRE. Tissue remodeling and regeneration were assessed by histopathology and immunohistochemistry. Throughout the treated area, IRE led to extensive necrosis with intact collagenous structures evident until day 1. From then on, the necrosis progressively diminished while reparative tissue gradually increased. During this process, the reticulin framework and the septal fibrillar collagen remained in the necrotic foci until they were invaded by the reparative tissue. The reparative tissue was characterized by a massive proliferation of myofibroblast-like cells accompanied by a complete disorganization of the extracellular matrix with the disappearance of hepatic architecture. Hepatic stellate cell markers were associated with the proliferation of myofibroblast-like cells and the reorganization of the extracellular matrix. Between 2 and 3 weeks after IRE, the lobular architecture was almost completely regenerated. The events described in the present study show that IRE may be a valid model to study the mechanisms underlying liver regeneration after extensive acute injury.
Collapse
|
13
|
Fiorucci S, Zampella A, Ricci P, Distrutti E, Biagioli M. Immunomodulatory functions of FXR. Mol Cell Endocrinol 2022; 551:111650. [PMID: 35472625 DOI: 10.1016/j.mce.2022.111650] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
The Farnesoid-x-receptor (FXR) is a bile acids sensor activated in humans by primary bile acids. FXR is mostly expressed in liver, intestine and adrenal glands but also by cells of innate immunity, including macrophages, liver resident macrophages, the Kupffer cells, natural killer cells and dendritic cells. In normal physiology and clinical disorders, cells of innate immunity mediate communications between liver, intestine and adipose tissues. In addition to FXR, the G protein coupled receptor (GPBAR1), that is mainly activated by secondary bile acids, whose expression largely overlaps FXR, modulates chemical communications from the intestinal microbiota and the host's immune system, integrating epithelial cells and immune cells in the entero-hepatic system, providing a mechanism for development of a tolerogenic state toward the intestinal microbiota. Disruption of FXR results in generalized inflammation and disrupted bile acids metabolism. While FXR agonism in preclinical models provides counter-regulatory signals that attenuate inflammation-driven immune dysfunction in a variety of liver and intestinal disease models, the clinical relevance of these mechanisms in the setting of FXR-related disorders remain poorly defined.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy. http://www.gastroenterologia.unipg.it
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Patrizia Ricci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
14
|
Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol 2022; 13:835597. [PMID: 35386417 PMCID: PMC8977512 DOI: 10.3389/fneur.2022.835597] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global health issue, with outcomes spanning from intracranial bleeding, debilitating sequelae, and invalidity with consequences for individuals, families, and healthcare systems. Early diagnosis of TBI by testing peripheral fluids such as blood or saliva has been the focus of many research efforts, leading to FDA approval for a bench-top assay for blood GFAP and UCH-L1 and a plasma point-of-care test for GFAP. The biomarker S100B has been included in clinical guidelines for mTBI (mTBI) in Europe. Despite these successes, several unresolved issues have been recognized, including the robustness of prior data, the presence of biomarkers in tissues beyond the central nervous system, and the time course of biomarkers in peripheral body fluids. In this review article, we present some of these issues and provide a viewpoint derived from an analysis of existing literature. We focus on two astrocytic proteins, S100B and GFAP, the most commonly employed biomarkers used in mTBI. We also offer recommendations that may translate into a broader acceptance of these clinical tools.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,FloTBI, Cleveland, OH, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Johan Unden
- Department of Operation and Intensive Care, Hallands Hospital Halmstad, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Belotti EM, Sacco SC, Stassi AF, Notaro US, Angeli E, Etchevers L, Chiaraviglio JA, Ortega HH, Salvetti NR. Characterization of an incipient granulosa cell tumour in a Holstein cow: Steroid hormone receptors and coregulators expression. Anat Histol Embryol 2021; 51:62-68. [PMID: 34729806 DOI: 10.1111/ahe.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The objective of this study was to describe a case of a granulosa cell tumour (GCT) of incipient formation and to characterize it by its immunohistochemical pattern and hormonal profile. The case presented corresponds to a 7-year-old Holstein cow without reproductive disorders. No alterations were observed at rectal palpation, neither in the ultrasonography nor in the hormonal profile. A GCT concomitant with normal follicular development was diagnosed. Through a panel of immunohistochemical markers, a highly differentiated pattern could be determined in the GCT, which preserves the expression of steroid receptors (ESR1, ESR2 and PR) typical of granulosa cells, but does not express the enzymes for the synthesis of androgens (CYP17A1) and oestrogens (CYP19A1). In addition, the expression of co-regulators of steroid hormone receptors and neuroendocrine markers was described for the first time in a GCT in cattle. These results increase the information about GCTs in cattle before the ovarian function is compromised.
Collapse
Affiliation(s)
- Eduardo M Belotti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Sofía C Sacco
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Antonela F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Ulises S Notaro
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Emmanuel Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Lucas Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Juan A Chiaraviglio
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Natalia R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.,Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| |
Collapse
|
16
|
Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Butsabong T, Felippe M, Campagnolo P, Maringer K. The emerging role of perivascular cells (pericytes) in viral pathogenesis. J Gen Virol 2021; 102. [PMID: 34424156 PMCID: PMC8513640 DOI: 10.1099/jgv.0.001634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses may exploit the cardiovascular system to facilitate transmission or within-host dissemination, and the symptoms of many viral diseases stem at least in part from a loss of vascular integrity. The microvascular architecture is comprised of an endothelial cell barrier ensheathed by perivascular cells (pericytes). Pericytes are antigen-presenting cells (APCs) and play crucial roles in angiogenesis and the maintenance of microvascular integrity through complex reciprocal contact-mediated and paracrine crosstalk with endothelial cells. We here review the emerging ways that viruses interact with pericytes and pay consideration to how these interactions influence microvascular function and viral pathogenesis. Major outcomes of virus-pericyte interactions include vascular leakage or haemorrhage, organ tropism facilitated by barrier disruption, including viral penetration of the blood-brain barrier and placenta, as well as inflammatory, neurological, cognitive and developmental sequelae. The underlying pathogenic mechanisms may include direct infection of pericytes, pericyte modulation by secreted viral gene products and/or the dysregulation of paracrine signalling from or to pericytes. Viruses we cover include the herpesvirus human cytomegalovirus (HCMV, Human betaherpesvirus 5), the retrovirus human immunodeficiency virus (HIV; causative agent of acquired immunodeficiency syndrome, AIDS, and HIV-associated neurocognitive disorder, HAND), the flaviviruses dengue virus (DENV), Japanese encephalitis virus (JEV) and Zika virus (ZIKV), and the coronavirus severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2; causative agent of coronavirus disease 2019, COVID-19). We touch on promising pericyte-focussed therapies for treating the diseases caused by these important human pathogens, many of which are emerging viruses or are causing new or long-standing global pandemics.
