1
|
Krishnan J, Poomalai P, Ravichandran A, Reddy A, Sureshkumar R. A Concise Review on Effect of PEGylation on the Properties of Lipid-Based Nanoparticles. Assay Drug Dev Technol 2024; 22:246-264. [PMID: 38828531 DOI: 10.1089/adt.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.
Collapse
Affiliation(s)
- Janesha Krishnan
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Praveena Poomalai
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Ashwin Ravichandran
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Aishwarya Reddy
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, Center for Nano Engineering Science & Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, India
| |
Collapse
|
2
|
Kronek J, Minarčíková A, Kroneková Z, Majerčíková M, Strasser P, Teasdale I. Poly(2-isopropenyl-2-oxazoline) as a Versatile Functional Polymer for Biomedical Applications. Polymers (Basel) 2024; 16:1708. [PMID: 38932057 PMCID: PMC11207257 DOI: 10.3390/polym16121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Functional polymers play an important role in various biomedical applications. From many choices, poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a promising reactive polymer with great potential in various biomedical applications. PIPOx, with pendant reactive 2-oxazoline groups, can be readily prepared in a controllable manner via several controlled/living polymerization methods, such as living anionic polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) or rare earth metal-mediated group transfer polymerization. The reactivity of pendant 2-oxazoline allows selective reactions with thiol and carboxylic group-containing compounds without the presence of any catalyst. Moreover, PIPOx has been demonstrated to be a non-cytotoxic polymer with immunomodulative properties. Post-polymerization functionalization of PIPOx has been used for the preparation of thermosensitive or cationic polymers, drug conjugates, hydrogels, brush-like materials, and polymer coatings available for drug and gene delivery, tissue engineering, blood-like materials, antimicrobial materials, and many others. This mini-review covers new achievements in PIPOx synthesis, reactivity, and use in biomedical applications.
Collapse
Affiliation(s)
- Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Alžbeta Minarčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| |
Collapse
|
3
|
Drain BA, Becer RC. Hydrolysis of hydrophobic poly(2-oxazoline)s and their subsequent modification via aza-Michael addition. Des Monomers Polym 2023; 26:214-222. [PMID: 37840642 PMCID: PMC10569348 DOI: 10.1080/15685551.2023.2267232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Partially hydrolysed poly(2-oxazoline)s possess unique properties. However, much of the focus in this area has been on water soluble poly(2-oxazoline)s. Where hydrophobic poly(2-oxazoline)s have been used, this is often for selective hydrolysis. However, hydrolysis of very hydrophobic polymers could lead to interesting solution behaviour. Herein, we describe universal conditions for the hydrolysis of poly(2-alkyl-2-oxazoline)s suitable for both hydrophobic and hydrophilic 2-oxazolines. We show that the system utilised gives comparable rates to that of water alone for poly(2-ethyl-2-oxazoline). In addition, poly(2-fatty acid-2-oxazoline) was hydrolysed using the developed system and was found to proceed in a controlled manner allowing the targeting of specific degrees of hydrolysis, albeit much slower than for poly(2-ethyl-2-oxazoline). Finally, we demonstrate the partial functionalisation of poly(2-oxazoline)-poly(ethylene imine) co-polymers via aza-Michael addition.
