1
|
Chichelnitskiy E, Goldschmidt I, Ruhl L, Rübsamen N, Jaeger VK, Karch A, Beushausen K, Keil J, Götz JK, D'Antiga L, Debray D, Hierro L, Kelly D, McLin V, Pawlowska J, Mikolajczyk RT, Bravi M, Klaudel-Dreszler M, Demir Z, Lloyd C, Korff S, Baumann U, Falk CS. Plasma immune signatures can predict rejection-free survival in the first year after pediatric liver transplantation. J Hepatol 2024; 81:862-871. [PMID: 38821361 DOI: 10.1016/j.jhep.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND & AIMS After pediatric liver transplantation (pLT), children undergo life-long immunosuppression since reliable biomarkers for the assessment of rejection probability are scarce. In the multicenter (n = 7) prospective clinical cohort "ChilSFree" study, we aimed to characterize longitudinal dynamics of soluble and cellular immune mediators during the first year after pLT and identify early biomarkers associated with outcome. METHODS Using a Luminex-based multiplex technique paired with flow cytometry, we characterized longitudinal dynamics of soluble immune mediators (SIMs, n = 50) and immune cells in the blood of 244 patients at eight visits over 1 year: before, and 7/14/21/28 days and 3/6/12 months after pLT. RESULTS The unsupervised clustering of patients based on SIM profiles revealed six unique SIM signatures associated with clinical outcome. From three signatures linked to improved outcome, one was associated with 1-year-long rejection-free survival and stable graft function and was characterized by low levels of pro-inflammatory SIMs (CXCL8/9/10/12, CCL7, SCGF-β, sICAM-1), and high levels of regenerative (SCF, TNF-β) and pro-apoptotic (TRAIL) SIMs (all, p <0.001, fold change >100). Of note, this SIM signature appeared 2 weeks after pLT and remained stable over the entire year, pointing towards its potential as a novel early biomarker for minimizing or weaning immunosuppression. In the blood of these patients, a higher frequency of CD56bright natural killer cells (p <0.01), a known hallmark also associated with operationally tolerant pLT patients, was detected. The concordance of the model for prediction of rejection based on identified SIM signatures was 0.715, and 0.795, in combination with living-related transplantation as a covariate, respectively. CONCLUSIONS SIM blood signatures may enable the non-invasive and early assessment of rejection risks in the first year after pLT, paving the way for improved clinical management. IMPACT AND IMPLICATIONS ChilSFree represents the largest pediatric liver transplant (pLT) cohort with paired longitudinal data on soluble immune mediators (SIMs) and immune phenotyping in the first year after pLT. SIM signatures allow for the selection of rejection-free patients 2 weeks after pLT independently of patient diagnosis, sex, or age. The SIM signatures may enable the non-invasive and early assessment of rejection risks, paving the way for minimization or withdrawal of immunosuppression after pLT.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Imeke Goldschmidt
- Division of Pediatric Gastroenterology and Hepatology, MHH, Hannover, Germany; European Pediatric Liver Transplantation Network, Germany
| | - Louisa Ruhl
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Nicole Rübsamen
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Veronika K Jaeger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Andre Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Juliane K Götz
- Division of Pediatric Gastroenterology and Hepatology, MHH, Hannover, Germany
| | - Lorenzo D'Antiga
- Pediatric Department, Hospital Papa Giovanni XXIII Bergamo, Italy; European Pediatric Liver Transplantation Network, Germany; Department of Medicine and Surgery, University of Milano - Bicocca, 20126 Milan, Italy
| | - Dominique Debray
- Pediatric liver unit, Hôpital Necker-Enfants Malades, Paris, France; European Pediatric Liver Transplantation Network, Germany
| | - Loreto Hierro
- Hospital Infantil Universitario La Paz, Madrid, Spain; European Pediatric Liver Transplantation Network, Germany
| | - Deirdre Kelly
- Birmingham Women's & Children's Hospital, and University of Birmingham, UK; European Pediatric Liver Transplantation Network, Germany
| | - Valerie McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology, and Obstetrics, University Hospitals Geneva, University of Geneva, Geneva, Switzerland; European Pediatric Liver Transplantation Network, Germany
| | - Joanna Pawlowska
- Department of Gastroenterology, Hepatology, Nutritional Disorders, and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Rafael T Mikolajczyk
- Institute of Medical Epidemiology, Biostatistics and Medical Informatics, University of Halle, Halle, Germany
| | - Michela Bravi
- Pediatric Department, Hospital Papa Giovanni XXIII Bergamo, Italy; European Pediatric Liver Transplantation Network, Germany
| | - Maja Klaudel-Dreszler
- Department of Gastroenterology, Hepatology, Nutritional Disorders, and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Zeynep Demir
- Pediatric liver unit, Hôpital Necker-Enfants Malades, Paris, France; European Pediatric Liver Transplantation Network, Germany
| | - Carla Lloyd
- Birmingham Women's & Children's Hospital, and University of Birmingham, UK; European Pediatric Liver Transplantation Network, Germany
| | - Simona Korff
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology, and Obstetrics, University Hospitals Geneva, University of Geneva, Geneva, Switzerland; European Pediatric Liver Transplantation Network, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, MHH, Hannover, Germany; European Pediatric Liver Transplantation Network, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research, TTU-IICH Hannover, Hannover, Germany.
