1
|
Lentz JC, Cavanagh R, Moloney C, Falcone Pin B, Kortsen K, Fowler HR, Jacob PL, Krumins E, Clark C, Machado F, Breitkreuz N, Cale B, Goddard AR, Hirst JD, Taresco V, Howdle SM. N-Hydroxyethyl acrylamide as a functional eROP initiator for the preparation of nanoparticles under "greener" reaction conditions. Polym Chem 2022; 13:6032-6045. [PMID: 36353599 PMCID: PMC9623607 DOI: 10.1039/d2py00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
N-Hydroxyethyl acrylamide was used as a functional initiator for the enzymatic ring-opening polymerisation of ε-caprolactone and δ-valerolactone. N-Hydroxyethyl acrylamide was found not to undergo self-reaction in the presence of Lipase B from Candida antarctica under the reaction conditions employed. By contrast, this is a major problem for 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate which both show significant transesterification issues leading to unwanted branching and cross-linking. Surprisingly, N-hydroxyethyl acrylamide did not react fully during enzymatic ring-opening polymerisation. Computational docking studies helped us understand that the initiated polymer chains have a higher affinity for the enzyme active site than the initiator alone, leading to polymer propagation proceeding at a faster rate than polymer initiation leading to incomplete initiator consumption. Hydroxyl end group fidelity was confirmed by organocatalytic chain extension with lactide. N-Hydroxyethyl acrylamide initiated polycaprolactones were free-radical copolymerised with PEGMA to produce a small set of amphiphilic copolymers. The amphiphilic polymers were shown to self-assemble into nanoparticles, and to display low cytotoxicity in 2D in vitro experiments. To increase the green credentials of the synthetic strategies, all reactions were carried out in 2-methyl tetrahydrofuran, a solvent derived from renewable resources and an alternative for the more traditionally used fossil-based solvents tetrahydrofuran, dichloromethane, and toluene.
Collapse
Affiliation(s)
- Joachim C Lentz
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Robert Cavanagh
- School of Pharmacy, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Cara Moloney
- School of Pharmacy, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Bruno Falcone Pin
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Kristoffer Kortsen
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Harriet R Fowler
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Philippa L Jacob
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Eduards Krumins
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Charlotte Clark
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Fabricio Machado
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
- Institute of Chemistry, University of Brasília Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Nicholas Breitkreuz
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Ben Cale
- Croda Europe Limited Cowick Hall Snaith DN14 9AA Goole UK
| | - Amy R Goddard
- Croda Europe Limited Cowick Hall Snaith DN14 9AA Goole UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| |
Collapse
|
2
|
On-line polymerisation monitoring in scCO2: a reliable and inexpensive sampling method in high pressure applications. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Englezou G, Kortsen K, Pacheco AAC, Cavanagh R, Lentz JC, Krumins E, Sanders‐Velez C, Howdle SM, Nedoma AJ, Taresco V. 2‐Methyltetrahydrofuran (
2‐MeTHF
) as a versatile green solvent for the synthesis of amphiphilic copolymers via
ROP
,
FRP
, and
RAFT
tandem polymerizations. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Georgia Englezou
- Department of Chemical and Biological Engineering The University of Sheffield Sheffield UK
| | | | | | | | | | | | | | | | - Alisyn J. Nedoma
- Department of Chemical and Biological Engineering The University of Sheffield Sheffield UK
| | | |
Collapse
|
4
|
Kaya NU, Saloglu D, Guvenilir Y. Photopolymerization of enzymatically synthesized methacrylated poly(caprolactone) with poly(ethylene glycol) macromonomer. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1594891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nazif Ugur Kaya
- Polymer Science & Technology Department, Graduate School of Science Engineering & Technology, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Didem Saloglu
- Chemical and Process Engineering Department, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Yuksel Guvenilir
- Chemical Engineering Department, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
5
|
Wilson JA, Ates Z, Pflughaupt RL, Dove AP, Heise A. Polymers from macrolactones: From pheromones to functional materials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Ruiz-Cantu LA, Pearce AK, Burroughs L, Bennett TM, Vasey CE, Wildman R, Irvine DJ, Alexander C, Taresco V. Synthesis of Methacrylate-Terminated Block Copolymers with Reduced Transesterification by Controlled Ring-Opening Polymerization. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Laura A. Ruiz-Cantu
- Faculty of Engineering; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Amanda K. Pearce
- School of Pharmacy; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Laurence Burroughs
- School of Pharmacy; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Thomas M. Bennett
- School of Chemistry; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Catherine E. Vasey
- School of Pharmacy; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Ricky Wildman
- Faculty of Engineering; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Derek J. Irvine
- Faculty of Engineering; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Cameron Alexander
- School of Pharmacy; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Vincenzo Taresco
- School of Pharmacy; University of Nottingham; University Park; Nottingham NG7 2RD UK
| |
Collapse
|
7
|