Collapse
Affiliation(s)
- Teemapron Butsabong
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Mariana Felippe
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Paola Campagnolo
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
18
|
The Propensity of the Human Liver to Form Large Lipid Droplets Is Associated with PNPLA3 Polymorphism, Reduced INSIG1 and NPC1L1 Expression and Increased Fibrogenetic Capacity. Int J Mol Sci 2021; 22:ijms22116100. [PMID: 34198853 PMCID: PMC8200978 DOI: 10.3390/ijms22116100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
In nonalcoholic steatohepatitis animal models, an increased lipid droplet size in hepatocytes is associated with fibrogenesis. Hepatocytes with large droplet (Ld-MaS) or small droplet (Sd-MaS) macrovesicular steatosis may coexist in the human liver, but the factors associated with the predominance of one type over the other, including hepatic fibrogenic capacity, are unknown. In pre-ischemic liver biopsies from 225 consecutive liver transplant donors, we retrospectively counted hepatocytes with Ld-MaS and Sd-MaS and defined the predominant type of steatosis as involving ≥50% of steatotic hepatocytes. We analyzed a donor Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 polymorphism, hepatic expression of proteins involved in lipid metabolism by RT-PCR, hepatic stellate cell (HSC) activation by α-SMA immunohistochemistry and, one year after transplantation, histological progression of fibrosis due to Hepatitis C Virus (HCV) recurrence. Seventy-four livers had no steatosis, and there were 98 and 53 with predominant Ld-MaS and Sd-MaS, respectively. In linear regression models, adjusted for many donor variables, the percentage of steatotic hepatocytes affected by Ld-MaS was inversely associated with hepatic expression of Insulin Induced Gene 1 (INSIG-1) and Niemann-Pick C1-Like 1 gene (NPC1L1) and directly with donor PNPLA3 variant M, HSC activation and progression of post-transplant fibrosis. In humans, Ld-MaS formation by hepatocytes is associated with abnormal PNPLA3-mediated lipolysis, downregulation of both the intracellular cholesterol sensor and cholesterol reabsorption from bile and increased hepatic fibrogenesis.
Collapse
|
19
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
20
|
Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of Pericytes in Vascular Regeneration Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1-21. [PMID: 33231500 DOI: 10.1089/ten.teb.2020.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the survival and integration of complex large-sized tissue-engineered (TE) organ constructs that exceed the maximal nutrients and oxygen diffusion distance required for cell survival, graft (pre)vascularization to ensure medium or blood supply is crucial. To achieve this, the morphology and functionality of the microcapillary bed should be mimicked by incorporating vascular cell populations, including endothelium and mural cells. Pericytes play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood pressure regulation. In addition, tissue-specific pericytes are important in maintaining specific functions in different organs, including vitamin A storage in the liver, renin production in the kidneys and maintenance of the blood-brain-barrier. Together with their multipotential differentiation capacity, this makes pericytes the preferred cell type for application in TE grafts. The use of a tissue-specific pericyte cell population that matches the TE organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)-vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts. Impact statement The use of a tissue-specific pericyte cell population that matches the tissue-engineered (TE) organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
de Oliveira CM, Martins LAM, de Sousa AC, Moraes KDS, Costa BP, Vieira MQ, Coelho BP, Borojevic R, de Oliveira JR, Guma FCR. Resveratrol increases the activation markers and changes the release of inflammatory cytokines of hepatic stellate cells. Mol Cell Biochem 2020; 476:649-661. [PMID: 33073314 DOI: 10.1007/s11010-020-03933-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
The phytoalexin Resveratrol (3,5,4'-trihydroxystilbene; RSV) has been related to numerous beneficial effects on health by its cytoprotection and chemoprevention activities. Liver fibrosis is characterized by the extracellular matrix accumulation after hepatic injury and can lead to cirrhosis. Hepatic stellate cells (HSC) play a crucial role during fibrogenesis and liver wound healing by changing their quiescent phenotype to an activated phenotype for protecting healthy areas from damaged areas. Strategies on promoting the activated HSC death, the quiescence return or the cellular activation stimuli decrease play an important role on reducing liver fibrosis. Here, we evaluated the RSV effects on some markers of activation in GRX, an HSC model. We further evaluated the RSV influence in the ability of GRX on releasing inflammatory mediators. RSV at 1 and 10 µM did not alter the protein content of α-SMA, collagen I and GFAP; but 50 µM increased the content of these activation-related proteins. Also, RSV did not change the myofibroblast-like morphology of GRX. Interestingly, RSV at 10 and 50 µM decreased the GRX migration and collagen-I gel contraction. Finally, we showed that RSV triggered the increase in the TNF-α and IL-10 content in culture media of GRX while the opposite occurred for the IL-6 content. Altogether, these results suggested that RSV did not decrease the activation state of GRX and oppositely, triggered a pro-activation effect at the 50 µM concentration. However, despite the increase of TNF- α in culture media, these results on IL-6 and IL-10 secretion were in accordance with the anti-inflammatory role of RSV in our model.
Collapse
Affiliation(s)
- Cleverson Moraes de Oliveira
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil.
| | - Leo Anderson Meira Martins
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil.,Departamento de Fisiologia, ICBS, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite, Porto Alegre, RS, CEP, 500, Brazil
| | - Arieli Cruz de Sousa
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Ketlen da Silveira Moraes
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Moema Queiroz Vieira
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Bárbara Paranhos Coelho
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Radovan Borojevic
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis, Petrópolis, RJ, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fátima Costa Rodrigues Guma
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil.,Centro de Microscopia E Microanálise (CMM), Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves, 9500 - Prédio 43.177 - Bl 1Campus do Vale, Porto Alegre, RS, CEP, 91501-970, Brazil
| |
Collapse
|
22
|
Ibrahim SA, Mohamed MZ, El-Tahawy NF, Abdelrahman AM. Antifibrotic effects of bezafibrate and pioglitazone against thioacetamide-induced liver fibrosis in albino rats. Can J Physiol Pharmacol 2020; 99:313-320. [PMID: 32721217 DOI: 10.1139/cjpp-2020-0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of hepatic stellate cells is a central event in hepatic fibrogenesis that offers multiple potential sites for therapeutic interventions. Peroxisome proliferator-activated receptors are implicated in liver fibrosis. We aimed to evaluate the effect of bezafibrate and pioglitazone on a thioacetamide (TAA) rat model of liver fibrosis and to clarify the possible underlying mechanisms. Rats received intraperitoneal injections of TAA for 6 weeks. Daily oral treatments with bezafibrate or pioglitazone were started with the first day of TAA intoxication. Serum liver function tests, hepatic malondialdehyde (MDA), total nitrite and nitrate (NOx), superoxide dismutase, and hepatic histopathology were assessed to evaluate hepatic damage. Alpha smooth muscle actin (α-SMA) and tissue inhibitor metalloproteinase-1 (TIMP-1) and caspase-3 were also assessed. The TAA group experienced significant deterioration of liver functions, increased oxidative stress, and increased liver tissue NOx. Administration of bezafibrate or pioglitazone resulted in significant improvement of all liver functions and reduced oxidative stress in hepatic tissues. Only administration of bezafibrate significantly reduced NOx levels. Liver tissues from the TAA-treated group showed disrupted normal architecture. Administration of bezafibrate or pioglitazone attenuated this picture. Stronger α-SMA expression was detected in the TAA group. Treatment with bezafibrate or pioglitazone decreased the α-SMA expression.