| |
Collapse
|
2
|
Zhou L, Zhu JQ, Kou JT, Xu WL, Lyu SC, Du GS, Yang HW, Wang JF, Hu XP, Yu CZ, Yuan CH, Han DD, Sang CQ, Li B, Gao J, Qi HZ, Wang LM, Lyu L, Liu H, Wu JY, Lang R, He Q, Li XL. Chinese expert consensus on quantitatively monitoring and assessing immune cell function status and its clinical application (2024 edition). Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00125-5. [PMID: 39448347 DOI: 10.1016/j.hbpd.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ji-Qiao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Tao Kou
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guo-Sheng Du
- Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang 110010, China
| | - Hong-Wei Yang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang 110010, China
| | - Jian-Feng Wang
- Department of Interventional Therapy, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao-Peng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Zhao Yu
- Department of General Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Chun-Hui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Dong-Dong Han
- Liver Transplantation Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cui-Qin Sang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Li
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100871, China
| | - Hai-Zhi Qi
- Department of General Surgery/Organ Transplant Center, The Second Xiang Ya Hospital of Central South Univercity, Changsha 410011, China
| | - Li-Ming Wang
- Organ Transplant Center, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Ling Lyu
- Department of General Surgery, Jiangsu Provincial People's Hospital, Nanjing 210029, China
| | - Hao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jian-Yong Wu
- Kidney Transplant Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ren Lang
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
3
|
Harrington C, Krishnan S, Mack CL, Cravedi P, Assis DN, Levitsky J. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis. Hepatology 2022; 76:1862-1879. [PMID: 35611859 PMCID: PMC9796683 DOI: 10.1002/hep.32591] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
Autoimmune hepatitis (AIH) is a rare disease of unclear etiology characterized by loss of self-tolerance that can lead to liver injury, cirrhosis, and acute liver failure. First-line treatment consists of systemic corticosteroids, or budesonide, and azathioprine, to which most patients are initially responsive, although predictors of response are lacking. Relapses are very common, correlate with histological activity despite normal serum transaminases, and increase hepatic fibrosis. Furthermore, current regimens lead to adverse effects and reduced quality of life, whereas medication titration is imprecise. Biomarkers that can predict the clinical course of disease, identify patients at elevated risk for relapse, and improve monitoring and medication dosing beyond current practice would have high clinical value. Herein, we review novel candidate biomarkers in adult and pediatric AIH based on prespecified criteria, including gene expression profiles, proteins, metabolites, and immune cell phenotypes in different stages of AIH. We also discuss biomarkers relevant to AIH from other immune diseases. We conclude with proposed future directions in which biomarker implementation into clinical practice could lead to advances in personalized therapeutic management of AIH.