Collapse
Affiliation(s)
- Ben A. Drain
- Department of Chemistry, University of Warwick, Coventry, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Remzi C. Becer
- Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
4
|
Yang L, Wang F, Ren P, Zhang T, Zhang Q. Poly(2-oxazoline)s: synthesis and biomedical applications. Macromol Res 2023. [DOI: 10.1007/s13233-023-00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Delecourt G, Plet L, Guen YL, Tezgel O, Tresset G, Midoux P, Montier T, Bennevault V, Guégan P. Synthesis of Double Hydrophilic Block Copolymers Poly(2-isopropyl-2-oxazoline-b-ethylenimine) and their DNA Transfection Efficiency. Macromol Biosci 2023; 23:e2200296. [PMID: 36189853 DOI: 10.1002/mabi.202200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Indexed: 01/19/2023]
Abstract
Gene delivery is now a part of the therapeutic arsenal for vaccination and treatments of inherited or acquired diseases. Polymers represent an opportunity to develop new synthetic vectors for gene transfer, with a prerequisite of improved delivery and reduced toxicity compared to existing polymers. Here, the synthesis in a two-step's procedure of linear poly(ethylenimine-b-2-isopropyl-2-oxazoline) block copolymers with the linear polyethylenimine (lPEI) block of various molar masses is reported; the molar mass of the poly(2-isopropyl-2-oxazoline) (PiPrOx) block has been set to 7 kg mol-1 . Plasmid DNA condensation is successfully achieved, and in vitro transfection efficiency of the copolymers is at least comparable to that obtained with the lPEI of same molar mass. lPEI-b-PiPrOx block copolymers are however less cytotoxic than their linear counterparts. PiPrOx can be a good alternative to PEG which is often used in drug delivery systems. The grafting of histidine moieties on the lPEI block of lPEI-b-PiPrOx does not provide any real improvement of the transfection efficiency. A weak DNA condensation is observed, due to increased steric hindrance along the lPEI backbone. The low cytotoxicity of lPEI-b-PiPrOx makes this family a good candidate for future gene delivery developments.
Collapse
Affiliation(s)
- Gwendoline Delecourt
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France
| | - Laetitia Plet
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France
| | - Yann Le Guen
- INSERM, EFS, UMR 1078, GGB - GTCA team, Univ Brest, Brest, 29200, France
| | - Ozgul Tezgel
- CNRS, Laboratoire de Physique des Solides, University of Paris-Saclay, Orsay, 91405, France
| | - Guillaume Tresset
- CNRS, Laboratoire de Physique des Solides, University of Paris-Saclay, Orsay, 91405, France
| | - Patrick Midoux
- CNRS UPR4301, Centre de Biophysique Moléculaire, Orléans, Cedex 2, 45071, France
| | - Tristan Montier
- INSERM, EFS, UMR 1078, GGB - GTCA team, Univ Brest, Brest, 29200, France.,CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", Brest, 29200, France
| | - Véronique Bennevault
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France.,University of Evry, Evry, Cedex, 91025, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France
| |
Collapse
|
6
|
Soradech S, Kengkwasingh P, Williams AC, Khutoryanskiy VV. Synthesis and Evaluation of Poly(3-hydroxypropyl Ethylene-imine) and Its Blends with Chitosan Forming Novel Elastic Films for Delivery of Haloperidol. Pharmaceutics 2022; 14:pharmaceutics14122671. [PMID: 36559165 PMCID: PMC9785711 DOI: 10.3390/pharmaceutics14122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to develop novel elastic films based on chitosan and poly(3-hydroxypropyl ethyleneimine) or P3HPEI for the rapid delivery of haloperidol. P3HPEI was synthesized using a nucleophilic substitution reaction of linear polyethyleneimine (L-PEI) with 3-bromo-1-propanol. 1H-NMR and FTIR spectroscopies confirmed the successful conversion of L-PEI to P3HPEI, and the physicochemical properties and cytotoxicity of P3HPEI were investigated. P3HPEI had good solubility in water and was significantly less toxic than the parent L-PEI. It had a low glass transition temperature (Tg = -38.6 °C). Consequently, this new polymer was blended with chitosan to improve mechanical properties, and these materials were used for the rapid delivery of haloperidol. Films were prepared by casting from aqueous solutions and then evaporating the solvent. The miscibility of polymers, mechanical properties of blend films, and drug release profiles from these formulations were investigated. The blends of chitosan and P3HPEI were miscible in the solid state and the inclusion of P3HPEI improved the mechanical properties of the films, producing more elastic materials. A 35:65 (%w/w) blend of chitosan-P3HPEI provided the optimum glass transition temperature for transmucosal drug delivery and so was selected for further investigation with haloperidol, which was chosen as a model hydrophobic drug. Microscopic and X-ray diffractogram (XRD) data indicated that the solubility of the drug in the films was ~1.5%. The inclusion of the hydrophilic polymer P3HPEI allowed rapid drug release within ~30 min, after which films disintegrated, demonstrating that the formulations are suitable for application to mucosal surfaces, such as in buccal drug delivery. Higher release with increasing drug loading allows flexible dosing. Blending P3HPEI with chitosan thus allows the selection of desirable physicochemical and mechanical properties of the films for delivery of haloperidol as a poorly water-soluble drug.