Collapse
Affiliation(s)
- Salwa A Ibrahim
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| | - Nashwa F El-Tahawy
- Department of Histology & Cell Biology, Minia University Faculty of Medicine, Minia, Egypt
| | - Aly M Abdelrahman
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| |
Collapse
|
23
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
24
|
Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, Zheng S, Zhu H, Zhang Y, Bai Y. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. Br J Pharmacol 2019; 176:4745-4759. [PMID: 31454852 PMCID: PMC6965682 DOI: 10.1111/bph.14842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. Previous studies have shown that resveratrol has anti-fibrotic activity, but its potential molecular mechanisms of action are not well understood. EXPERIMENTAL APPROACH The anti-fibrotic effects of resveratrol were assayed in a rat model of unilateral ureteral obstruction (UUO) in vivo and in fibroblasts and tubular epithelial cells (TECs) stimulated by TGF-β1 in vitro. Gene and protein expression levels were analysed by PCR, Western blotting, and immunohistochemical staining. KEY RESULTS Resveratrol inhibits the myofibroblastic phenotype and fibrosis formation in UUO kidneys by targeting fibroblast-myofibroblast differentiation (FMD) and epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of resveratrol correlated with decreased proliferation of TECs in the interstitium and tubules, resulting in suppressed activity of the proliferation-related signalling pathways, including that of the MAPK, PI3K/Akt, Wnt/β-catenin, and JAK2/STAT3 pathways. Resveratrol treatment suppressed TGF-β1-induced FMD and the expression of the myofibroblastic phenotype in fibroblasts in vitro by antagonizing the activation of proliferation-related signalling. Similarly, TGF-β1-mediated overactivation of the proliferation-related signalling in TECs induced EMT, and the myofibroblastic phenotype was suppressed by resveratrol. The anti-fibrotic and anti-proliferative effects of resveratrol were associated with the inactivation of Smad2/3 signalling and resulted in a partial reversal of FMD and EMT and the inhibition of the myofibroblastic phenotype. CONCLUSIONS AND IMPLICATIONS Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in vivo and in vitro via proliferation-related pathways, making it a potential therapeutic agent for preventing renal fibrosis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Hong Lu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | | | - Cunzao Wu
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shizhang Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yan Zhang
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
25
|
Ellakany AR, Elgendy DI, Alshenawy HA, Abdel Ghaffar AE. Assessment of the potential therapeutic effects of omeprazole in Schistosoma mansoni infected mice. Parasitol Res 2019; 118:3399-3408. [PMID: 31655904 DOI: 10.1007/s00436-019-06465-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023]
Abstract
Schistosomiasis is a neglected chronic parasitic disease with a significant lasting morbidity. Currently, praziquantel (PZQ) is the most efficient drug for schistosomiasis worldwide. However, the possibility of the occurrence of resistance to PZQ is increasing. Therefore, there is a vital need to find new antischistosomal drugs or to increase the efficacy of the existing ones. Omeprazole is a proton pump inhibitor which is reported to have antiparasitic properties. Thus, the aim of this study was to assess the potential therapeutic effects of omeprazole in experimental Schistosoma mansoni infection either alone or in combination with PZQ. For this aim, 80 laboratory bred mice were divided into 3 groups; uninfected control, infected untreated control, and infected and treated at tenth week P.I. The last group was divided into three subgroups that received either PZQ alone, omeprazole alone, or both drugs. The effectiveness of treatment was assessed by adult worm counts, liver egg count, scanning electron microscopy of adult worms, histopathological, and immunohistochemical (GFAP) examination. There was significant reduction of adult worm counts, liver egg counts, size, diameter of hepatic granulomas, hepatic fibrosis, and GFAP expression in the group that received combined treatment as compared to PZQ group. Moreover, the tegumental changes were more evident in the group that received combined treatment. In conclusion, the administration of omeprazole with PZQ improved the efficacy of PZQ in the treatment of Schistosomiasis mansoni.
Collapse
Affiliation(s)
- Asmaa R Ellakany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Hanan A Alshenawy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira E Abdel Ghaffar
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Ilha M, Moraes KDS, Rohden F, Martins LAM, Borojevic R, Lenz G, Barbé‐Tuana F, Guma FCR. Exogenous expression of caveolin‐1 is sufficient for hepatic stellate cell activation. J Cell Biochem 2019; 120:19031-19043. [DOI: 10.1002/jcb.29226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mariana Ilha
- Programa de Pós‐Graduação em Ciências Biológicas‐ Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto Alegre RS Brazil
| | - Ketlen da Silveira Moraes
- Programa de Pós‐Graduação em Ciências Biológicas‐ Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto Alegre RS Brazil
| | - Francieli Rohden
- Programa de Pós‐Graduação em Ciências Biológicas‐ Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto Alegre RS Brazil
| | - Leo Anderson Meira Martins
- Programa de Pós‐Graduação em Ciências Biológicas‐ Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto Alegre RS Brazil
| | - Radovan Borojevic
- Centro de Medicina RegenerativaFaculdade de Medicina de Petrópolis – FMPPetrópolis RJ Brazil
| | - Guido Lenz
- Departamento de Biofísica e Centro de BiotecnologiaUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto Alegre RS Brazil
| | - Florencia Barbé‐Tuana
- Programa de Pós‐Graduação em Ciências Biológicas‐ Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto Alegre RS Brazil
- Programa de Pós‐Graduação em Biologia Celular e MolecularEscola de Ciências da Pontifícia Universidade Católica do Rio Grande do Sul‐ PUCRSPorto Alegre RS Brazil
| | - Fátima Costa Rodrigues Guma
- Programa de Pós‐Graduação em Ciências Biológicas‐ Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto Alegre RS Brazil
- Centro de Microscopia e MicroanáliseUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto Alegre RS Brazil
| |
Collapse
|
27
|
Yin W, Zhang W, Zhu Y, Ni H, Gong L, Fu M. miR-219-3p regulates the occurrence of hepatic fibrosis by targeting Smad2. Exp Ther Med 2019; 17:4635-4642. [PMID: 31086594 DOI: 10.3892/etm.2019.7480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022] Open
Abstract
Abnormal expression of microRNA (miR)-219-3p has been widely identified in different tumors. However, whether miR-219-3p is involved in the progression of hepatic fibrosis (HF) has never been explored. The present study showed that compared with healthy controls, the levels of miR-291-3p in peripheral blood were decreased in patients with HF. Furthermore, much lower levels of miR-291-3p were identified in fibrotic liver tissues compared with that of normal liver tissues. Receiver operating characteristic curve analysis showed that the levels of miR-291-3p in peripheral blood may screen patients with HF from healthy controls. Reverse transcription quantitative polymerase chain reaction analysis showed that overexpression of miR-291-3p significantly suppressed the mRNA levels of Snai1, vascular endothelial-specific cadherin (VE-cadherin), Vimentin, transforming growth factor (TGF)-β1, and glial fibrillary acidic protein (GFAP). The protein levels of Snai1, VE-cadherin, Vimentin, TGF-β1, and GFAP were also decreased in hepatic stellate cells transfected with miR-291-3p mimics. Further study indicated that mothers against decapentaplegic homolog 2 (Smad2) was a target gene of miR-291-3p. More importantly, silencing of Smad2 could abolish miR-291-3p inhibition-induced TGF-β1 signaling activation. In summary, reduced peripheral blood miR-291-3p may be involved in the progression of HF via targeting Smad2.