Collapse
Affiliation(s)
- Claire Harrington
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Swathi Krishnan
- Medicine DepartmentYale School of MedicineNew HavenConnecticutUSA
| | - Cara L. Mack
- Section of Pediatric Gastroenterology, Hepatology & Nutrition, Children's Hospital ColoradoUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paolo Cravedi
- Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David N. Assis
- Section of Digestive DiseasesYale School of MedicineNew HavenConnecticutUSA
| | - Josh Levitsky
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
4
|
Reddy R, Mintz J, Golan R, Firdaus F, Ponce R, Van Booven D, Manoharan A, Issa I, Blomberg BB, Arora H. Antibody Diversity in Cancer: Translational Implications and Beyond. Vaccines (Basel) 2022; 10:vaccines10081165. [PMID: 35893814 PMCID: PMC9331493 DOI: 10.3390/vaccines10081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Patients with cancer tend to develop antibodies to autologous proteins. This phenomenon has been observed across multiple cancer types, including bladder, lung, colon, prostate, and melanoma. These antibodies potentially arise due to induced inflammation or an increase in self-antigens. Studies focusing on antibody diversity are particularly attractive for their diagnostic value considering antibodies are present at an early diseased stage, serum samples are relatively easy to obtain, and the prevalence of antibodies is high even when the target antigen is minimally expressed. Conversely, the surveillance of serum proteins in cancer patients is relatively challenging because they often show variability in expression and are less abundant. Moreover, an antibody’s presence is also useful as it suggests the relative immunogenicity of a given antigen. For these reasons, profiling antibodies’ responses is actively considered to detect the spread of antigens following immunotherapy. The current review focuses on expanding the knowledge of antibodies and their diversity, and the impact of antibody diversity on cancer regression and progression.
Collapse
Affiliation(s)
- Raghuram Reddy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Roei Golan
- College of Medicine, Florida State University, Tallahassee FL 32304, USA;
| | - Fakiha Firdaus
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
| | - Roxana Ponce
- Department of Biology, Florida International University, Miami, FL 33199, USA;
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
| | - Aysswarya Manoharan
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
| | - Isabelle Issa
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
5
|
Levitsky J, Kandpal M, Guo K, Zhao L, Kurian S, Whisenant T, Abecassis M. Prediction of Liver Transplant Rejection With a Biologically Relevant Gene Expression Signature. Transplantation 2022; 106:1004-1011. [PMID: 34342962 PMCID: PMC9301991 DOI: 10.1097/tp.0000000000003895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Noninvasive biomarkers distinguishing early immune activation before acute rejection (AR) could more objectively inform immunosuppression management in liver transplant recipients (LTRs). We previously reported a genomic profile distinguishing LTR with AR versus stable graft function. This current study includes key phenotypes with other causes of graft dysfunction and uses a novel random forest approach to augment the specificity of predicting and diagnosing AR. METHODS Gene expression results in LTRs with AR versus non-AR (combination of other causes of graft dysfunction and normal function) were analyzed from single and multicenter cohorts. A 70:30 approach (61 ARs; 162 non-ARs) was used for training and testing sets. Microarray data were normalized using a LT-specific vector. RESULTS Random forest modeling on the training set generated a 59-probe classifier distinguishing AR versus non-AR (area under the curve 0.83; accuracy 0.78, sensitivity 0.70, specificity 0.81, positive predictive value 0.54, negative predictive value [NPV] 0.89; F-score 0.61). Using a locked threshold, the classifier performed well on the testing set (accuracy 0.72, sensitivity 0.67, specificity 0.73, positive predictive value 0.48, NPV 0.86; F-score 0.56). Probability scores increased in samples preceding AR versus non-AR, when liver function tests were normal, and decreased following AR treatment (P < 0.001). Ingenuity pathway analysis of the genes revealed a high percentage related to immune responses and liver injury. CONCLUSIONS We have developed a blood-based biologically relevant biomarker that can be detected before AR-associated graft injury distinct from LTR never developing AR. Given its high NPV ("rule out AR"), the biomarker has the potential to inform precision-guided immunosuppression minimization in LTRs.