Sponchioni M, Morosi L, Lupi M, Capasso Palmiero U. Poly(HPMA)-based copolymers with biodegradable side chains able to self assemble into nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra11179g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocompatible PCL-based nanoparticles able to degrade into completely water soluble poly(HPMA) chains are produced via the inverse macromonomer method.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
- Italy
| | - Lavinia Morosi
- Department of Oncology
- IRCCS
- Istituto di Ricerche Farmacologiche Mario Negri
- 20156 Milano
- Italy
| | - Monica Lupi
- Department of Oncology
- IRCCS
- Istituto di Ricerche Farmacologiche Mario Negri
- 20156 Milano
- Italy
| | - Umberto Capasso Palmiero
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
- Italy
| |
Collapse
|
8
|
Pflughaupt RL, Hopkins SA, Wright PM, Dove AP. Synthesis of poly(ω-pentadecalactone)-b-poly(acrylate) diblock copolymers via a combination of enzymatic ring-opening and RAFT polymerization techniques. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Robin L. Pflughaupt
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| | | | - Peter M. Wright
- Infineum UK Ltd; Milton Hill Abingdon OX13 6BB United Kingdom
| | - Andrew P. Dove
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| |
Collapse
|
9
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
10
|
End-Group Evaluation of HEMA Initiated Poly(ε-caprolactone) Macromonomers via Enzymatic Ring-Opening Polymerization. INT J POLYM SCI 2015. [DOI: 10.1155/2015/458756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) macromonomers comprising acrylate end-functionality were synthesized via enzymatic ring-opening polymerization (eROP) by utilizing commercially availableCandida antarcticaLipase B (CALB), Novozyme-435. 2-Hydroxyethyl methacrylate (HEMA) was purposed to be the nucleophilic initiator in eROP. The side reactions generated due to the cleavage of ester bonds in HEMA and the growing polymer chains were investigated through altering polymerization period, initiator concentration, temperature, and enzyme concentration.1H NMR evaluations showed that minimum quantities of side reactions were in lower temperatures, initiator concentration, enzyme concentration, and lower monomer conversions. Gel permeation chromatography (GPC) results revealed that lower polydispersity along with number-average molecular weight of end-functionalized PCL macromonomers was obtained depending on higher initiator/monomer ratios, lower temperature (60°C), enzyme concentration (100 mg), and/or polymerization time (2 h). Furthermore, 0.1 HEMA/ε-caprolactone (CL) ratio had higher molecular weight than 0.5 HEMA/CL ratio, while keeping a close value of methacrylate transfer, total methacrylate end-groups, and lower polyester transfer.
Collapse
|
11
|
Lipases in polymer chemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:69-95. [PMID: 20859733 DOI: 10.1007/10_2010_90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipases are highly active in the polymerization of a range of monomers. Both ring-opening polymerization of cyclic monomers such as lactones and carbonates as well as polycondensation reactions have been investigated in great detail. Moreover, in combination with other (chemical) polymerization techniques, lipase-catalyzed polymerization has been employed to synthesize a variety of polymer materials. Major advantages of enzymatic catalysts are the often-observed excellent regio-, chemo- and enantioselectivity that allows for the direct preparation of functional materials. In particular, the application of techniques such as Dynamic Kinetic Resolution (DKR) in the lipase-catalyzed polymerization of racemic monomers is a new development in enzymatic polymerization. This paper reviews selected examples of the application of lipases in polymer chemistry covering the synthesis of linear polymers, chemoenzymatic polymerization and applications of enantioselective techniques for the synthesis and modification of polymers.
Collapse
|
12
|
Johnson PM, Kundu S, Beers KL. Modeling enzymatic kinetic pathways for ring-opening lactone polymerization. Biomacromolecules 2011; 12:3337-43. [PMID: 21834510 DOI: 10.1021/bm2009312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unified kinetic pathway for the enzyme-catalyzed polymerization and degradation of poly(ε-caprolactone) was developed. This model tracks the complete distribution of individual chain lengths, both enzyme-bound and in solution, and successfully predicts monomer conversion and the molecular mass distribution as a function of reaction time. As compared to reported experimental data for polymerization reactions, modeled kinetics generate similar trends, with ring-opening rates and water concentration as key factors to controlling molecular mass distributions. Water is critically important by dictating the number of linear chains in solution, shifting the molecular mass distribution at which propagation and degradation equilibrate. For the enzymatic degradation of poly(ε-caprolactone), the final reaction product is also consistent with the equilibrium dictated by the propagation and degradation rates. When the modeling framework described here is used, further experiments can be designed to isolate key reaction steps and provide methods for improving the efficiency of enzyme polymerization.
Collapse
Affiliation(s)
- Peter M Johnson
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | | |
Collapse
|
13
|
Hydrolases Part I: Enzyme Mechanism, Selectivity and Control in the Synthesis of Well-Defined Polymers. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
14
|
Hydrolases in Polymer Chemistry: Chemoenzymatic Approaches to Polymeric Materials. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_74] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
15
|
Kobayashi S, Makino A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 2010; 109:5288-353. [PMID: 19824647 DOI: 10.1021/cr900165z] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Bio-based Materials, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | |
Collapse
|