Collapse
Affiliation(s)
- Weihua Yin
- Department of Infectious Diseases, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215000, P.R. China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215000, P.R. China
| | - Yanfang Zhu
- Department of Infectious Diseases, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215000, P.R. China
| | - Huihui Ni
- Department of Infectious Diseases, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215000, P.R. China
| | - Li Gong
- Department of Infectious Diseases, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215000, P.R. China
| | - Maoying Fu
- Department of Infectious Diseases, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
28
|
Vitamin A can ameliorate fibrosis of liver in an established rat model of biliary atresia and Kasai portoenterostomy. J Pediatr Surg 2018; 53:2416-2422. [PMID: 30257812 DOI: 10.1016/j.jpedsurg.2018.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antifibrosis therapy may prevent progressive liver fibrosis after successful Kasai portoenterostomy (KPE) in biliary atresia (BA) patients. The aim of this study is to evaluate the efficacy of antifibrosis therapy in a rat model of BA and KPE. METHODS BA model was created on three-week-old Sprague-Dawley rats by intrabiliary alcohol injection as previously described, and KPE was performed at postoperative week (POW) 5 by cystoenterostomy. Liver biopsies were performed at the time of BA creation, during KPE, POW 9, and at sacrifice (POW 17). Prednisolone (0.1 mg/100 g/day, group 1, n = 20), Vitamin A (0.5 mg/100 g/day, group 2, n = 20), and ursodeoxycholic acid (UDCA, 1.5 mg/100 g/day, group 3, n = 20) were respectively given to three groups after KPE and continued daily until sacrifice. Histological evaluation of fibrosis and immunohistochemistry stains for 8 fibrosis markers were compared to the control group (without medication, n = 10). RESULTS Among the four markers, namely ɑ-smooth muscle actin (ɑ-SMA), glial fibrillary acidic protein (GFAP), tumor growth factor β1 (TGFβ1) receptors 1 and 2, which showed persistently high expression after successful KPE in the examined 8 markers, only the expression of ɑ-SMA was significantly reduced in all treatment groups at POW17. However, the fibrosis grade at POW 17 was only significantly reduced in group 2 in comparison with the control group (Vitamin A vs. control group, Ishak score 3 vs. 1.8, p < 0.05). CONCLUSION In our rat model of BA with KPE, Vitamin A was effective in reducing liver fibrosis, and the mechanisms deserve further study. LEVEL OF EVIDENCE Basic science.
Collapse
|
29
|
Koga M, Kuramochi M, Karim MR, Izawa T, Kuwamura M, Yamate J. Immunohistochemical characterization of myofibroblasts appearing in isoproterenol-induced rat myocardial fibrosis. J Vet Med Sci 2018; 81:127-133. [PMID: 30464077 PMCID: PMC6361647 DOI: 10.1292/jvms.18-0599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibrotic lesion is formed by myofibroblasts capable of producing collagens. The myofibroblasts are characterized by immunoexpressions of vimentin, desmin and α-smooth muscle actin (α-SMA)
in varying degrees. The cellular characteristics remain investigated in myocardial fibrosis. We analyzed immunophenotypes of myofibroblasts appearing in isoproterenol-induced myocardial
fibrosis in rats until 28 days after injection (10 mg/kg body weight); the lesions developed as interstitial edema and inflammatory cell reaction on 8 hr and days 1 and 3, and fibrosis
occurred on days 1, 3, 7, 14, and 21 by gradual deposition of collagens, showing the greatest grade on day 14; the lesions gradually reduced with sporadic scar until day 28. Myofibroblasts
expressing vimentin and α-SMA increased with a peak on day 3, and then, gradually decreased onwards. Interestingly, Thy-1 expressing cells appeared in the affected areas, apparently being
corresponding to the grade similar to vimentin- and α-SMA-positive cells. Thy-1 is expressed in immature mesenchymal cells such as pericytes with pluripotent nature. The immunoreactivity for
A3-antigen, a marker for immature mesenchymal cells, was seen in some surrounding cells. There were no cells reacting with antibodies to nestin or glial fibrillary acidic protein, although
hepatic myofibroblats have been reported to react with these antibodies. Collectively, myofibroblasts appearing in rat myocardial fibrosis may have been derived from immature mesenchymal
cells positive for Thy-1 or A3-antigen, with thereafter showing expressions of vimentin and α-SMA in differentiation.
Collapse
Affiliation(s)
- Masaaki Koga
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan.,Nippon Shinyaku Co., Ltd., 14, Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Mizuki Kuramochi
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mohammad Rabiul Karim
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| |
Collapse
|
30
|
Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine 2018; 124:154542. [PMID: 30241896 DOI: 10.1016/j.cyto.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
In their quiescent state, Hepatic stellate cells (HSCs), are present in the sub-endothelial space of Disse and have minimal interaction with immune cells. However, upon activation following injury, HSCs directly or indirectly interact with various immune cells that enter the space of Disse and thereby regulate diverse hepatic function and immune physiology. Other than the normal physiological functions of HSCs such as hepatic homeostasis, maturation and differentiation, they also participate in hepatic inflammation by releasing a battery of inflammatory cytokines and chemokines and interacting with other liver cells. Here, we have reviewed the role of HSC in the pathogenesis of liver inflammation and some infectious diseases in order to understand how the interplay between immune cells and HSCs regulates the overall outcome and disease pathology.