Collapse
Affiliation(s)
- Josh Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Manoj Kandpal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kexin Guo
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lihui Zhao
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sunil Kurian
- Scripps Clinic Bio-Repository and Bio-Informatics Core, Scripps Green Hospital, La Jolla, CA
| | - Thomas Whisenant
- Center for Computational Biology and Bioinformatics, School of Medicine, University of California San Diego, San Diego, CA
| | | |
Collapse
|
6
|
Levitsky J, Kandpal M, Guo K, Kleiboeker S, Sinha R, Abecassis M. Donor-derived cell-free DNA levels predict graft injury in liver transplant recipients. Am J Transplant 2022; 22:532-540. [PMID: 34510731 DOI: 10.1111/ajt.16835] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Donor-derived cell-free DNA (dd-cfDNA) has been evaluated as a rejection marker in organ transplantation. This study sought to assess the utility of dd-cfDNA to diagnose graft injury in liver transplant recipients (LTR) and as a predictive biomarker prior to different causes of graft dysfunction. Plasma from single and multicenter LTR cohorts was analyzed for dd-cfDNA. Phenotypes of treated biopsy-proven acute rejection (AR, N = 57), normal function (TX, N = 94), and acute dysfunction no rejection (ADNR; N = 68) were divided into training and test sets. In the training set, dd-cfDNA was significantly different between AR versus TX (AUC 0.95, 5.3% cutoff) and AR versus ADNR (AUC 0.71, 20.4% cutoff). Using these cutoffs in the test set, the accuracy and NPV were 87% and 100% (AR vs. TX) and 66.7% and 87.8% (AR vs. ADNR). Blood samples collected serially from LTR demonstrated incremental elevations in dd-cfDNA prior to the onset of graft dysfunction (AR > ADNR), but not in TX. Dd-cfDNA also decreased following treatment of rejection. In conclusion, the serial elevation of dd-cfDNA identifies pre-clinical graft injury in the context of normal liver function tests and is greatest in rejection. This biomarker may help detect early signs of graft injury and rejection to inform LTR management strategies.
Collapse
Affiliation(s)
- Josh Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Manoj Kandpal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kexin Guo
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Rohita Sinha
- Eurofins Viracor Clinical Diagnostics, Lee's Summit, Missouri
| | | |
Collapse
|
7
|
Harrington CR, Yang GY, Levitsky J. Advances in Rejection Management: Prevention and Treatment. Clin Liver Dis 2021; 25:53-72. [PMID: 33978583 DOI: 10.1016/j.cld.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extended survival of liver transplant recipients has brought rejection management to the forefront of liver transplant research. This article discusses T-cell-mediated rejection, antibody-mediated rejection, and chronic rejection. We focus on the prevention and then discuss treatment options. Future directions of rejection management include biomarkers of rejection, which may allow for monitoring of patients who are considered high risk for rejection and detection of rejection before there is any clinical evidence to improve graft and patient survival. With improved graft life and survival of liver transplant recipients, the new frontier of rejection management focuses on immunosuppression minimization, withdrawal, and personalization.
Collapse
Affiliation(s)
- Claire R Harrington
- Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron St. Chicago, IL 60611, USA
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 1400, Chicago, IL 60611, USA; Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 1900, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Goldschmidt I, Karch A, Mikolajczyk R, Mutschler F, Junge N, Pfister ED, Möhring T, d'Antiga L, McKiernan P, Kelly D, Debray D, McLin V, Pawlowska J, Hierro L, Daemen K, Keil J, Falk C, Baumann U. Immune monitoring after pediatric liver transplantation - the prospective ChilSFree cohort study. BMC Gastroenterol 2018; 18:63. [PMID: 29769027 PMCID: PMC5956961 DOI: 10.1186/s12876-018-0795-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Although trough levels of immunosuppressive drugs are largely used to monitor immunosuppressive therapy after solid organ transplantation, there is still no established tool that allows for a validated assessment of functional degree of immunosuppression or the identification of clinically relevant over- or under-immunosuppression, depending on graft homeostasis. Reliable non-invasive markers to predict biopsy proven acute rejection (BPAR) do not exist. Literature data suggest that longitudinal measurements of immune markers might be predictive of BPAR, but data in children are scarce. We therefore propose an observational prospective cohort study focusing on immune monitoring in children after liver transplantation. We aim to describe immune function in a cohort of children before and during the first year after liver transplantation and plan to investigate how the immune function profile is associated with clinical and laboratory findings. Methods In an international multicenter prospective approach, children with end-stage liver disease who undergo liver transplantation are enrolled to the study and receive extensive immune monitoring before and at 1, 2, 3, 4 weeks and 3, 6, 12 months after transplantation, and whenever a clinically indicated liver biopsy is scheduled. Blood samples are analyzed for immune cell numbers and circulating levels of cytokines, chemokines and factors of angiogenesis reflecting immune cell activation. Statistical analysis will focus on the identification of trajectorial patterns of immune reactivity predictive for systemic non-inflammatory states, infectious complications or BPAR using joint modelling approaches. Discussion The ChilSFree study will help to understand the immune response after pLTx in different states of infection or rejection. It may provide insight into response mechanisms eventually facilitating immune tolerance towards the graft. Our analysis may yield an applicable immune panel for non-invasive early detection of acute cellular rejection, with the prospect of individually tailoring immunosuppressive therapy. The international collaborative set-up of this study allows for an appropriate sample size which is otherwise difficult to achieve in the field of pediatric liver transplantation.