Collapse
|
31
|
Amer J, Salhab A, Doron S, Morali G, Safadi R. A novel flow cytometry tool for fibrosis scoring through hepatic stellate cell differentiation. Cytometry A 2018. [PMID: 29517852 DOI: 10.1002/cyto.a.23202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hepatic stellate cells (HSCs) are a central fibrogenic cell type that contributes to collagen accumulation during chronic liver disease. Peripheral blood lymphocytes from HCV patients are phagocytized by HSCs and induce their differentiation. This study aimed to characterize HSCs differentiation using a flow cytometry tool for fibrosis scoring. NK cells from healthy donors and from patients with chronic HCV with various severities of fibrosis were co-cultured with a human HSC line (LX2). LX2 phagocytosis of NK cells were stained for NK cells (CD45/CD56/CD3) and NK activation marker (CD107a) as well as INF-γ, apoptosis (Annexin-V) and α-smooth-muscle-actin (αSMA, as a marker of LX2 activation). In addition, reactive oxygen species (ROS) and the senescence marker P15 were analyzed prior to flow cytometry analysis. LX2 mono-cultures demonstrated a homogenous cell-population according to size (forward-scattered; FSC), granularity and αSMA expressions. However, on their co-culture with NK cells, the HSCs formed four subpopulations, which were stratified by αSMA intensities and cell size. NK cells isolated from heathy donors did not activate LX2-cells. In contrast, HCV exposed to NK cells from both F1 and F4 fibrosis grade patients, showed elevated CD107a and INF-γ levels and increased αSMA intensities in two of the four cell populations, with fibrosis scoring showing a linear correlation with αSMA intensities and NK phagocytosis. The αSMAintermediate /SizeLow HSCs sub-population showed higher proliferation following F4-NK cells with higher phagocytosis ability, suggesting an active/regulatory population. The αSMAhigh /Sizehigh subpopulations showed low proliferation and phagocytosis capacity, and were correlated with higher apoptosis, increased ROS and P15 intensities, suggesting senescing cells. Taken together, NK cells lead to heterogeneous differentiation of HSCs. Flow-cytometry may provide a novel means of characterizing HSCs in relation to the severity of liver fibrosis. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Johnny Amer
- Liver and Gastroenterology Units, Hadassah University Medical Center, Jerusalem, Israel
| | - Ahmad Salhab
- Liver and Gastroenterology Units, Hadassah University Medical Center, Jerusalem, Israel
| | - Sarit Doron
- Liver and Gastroenterology Units, Hadassah University Medical Center, Jerusalem, Israel
| | - Gilles Morali
- Liver and Gastroenterology Units, Hadassah University Medical Center, Jerusalem, Israel
| | - Rifaat Safadi
- Liver and Gastroenterology Units, Hadassah University Medical Center, Jerusalem, Israel
| |
Collapse
|
32
|
Gómez Villalobos MDJ, Vidrio S, Giles López R, Flores Gómez G, Chagoya de Sánchez V. A novel Golgi-Cox staining method for detecting and characterizing roles of the hepatic stellate cells in liver injury. PATHOPHYSIOLOGY 2017; 24:267-274. [DOI: 10.1016/j.pathophys.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
|
33
|
Hashimoto A, Karim MR, Izawa T, Kuwamura M, Yamate J. Immunophenotypical analysis of pancreatic interstitial cells in the developing rat pancreas and myofibroblasts in the fibrotic pancreas in dogs and cats. J Vet Med Sci 2017; 79:1920-1926. [PMID: 29046498 PMCID: PMC5745165 DOI: 10.1292/jvms.17-0423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic fibrosis develops as the results of the activity of myofibroblasts capable of
producing collagens. The myofibroblasts derive from pancreatic interstitial cells,
including pancreatic stellate cells (PSCs), which can express glial fibrillary acidic
protein (GFAP). First, we investigated the expression patterns of vimentin, desmin,
α-smooth muscle actin (α-SMA), Thy-1 and GFAP in the developing rat pancreas (in fetuses
at 18 and 20 days, neonates from 1 to 21 days, and adults). Interstitial cells in the
developing pancreas expressed vimentin, desmin, GFAP and Thy-1 at varying degrees;
interestingly, the reactivity for desmin and vimentin was the highest in fetuses. GFAP
expression was consistent between fetuses and neonates, and Thy-1 reactivity transiently
increased after birth; however, α-SMA-positive interstitial cells were rarely seen. Next,
we analyzed the immunophenotypical characteristics of myofibroblasts appearing in
pancreatic fibrosis in dogs and cats. With increasing fibrotic grade, myofibroblasts
showed increased expression of vimentin, desmin and α-SMA, in addition to increased GFAP
expression. Collectively, pancreatic interstitial cells and myofibroblasts may have
similar immunophenotypes, and myofibroblasts might originate partly from GFAP-expressing
PSCs.
Collapse
Affiliation(s)
- Ai Hashimoto
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mohammad Rabiul Karim
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| |
Collapse
|
34
|
Carotti S, Perrone G, Amato M, Vespasiani Gentilucci U, Righi D, Francesconi M, Pellegrini C, Zalfa F, Zingariello M, Picardi A, Onetti Muda A, Morini S. Reelin expression in human liver of patients with chronic hepatitis C infection. Eur J Histochem 2017; 61:2745. [PMID: 28348420 PMCID: PMC5365015 DOI: 10.4081/ejh.2017.2745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reelin is a secreted extracellular glycoprotein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV). On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA) were also evaluated. As further confirmed by co-localization experiments (Reelin +CRBP-1), Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002). Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002), but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1), a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data.
Collapse
Affiliation(s)
- Simone Carotti
- Campus Bio-Medico University, Laboratory of Microscopic and Ultrastructural Anatomy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu M, Wang X, Zou Y, Zhong Y. Key role of liver sinusoidal endothelial cells in liver fibrosis. Biosci Trends 2017; 11:163-168. [PMID: 28250338 DOI: 10.5582/bst.2017.01007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because of the prevalence of viral hepatitis and nonalcoholic fatty liver disease (NAFLD), liver fibrosis has become a very common disease in Asia and elsewhere in the world, constantly increasing the burden of care borne by society. Hepatic sinusoidal capillarization, characterized by gradually shrinking fenestrae on the surface of liver sinusoidal endothelial cells (LSECs) and the formation of an organized basement membrane, is an initial pathologic change associated with liver fibrosis. Basic and clinical studies have indicated that LSECs play a key role in hepatic sinusoidal capillarization by affecting various aspects of the development and progression of liver fibrosis. Reviewing studies on the effect of LSECs on liver fibrosis is essential to better understanding the pathogenesis of liver fibrosis and its mechanism of progression. Moreover, such a review will provide a theoretical basis for identifying new methods to promote the regression or even inhibition of fibrosis. This review will focus on structural and functional changes in LSECs during hepatic sinusoidal capillarization and the interaction between the micro-environment of the liver and the body's immune system.
Collapse
Affiliation(s)
- Mingxing Xu
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-Sen University
| | - Xuehua Wang
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-Sen University
| | - Yong Zou
- Department of Blood Transfusion, Third Affiliated Hospital of Sun Yat-Sen University
| | - Yuesi Zhong
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-Sen University
| |
Collapse
|
36
|
Posti JP, Hossain I, Takala RSK, Liedes H, Newcombe V, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP, Kyllönen A, Maanpää HR, Tallus J, Hutchinson PJ, van Gils M, Menon DK, Tenovuo O. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Are Not Specific Biomarkers for Mild CT-Negative Traumatic Brain Injury. J Neurotrauma 2017; 34:1427-1438. [PMID: 27841729 DOI: 10.1089/neu.2016.4442] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) have been studied as potential biomarkers of mild traumatic brain injury (mTBI). We report the levels of GFAP and UCH-L1 in patients with acute orthopedic injuries without central nervous system involvement, and relate them to the type of extracranial injury, head magnetic resonance imaging (MRI) findings, and levels of GFAP and UCH-L1 in patients with CT-negative mTBI. Serum UCH-L1 and GFAP were longitudinally measured from 73 patients with acute orthopedic injury on arrival and on days 1, 2, 3, 7 after admission, and on the follow-up visit 3-10 months after the injury. The injury types were recorded, and 71% patients underwent also head MRI. The results were compared with those found in patients with CT-negative mTBI (n = 93). The levels of GFAP were higher in patients with acute orthopedic trauma than in patients with CT-negative mTBI (p = 0.026) on arrival; however, no differences were found on the following days. The levels of UCH-L1 were not significantly different between these two groups at any measured point of time. Levels of GFAP and UCH-L1 were not able to distinguish patients with CT-negative mTBI from patients with orthopedic trauma. Patients with orthopedic trauma and high levels of UCH-L1 or GFAP values may be falsely diagnosed as having a concomitant mTBI, predisposing them to unwarranted diagnostics and unnecessary brain imaging. This casts a significant doubt on the diagnostic value of GFAP and UCH-L1 in cases with mTBI.
Collapse
Affiliation(s)
- Jussi P Posti
- 1 Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital , Turku, Finland
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
- 3 Department of Neurology, University of Turku , Turku, Finland
| | | | - Riikka S K Takala
- 4 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku , Turku, Finland
| | - Hilkka Liedes
- 5 Systems Medicine, VTT Technical Research Centre of Finland Ltd , Tampere, Finland
| | - Virginia Newcombe
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joanne Outtrim
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- 4 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku , Turku, Finland
| | - Janek Frantzén
- 1 Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital , Turku, Finland
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
| | | | - Jonathan P Coles
- 7 Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Anna Kyllönen
- 3 Department of Neurology, University of Turku , Turku, Finland
| | | | - Jussi Tallus
- 3 Department of Neurology, University of Turku , Turku, Finland
| | - Peter J Hutchinson
- 7 Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark van Gils
- 5 Systems Medicine, VTT Technical Research Centre of Finland Ltd , Tampere, Finland
| | - David K Menon
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Olli Tenovuo
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
- 3 Department of Neurology, University of Turku , Turku, Finland
| |
Collapse
|
37
|
The Role of Tissue Macrophage-Mediated Inflammation on NAFLD Pathogenesis and Its Clinical Implications. Mediators Inflamm 2017; 2017:8162421. [PMID: 28115795 PMCID: PMC5237469 DOI: 10.1155/2017/8162421] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023] Open
Abstract
The obese phenotype is characterized by a state of chronic low-grade systemic inflammation that contributes to the development of comorbidities, including nonalcoholic fatty liver disease (NAFLD). In fact, NAFLD is often associated with adipocyte enlargement and consequent macrophage recruitment and inflammation. Macrophage polarization is often associated with the proinflammatory state in adipose tissue. In particular, an increase of M1 macrophages number or of M1/M2 ratio triggers the production and secretion of various proinflammatory signals (i.e., adipocytokines). Next, these inflammatory factors may reach the liver leading to local M1/M2 macrophage polarization and consequent onset of the histological damage characteristic of NAFLD. Thus, the role of macrophage polarization and inflammatory signals appears to be central for pathogenesis and progression of NAFLD, even if the heterogeneity of macrophages and molecular mechanisms that govern their phenotype switch remain incompletely understood. In this review, we discuss the role of adipose and liver tissue macrophage-mediated inflammation in experimental and human NAFLD. This focus is relevant because it may help researchers that approach clinical and experimental studies on this disease advancing the knowledge of mechanisms that could be targeted in order to revert NAFLD-related fibrosis.
Collapse
|
38
|
Yuan J, Liu W, Zhu H, Chen Y, Zhang X, Li L, Chu W, Wen Z, Feng H, Lin J. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo. Brain Res 2016; 1655:90-103. [PMID: 27865778 DOI: 10.1016/j.brainres.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/13/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022]
Abstract
Spinal cord injury (SCI) leads to glial scar formation by astrocytes, which severely hinders neural regeneration. Curcumin (cur) can inhibit glial scar formation, but the underlying mechanism is not fully understood. Using both in vivo and in vitro experiments, the current study investigated the phenotypic transformation of astrocytes following cur and siRNA intervention during the processes of inflammation and fibrosis and determined details of the relationship between cur treatment and the glial scar components GFAP and CSPG. We found that cur and NF-κb p65 siRNA could inhibit astrocyte activation through suppressing NF-κb signaling pathway, which led to down-regulate the expression of chemokines MCP-1, RANTES and CXCL10 released by astrocytes and decreased macrophage and T-cell infiltration, thus reducing the inflammation in the glial scar. In addition, silencing SOX-9 may reduce the deposition of extracellular matrix CSPG; whereas its over-expression could increase the CSPG expression. Cur suppressedSOX-9-inducedCSPG deposition, reduced α-SMA (an important symbol of fibrosis) expression in astrocytes, altered astrocyte phenotype, and inhibited glial scar formation by regulating fibrosis. This study confirmed that cur could regulate both the NF-κb and SOX9 signaling pathways and reduce the expression of intracellular and extracellular glial scar components through dual-target regulating both inflammation and fibrosis after SCI in the rat. This study provides an important hypothesis centered on the dual inhibition of intracellular and extracellular glial scar components as a treatment strategy for SCI.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Wei Liu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Haitao Zhu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Yaxing Chen
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Xuan Zhang
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Lan Li
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Weihua Chu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Zexian Wen
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Hua Feng
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Jiangkai Lin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| |
Collapse
|
39
|
Ebrahimi H, Naderian M, Sohrabpour AA. New Concepts on Pathogenesis and Diagnosis of Liver Fibrosis; A Review Article. Middle East J Dig Dis 2016; 8:166-178. [PMID: 27698966 PMCID: PMC5045669 DOI: 10.15171/mejdd.2016.29] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a potentially reversible response to hepatic insults, triggered by different chronic diseases most importantly viral hepatitis, alcoholic, and nonalcoholic fatty liver disease. In the course of the chronic liver disease, hepatic fibrogenesis may develop, which is attributed to various types of cells, molecules, and pathways. Activated hepatic stellate cell (HSC), the primary source of extracellular matrix (ECM), is fundamental in pathophysiology of fibrogenesis, and thus is the most attractable target for reversing liver fibrosis. Although, liver biopsy has long been considered as the gold standard for diagnosis and staging of hepatic fibrosis, assessing progression and regression by biopsy is hampered by its limitations. We provide recent views on noninvasive approaches including serum biomarkers and radiologic techniques.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- Liver and Pancreaticobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Naderian
- Liver and Pancreaticobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Assistant Professor, Liver and Pancreaticobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1765-78. [DOI: 10.1016/j.bbadis.2015.05.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
41
|
Huang YH, Tiao MM, Huang LT, Chuang JH, Kuo KC, Yang YL, Wang FS. Activation of Mir-29a in Activated Hepatic Stellate Cells Modulates Its Profibrogenic Phenotype through Inhibition of Histone Deacetylases 4. PLoS One 2015; 10:e0136453. [PMID: 26305546 PMCID: PMC4549141 DOI: 10.1371/journal.pone.0136453] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Background Recent studies have shown that microRNA-29 (miR-29) is significantly decreased in liver fibrosis and that its downregulation influences the activation of hepatic stellate cells (HSCs). In addition, inhibition of the activity of histone deacetylases 4 (HDAC4) has been shown to strongly reduce HSC activation in the context of liver fibrosis. Objectives In this study, we examined whether miR-29a was involved in the regulation of HDAC4 and modulation of the profibrogenic phenotype in HSCs. Methods We employed miR-29a transgenic mice (miR-29aTg mice) and wild-type littermates to clarify the role of miR-29a in cholestatic liver fibrosis, using the bile duct-ligation (BDL) mouse model. Primary HSCs from both mice were treated with a miR-29a mimic and antisense inhibitor in order to analyze changes in profibrogenic gene expression and HSC activation using real-time quantitative RT-PCR, immunofluorescence staining, western blotting, and cell proliferation and migration assays. Results After BDL, overexpression of miR-29a decreased collagen-1α1, HDAC4 and activated HSC markers of glial fibrillary acidic protein expression in miR-29aTg mice compared to wild-type littermates. Overexpression of miR-29a and HDAC4 RNA-interference decreased the expression of fibrotic genes, HDAC4 signaling, and HSC migration and proliferation. In contrast, knockdown of miR-29a with an antisense inhibitor increased HDAC4 function, restored HSC migration, and accelerated HSC proliferation. Conclusions Our results indicate that miR-29a ameliorates cholestatic liver fibrosis after BDL, at least partially, by modulating the profibrogenic phenotype of HSCs through inhibition of HDAC4 function.