Collapse
Affiliation(s)
- Imeke Goldschmidt
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - André Karch
- Epidemiological and Statistical Methods Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38127, Braunschweig, Germany.
| | - Rafael Mikolajczyk
- Epidemiological and Statistical Methods Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38127, Braunschweig, Germany.,Institute for Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University Halle-Wittenberg, 06097, Halle (Saale), Germany
| | - Frauke Mutschler
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Norman Junge
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Eva Doreen Pfister
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tamara Möhring
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Epidemiological and Statistical Methods Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38127, Braunschweig, Germany
| | - Lorenzo d'Antiga
- Paediatric Liver, GI and Transplantation, Ospedali Riuniti di Bergamo, Largo Barozzi 1, 24128, Bergamo, Italy
| | - Patrick McKiernan
- Liver Unit, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.,Paediatric Hepatology Program, Children's Hospital of Pittsburgh, One Children's Hospital Way, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Deirdre Kelly
- Liver Unit, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Dominique Debray
- Pédiatre Hépatologue, Service d'Hépatologie-Gastroentérologie-Nutrition, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015, Paris, France
| | - Valérie McLin
- Hopitaux Universitaires de Geneve, Hopital des Enfants pt Pédiatrie, Serv. Spécialités Pédiatriques, Rue Gabrielle-Perret-Gentil 4, 1211, Genève 4, Switzerland
| | - Joanna Pawlowska
- Centrum Zdrowia Dziecka, Al. Dzieci Polskich 20, 04-730, Warszawa, Poland
| | - Loreto Hierro
- Servicio de Hepatologia y Transplante, Hospital Infantil Universitario La Paz Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Kerstin Daemen
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Car-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Car-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christine Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Car-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ulrich Baumann
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Liver Unit, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK
| |
Collapse
|
9
|
Levitsky J, Miller J, Huang X, Gallon L, Leventhal JR, Mathew JM. Immunoregulatory Effects of Everolimus on In Vitro Alloimmune Responses. PLoS One 2016; 11:e0156535. [PMID: 27275747 PMCID: PMC4898829 DOI: 10.1371/journal.pone.0156535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 01/14/2023] Open
Abstract
Everolimus (EVL) is a novel mTOR-inhibitor similar to sirolimus (SRL) that is used in organ transplant recipients, often in combination with tacrolimus (TAC) or mycophenolate (MPA). The current study aims to determine its effects on regulatory T cells. Increasing concentrations of EVL, MPA and TAC alone or in combination were added to MLRs of healthy volunteers. Lymphoproliferation by 3H-TdR incorporation and the percentage of newly generated CD4+CD127-CD25+FOXP3+ (total Treg) and CD4+CD127-CD25HighFOXP3+ (natural Treg) in CFSE labeled responder cells were assessed by flow cytometry. In comparison to medium controls, EVL and other agents dose-dependently inhibited 3H-TdR incorporation in HLA-2DR-matched and HLA-mismatched MLRs (n = 3-10). However, EVL significantly amplified newly generated total and natural Tregs in CFSE labeled responder cells (p<0.05) at all concentrations, while MPA and SRL did this only at sub-therapeutic concentrations and inhibited at therapeutic levels. In contrast, TAC inhibited newly generated Tregs at all concentrations. When tested in combination with TAC, EVL failed to reverse TAC inhibition of Treg generation. Combinations of EVL and low concentrations of MPA inhibited proliferation and amplified Treg generation in an additive manner when compared to medium controls or each drug tested alone (p<0.05). The relative tolerogenic effect from high to low was EVL > SRL> MPA > TAC. If the results from these in vitro studies are extrapolated to clinical transplantation, it would suggest EVL plus low concentrations of MPA may be the most tolerogenic combination.
Collapse
Affiliation(s)
- Josh Levitsky
- Division of Gastroenterology & Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joshua Miller
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Xuemei Huang
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Division of Nephrology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joseph R. Leventhal
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - James M. Mathew
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Many of the causes of short and late morbidity following liver transplantation are associated with immunosuppression or immunosuppressive medications. Current care often involves close monitoring of liver biochemistry as well as therapeutic drug levels. However, the postoperative course following liver transplantation can often be associated with significant complications including infection and rejection, suggesting an inadequacy in current immune function monitoring. Many assays have been tested in the research setting to identify possible biomarkers that may be used to predict clinical events such as acute cellular rejection, and therefore allow modification of a patient’s immunosuppressive regimen prior to a clinical event. However, these generally require significant laboratory processing and have had difficulty becoming established in common clinical use outside the research setting. One assay, Cylex ImmuKnow has been food and drug administration approved but has had variable results. In this review we discuss the assays that have been used to assess monitoring of immune function after liver transplantation and consider possible future directions.
Collapse
|
11
|
Martínez-Flores JA, Serrano M, Morales P, Paz-Artal E, Morales JM, Serrano A. Comparison of several functional methods to evaluate the immune response on stable kidney transplant patients. J Immunol Methods 2013; 403:62-5. [PMID: 24291342 DOI: 10.1016/j.jim.2013.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/29/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED The introduction of new immunosuppressive drugs in the last two decades has been associated with a significant decline in the prevalence of acute rejection and a huge improvement of graft survival. Monitoring blood levels of immunosuppressive drugs is the most common way to control drug doses in renal transplant patients. This approach is useful and widely used but doesn't give accurate information about the immune status of the patient. For this goal, there are many "in house" protocols which give more information, but cannot be standardized, limiting their applicability to compare results between different laboratories. In this study we compare three classical functional methods to evaluate the immune response: Mixed lymphocyte reaction (MLR), phytohemagglutinin stimulated peripheral blood lymphocytes (PBLs), and anti-CD3 monoclonal antibodies (mAbs) against PBL with the only FDA-labeled assay to measure the patient immune status: Cylex ImmuKnow® that measures the intracelullar ATP in CD4+ lymphocytes. We used n=111 stable renal transplant patients, all the patients with more than one year functioning grafts. We referred the results to a control population of healthy blood donors (n=125). RESULTS Measurement of intracellular ATP in CD4+ lymphocytes is able to differentiate immunosuppressed populations in renal transplant patients from health controls (242.30±21.62 vs. 386.43±25.12, p 0.0001). By contrary, there were no differences between controls and renal recipients when functional response was measured by MLR, PHA and anti-CD3 mAbs (2.48±0.45 vs. 2.37±0.41; 2.84±0.76 vs. 2.37±0.32; 2.32±0.34 vs. 1.89±0.38 respectively). In summary, our results show that the measurement of ATP in CD4+ lymphocytes gives more accurate information in comparison to the classical methods.
Collapse
Affiliation(s)
- José A Martínez-Flores
- Department of Immunology, Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Manuel Serrano
- Department of Nephrology, Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pablo Morales
- Department of Immunology, Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain; Section of Immunology, Universidad San Pablo-CEU, Madrid, Spain
| | - José M Morales
- Department of Nephrology, Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Antonio Serrano
- Department of Immunology, Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain; Section of Immunology, Universidad San Pablo-CEU, Madrid, Spain.
| |
Collapse
|
12
|
Abstract
In this article the medications that have been shown to increase rates of drug-induced liver injury in patients with cirrhosis and the important drug-drug interactions in recipients of liver transplantation are reviewed. In general, the risk of drug-induced liver injury in patients with cirrhosis does not seem to be higher when compared with the noncirrhotic population. There are, however, 2 classes of agents that have been implicated-medications used to treat tuberculosis and medications used to treat human immunodeficiency virus infection. However, with careful monitoring, even significant interactions can be effectively managed.