Collapse
Affiliation(s)
- Ying-Hsien Huang
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Che Kuo
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ling Yang
- Departments of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Departments of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Loo CKC, Pereira TN, Pozniak KN, Ramsing M, Vogel I, Ramm GA. The development of hepatic stellate cells in normal and abnormal human fetuses - an immunohistochemical study. Physiol Rep 2015; 3:3/8/e12504. [PMID: 26265759 PMCID: PMC4562587 DOI: 10.14814/phy2.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The precise embryological origin and development of hepatic stellate cells is not established. Animal studies and observations on human fetuses suggest that they derive from posterior mesodermal cells that migrate via the septum transversum and developing diaphragm to form submesothelial cells beneath the liver capsule, which give rise to mesenchymal cells including hepatic stellate cells. However, it is unclear if these are similar to hepatic stellate cells in adults or if this is the only source of stellate cells. We have studied hepatic stellate cells by immunohistochemistry, in developing human liver from autopsies of fetuses with and without malformations and growth restriction, using cellular Retinol Binding Protein-1 (cRBP-1), Glial Fibrillary Acidic Protein (GFAP), and α-Smooth Muscle Actin (αSMA) antibodies, to identify factors that influence their development. We found that hepatic stellate cells expressing cRBP-1 are present from the end of the first trimester of gestation and reduce in density throughout gestation. They appear abnormally formed and variably reduced in number in fetuses with abnormal mesothelial Wilms Tumor 1 (WT1) function, diaphragmatic hernia and in ectopic liver nodules without mesothelium. Stellate cells showed similarities to intravascular cells and their presence in a fetus with diaphragm agenesis suggests they may be derived from circulating stem cells. Our observations suggest circulating stem cells as well as mesothelium can give rise to hepatic stellate cells, and that they require normal mesothelial function for their development.
Collapse
Affiliation(s)
- Christine K C Loo
- Department of Anatomical Pathology, Prince of Wales Hospital, Randwick Sydney, NSW, Australia Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia Discipline of Pathology, School of Medicine, University of Western Sydney, Sydney, NSW, Australia
| | - Tamara N Pereira
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katarzyna N Pozniak
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mette Ramsing
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY, Gough A, Taylor DL. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood) 2015. [PMID: 26202373 DOI: 10.1177/1535370215592121] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2-4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to related chemical, bioactivity, preclinical and clinical information uploaded from external databases for constructing predictive models.
Collapse
Affiliation(s)
- Lawrence A Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
44
|
Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem 2015; 26:996-1006. [PMID: 26033743 DOI: 10.1016/j.jnutbio.2015.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis.
Collapse
|
45
|
Inekci D, Jonesco DS, Kennard S, Karsdal MA, Henriksen K. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease. Front Neurol 2015; 6:90. [PMID: 26029153 PMCID: PMC4426721 DOI: 10.3389/fneur.2015.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of dementia is challenging and early stages are rarely detected limiting the possibilities for early intervention. Another challenge is the overlap in the clinical features across the different dementia types leading to difficulties in the differential diagnosis. Identifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer’s disease and other dementia treatment candidates. The cerebrospinal fluid (CSF) has been the most investigated source of biomarkers and several candidate proteins have been identified. However, looking solely at protein levels is too simplistic to provide enough detailed information to differentiate between dementias, as there is a significant crossover between the proteins involved in the different types of dementia. Additionally, CSF sampling makes these biomarkers challenging for presymptomatic identification. We need to focus on disease-specific protein fragmentation to find a fragment pattern unique for each separate dementia type – a form of protein fragmentology. Targeting protein fragments generated by disease-specific combinations of proteins and proteases opposed to detecting the intact protein could reduce the overlap between diagnostic groups as the extent of processing as well as which proteins and proteases constitute the major hallmark of each dementia type differ. In addition, the fragments could be detectable in blood as they may be able to cross the blood–brain barrier due to their smaller size. In this review, the potential of the fragment-based biomarker discovery for dementia diagnosis and prognosis is discussed, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development.
Collapse
Affiliation(s)
- Dilek Inekci
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark ; Systems Biology, Technical University of Denmark , Lyngby , Denmark
| | | | - Sophie Kennard
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| | | | - Kim Henriksen
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| |
Collapse
|
46
|
Tennakoon AH, Izawa T, Wijesundera KK, Katou-Ichikawa C, Tanaka M, Golbar HM, Kuwamura M, Yamate J. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol 2015; 98:476-85. [PMID: 25758201 DOI: 10.1016/j.yexmp.2015.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 12/19/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament protein, is expressed in hepatic stellate cells (HSCs), the principal fibrogenic cell type in the liver. Further, GFAP could be a marker for hepatic progenitor cells (HPCs). In this study, the participation of GFAP-expressing cells in HPC expansion/ductular reaction was investigated in a rat model of liver cirrhosis. Six-week-old male F344 rats were injected intraperitoneally with thioacetamide (100mg/kg BW, twice a week) and examined at post-first injection weeks 5, 10, 15, 20 and 25. Fibrosis-related proliferation of ductular cells was observed as demonstrated by CK19 immunostaining. Some of these cells were stained with GFAP. No co-staining was observed between CK19 and α-smooth muscle actin (α-SMA; myofibroblast marker). There were proliferating ductular cells stained with α-fetoprotein or β-catenin; the ductular reaction was related to increased expression of hepatocarcinogenesis-related factors (Wnt2, Wnt4 and glypican-3). These results for the first time show the participation of GFAP-positive HPCs in ductular reaction in a chemically induced rodent model. Though the ductular cells were chaperoned by myofibroblasts, they show no direct evidence for epithelial to mesenchymal transition. These findings shed new light in understanding the roles of GFAP-expressing HPCs in liver cirrhosis and provide further evidence of interaction between newly-formed bile ductules and HSCs, suggesting that both cells could be in the common lineage of HPCs.
Collapse
Affiliation(s)
- Anusha H Tennakoon
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Kavindra K Wijesundera
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Chisa Katou-Ichikawa
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Hossain M Golbar
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan.
| |
Collapse
|
47
|
Hassan S, Syed S, Kehar SI. Glial Fibrillary Acidic Protein (GFAP) as a Mesenchymal marker of Early Hepatic Stellate Cells Activation in Liver Fibrosis in Chronic Hepatitis C Infection. Pak J Med Sci 2014; 30:1027-32. [PMID: 25225520 PMCID: PMC4163226 DOI: 10.12669/pjms.305.5534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study aims to determine expression of Glial Fibrillary Acidic Protein and of Alpha Smooth Muscle Actin (α-SMA) in hepatic stellate cells of CHC cases and their association with stage of fibrosis. METHODS The study was conducted at Ziauddin University, Clifton Campus during the year 2010-2012. Sixty Chronic Hepatitis C cases were immmunostained using anti α-SMA antibody and anti-GFAP antibody. Semi quantitative scoring in pericentral, periportal and perisinusoidal area of each case was done to assess immunoexpression of each marker. Results : Immunoexpression of GFAP showed significant association with α-SMA. GFAP expression was inversely correlated with progression of fibrosis. Conclusion : GFAP could represent a useful marker for early hepatic stellate cells activation. Follow up biopsies showing decline in GFAP levels may help identify the target group requiring aggressive therapy.
Collapse
Affiliation(s)
- Sobia Hassan
- Dr. Sobia Hassan, Lecturer, Pathology Department, Ziauddin University Clifton Campus, Karachi, Pakistan
| | - Serajuddaula Syed
- Prof. Serajuddaula Syed, Head of Pathology Department, Ziauddin University Clifton Campus, Karachi, Pakistan
| | - Shahnaz Imdad Kehar
- Dr. Shahnaz Imdad Kehar, Associate Professor, Pathology Department, BMSI – JPMC, Karachi, Pakistan
| |
Collapse
|
48
|
Mariño Z, Mensa L, Crespo G, Miquel R, Bruguera M, Pérez-Del-Pulgar S, Bosch J, Forns X, Navasa M. Early periportal sinusoidal fibrosis is an accurate marker of accelerated HCV recurrence after liver transplantation. J Hepatol 2014; 61:270-7. [PMID: 24703854 DOI: 10.1016/j.jhep.2014.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Significant liver fibrosis (F ⩾ 2) and portal hypertension (hepatic venous pressure gradient [HVPG] ⩾ 6 mmHg) 1 year after liver transplantation (LT) are predictors of severe hepatitis C recurrence. Periportal sinusoidal fibrosis (SF) is an early expression of the fibrogenic process in response to liver injury. We aimed to evaluate whether SF in early liver biopsies represents an early and accurate marker for identifying patients with severe HCV recurrence after LT. METHODS A total of 101 HCV LT patients with early biopsy (<6 months), and HVPG measurement and/or liver biopsy one year after LT were included. Early biopsies were stained with Sirius Red and SF was graded semi-quantitatively. Results were compared between groups (significant SF vs. non-significant SF) and correlated with the development of severe HCV recurrence one year after LT. RESULTS Patients with early significant SF had older donor age and higher necroinflammatory activity (NIA). The presence of early significant SF enabled identification of 78.9% and 90.6% of patients with F ⩾ 2 and HVPG ⩾ 6 mmHg, respectively, one year after LT. Donor age and NIA were independent predictors of significant fibrosis (F ⩾ 2) one year after LT, whereas donor age, ALT (3 months), NIA, and SF grade were independent predictors of portal hypertension (HVPG ⩾ 6). CONCLUSIONS Significant SF in early biopsies is a good predictor of severe hepatitis C recurrence. This histological finding, when combined with simple variables, may be useful to select the best candidates for early antiviral therapy after LT.
Collapse
Affiliation(s)
- Zoe Mariño
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Laura Mensa
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Gonzalo Crespo
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Rosa Miquel
- Pathology Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Miquel Bruguera
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Sofía Pérez-Del-Pulgar
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Jaume Bosch
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Miquel Navasa
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
49
|
Meli R, Mattace Raso G, Calignano A. Role of innate immune response in non-alcoholic Fatty liver disease: metabolic complications and therapeutic tools. Front Immunol 2014; 5:177. [PMID: 24795720 PMCID: PMC4005965 DOI: 10.3389/fimmu.2014.00177] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, both in adults and children. It is characterized by an aberrant lipid storage in hepatocytes, named hepatic steatosis. Simple steatosis remains a benign process in most affected patients, while some of them develop superimposed necroinflammatory activity with a non-specific inflammatory infiltrate and a progression to non-alcoholic steatohepatitis with or without fibrosis. Deep similarity and interconnections between innate immune cells and those of liver parenchyma have been highlighted and showed to play a key role in the development of chronic liver disease. The liver can be considered as an “immune organ” because it hosts non-lymphoid cells, such as macrophage Kupffer cells, stellate and dendritic cells, and lymphoid cells. Many of these cells are components of the classic innate immune system, enabling the liver to play a major role in response to pathogens. Although the liver provides a “tolerogenic” environment, aberrant activation of innate immune signaling may trigger “harmful” inflammation that contributes to tissue injury, fibrosis, and carcinogenesis. Pathogen recognition receptors, such as toll-like receptors and nucleotide oligomerization domain-like receptors, are responsible for the recognition of immunogenic signals, and represent the major conduit for sensing hepatic and non-hepatic noxious stimuli. A pivotal role in liver inflammation is also played by cytokines, which can initiate or have a part in immune response, triggering hepatic intracellular signaling pathways. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic alteration traits: insulin resistance, obesity, diabetes, hyperlipidemia, and their compounded combined effects. In this review, we discuss the relevant role of innate immune cell activation in relation to NAFLD, the metabolic complications associated to this pathology, and the possible pharmacological tools.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II" , Naples , Italy
| | | | - Antonio Calignano
- Department of Pharmacy, University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
50
|
Vasuri F, Malvi D, Gruppioni E, Grigioni WF, D’Errico-Grigioni A. Histopathological evaluation of recurrent hepatitis C after liver transplantation: A review. World J Gastroenterol 2014; 20:2810-2824. [PMID: 24659874 PMCID: PMC3961976 DOI: 10.3748/wjg.v20.i11.2810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/08/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Although the morphological features of hepatitis C virus (HCV) recurrence after orthotopic liver transplantation (OLT) have been well established in the last decades, the differential diagnosis still represents a challenge for the pathologist, especially early recurrent hepatitis C vs mild acute cellular rejection. The present review focuses on the role of the pathologist and the pathology laboratory in the management of recipients with recurrent hepatitis C, the usefulness of early and late post-OLT liver biopsies, and the potential role of ancillary techniques (immunohistochemistry and reverse transcription-polymerase chain reaction, RT-PCR). The English literature on the topic is reviewed, focusing on the histopathology, the immunohistochemistry and the use of RT-PCR on HCV-positive post-OLT biopsies. The different histopathological illustrations of early and chronic recurrent hepatitis C are presented, with special focus on the main differential diagnoses and those features with prognostic relevance (cholestasis above all). The usefulness of ancillary techniques are discussed, especially HCV RNA quantitation by RT-PCR. Finally, the usefulness of long-term protocol biopsies is addressed: their usefulness for the study of allograft disease progression is clear, but their meaning in the long term is still debated. The significance of plasma cell infiltrate in HCV-positive allografts, the prognostic weight of graft steatosis, and the impact of donor age in recurrent hepatitis C also represent additional open issues.
Collapse
|