Collapse
|
13
|
Choudhary NS, Saigal S, Shukla R, Kotecha H, Saraf N, Soin AS. Current status of immunosuppression in liver transplantation. J Clin Exp Hepatol 2013; 3:150-8. [PMID: 25755489 PMCID: PMC3940114 DOI: 10.1016/j.jceh.2013.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/29/2013] [Indexed: 12/12/2022] Open
Abstract
With advancements in immunosuppressive strategies and availability of better immunosuppressive agents, survival rate following liver transplantation has improved significantly in the recent times. Besides improvements in surgical techniques, the most important factor that has contributed to this better outcome is the progress made in the field of immunosuppression. Over the last several years, the trend has changed to tailored immunosuppression with the aim of achieving optimal graft function while avoiding its undesirable side effects. Induction agents are no longer used routinely and the aim is to provide minimal immunosuppression in the maintenance phase. The present review discusses the various types of immunosuppressive agents, their mechanism of action, clinical utility, advantages and disadvantages, and their side effects in short and long-term. It also discusses about tailoring immunosuppression in presence of various situations such as renal dysfunction, metabolic syndrome, hepatitis C recurrence, cytomegalovirus infections and so on. The issue of chronic kidney disease and the available renal sparing immunosuppressive strategies has been particularly stressed upon. Finally, it discusses about the practical aspects of various immunosuppression regimens including drug monitoring.
Collapse
Key Words
- ACR, acute cellular rejection
- ATP, adenosine triphosphate
- CKD, chronic kidney disease
- CNI, Calcineurin inhibitor
- FKBP12, FK506 binding protein
- HCV, hepatitis C virus
- HLA, human leukocyte antigen
- IL-2, interleukin-2
- MAP, mitogen activated protein
- MPA, mycophenolic acid
- MS, metabolic syndrome
- NF-kB, nuclear factor kappa B
- NFAT, nuclear factor of activated T cells
- PTLD, post-transplant lymphoproliferative disease
- immunosuppression
- liver transplantation
- mTORC1, mammalian target of rapamycin complex 1
- metabolic syndrome
Collapse
Affiliation(s)
- Narendra S. Choudhary
- Medanta Institute of Liver Transplantation and Regenerative Medicine and Institute of Digestive and Hepatobiliary Sciences, Sector 38, Gurgaon, India
| | - Sanjiv Saigal
- Medanta Institute of Liver Transplantation and Regenerative Medicine and Institute of Digestive and Hepatobiliary Sciences, Sector 38, Gurgaon, India
| | - Rajat Shukla
- Department of Gastroenterology, Army Hospital (R & R Hospital), Delhi, India
| | - Hardik Kotecha
- Medanta Institute of Liver Transplantation and Regenerative Medicine and Institute of Digestive and Hepatobiliary Sciences, Sector 38, Gurgaon, India
| | - Neeraj Saraf
- Medanta Institute of Liver Transplantation and Regenerative Medicine and Institute of Digestive and Hepatobiliary Sciences, Sector 38, Gurgaon, India
| | - Arvinder S. Soin
- Medanta Institute of Liver Transplantation and Regenerative Medicine and Institute of Digestive and Hepatobiliary Sciences, Sector 38, Gurgaon, India
| |
Collapse
|
14
|
Zarrinpar A, Busuttil RW. Immunomodulating options for liver transplant patients. Expert Rev Clin Immunol 2013; 8:565-78; quiz 578. [PMID: 22992151 DOI: 10.1586/eci.12.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Much has changed since the early years of liver transplantation. Improvements in post-transplant survival are largely due to more selective and less toxic immunosuppression regimens and advances in operative and perioperative care. This has allowed liver transplantation to become an extremely successful treatment option for patients with endstage liver disease. Beginning with cyclosporine, a cyclic endecapeptide of fungal origin and the first of the calcineurin inhibitors to find widespread use, immunosuppressive regimens have evolved to include additional calcineurin inhibitors, steroids, mTOR inhibitors, antimetabolites and antibodies, mostly targeting T-cell activation. This review will present currently available immunosuppressive agents used in the perioperative period of liver transplantation, as well as maintenance treatments, tailoring therapeutic strategies for specific populations, and advances in immune monitoring and tolerance.
Collapse
Affiliation(s)
- Ali Zarrinpar
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
15
|
Current world literature. Curr Opin Organ Transplant 2012; 17:688-99. [PMID: 23147911 DOI: 10.1097/mot.0b013e32835af316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|