Collapse
Affiliation(s)
- Sitthiphong Soradech
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
- Expert Centre of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Pattarawadee Kengkwasingh
- Expert Centre of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Adrian C. Williams
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
- Correspondence: ; Tel.: +44-(0)118-378-6119
| |
Collapse
|
7
|
Tunable Drug Release from Fused Deposition Modelling (FDM) 3D-Printed Tablets Fabricated Using a Novel Extrudable Polymer. Pharmaceutics 2022; 14:pharmaceutics14102192. [PMID: 36297626 PMCID: PMC9611745 DOI: 10.3390/pharmaceutics14102192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional (3D) printing is proving to be a pivotal technology for developing personalized dosage forms with bench to bedside feasibility. Fused deposition modelling (FDM) 3D printing has emerged as the most used technique wherein molten drug-loaded polymer filaments are deposited layer-by-layer to fabricate a predefined shape and internal geometry. However, for precise FDM 3D printing, it is imperative for the filaments to have peculiar mechanical/physicochemical properties, which the majority of the FDA/GRAS approved polymers lack. In the current study, a novel water-soluble polymer, Poly(2-ethyl-tetra-oxazoline) [PETOx] has been investigated as an extrudable and printable polymer with two different types of drug molecule—dextromethorphan hydrobromide (DXM) and hydrochlorothiazide (HCTZ). Hot-stage microscopy experiments of drug:polymer (1:1 w/w) and filaments were carried out at 25−275 °C. HCTZ-loaded filament showed higher toughness of 17 ± 3.25 × 106 J/m3 compared with DXM and drug-free filament. Moisture sorption and flexural analysis was performed to understand the correlation of mechanical properties and storage humidity to printability. Varying the number of outer perimeters of each layer (shell number) was observed to affect the drug release pattern from the printlets. The DXM one-shell printlet showed >80%, whereas the DXM five-shell printlet showed >60% of the drug release within 60 min. PETOx could prove to be a high-performance and versatile 3D printable polymer.
Collapse
|
8
|
|
9
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Feng S, Bandari S, Repka MA. Investigation of poly(2-ethyl-2-oxazoline) as a novel extended release polymer for hot-melt extrusion paired with fused deposition modeling 3D printing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Sahin ZM, Kohlan TB, Atespare AE, Yildiz M, Unal S, Dizman B. Polyoxazoline‐modified
graphene oxides with improved water and epoxy resin dispersibility and stability towards composite applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zeynep Munteha Sahin
- Sabanci University Integrated Manufacturing Technologies Center of Excellence Sabanci University Istanbul Turkey
- Composite Technologies Center of Excellence, Istanbul Technology Development Zone Sabanci University‐Kordsa Istanbul Turkey
| | - Taha Behroozi Kohlan
- Sabanci University Integrated Manufacturing Technologies Center of Excellence Sabanci University Istanbul Turkey
- Composite Technologies Center of Excellence, Istanbul Technology Development Zone Sabanci University‐Kordsa Istanbul Turkey
- Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey
| | - Asu Ece Atespare
- Sabanci University Integrated Manufacturing Technologies Center of Excellence Sabanci University Istanbul Turkey
- Composite Technologies Center of Excellence, Istanbul Technology Development Zone Sabanci University‐Kordsa Istanbul Turkey
- Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey
| | - Mehmet Yildiz
- Sabanci University Integrated Manufacturing Technologies Center of Excellence Sabanci University Istanbul Turkey
- Composite Technologies Center of Excellence, Istanbul Technology Development Zone Sabanci University‐Kordsa Istanbul Turkey
- Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey
| | - Serkan Unal
- Sabanci University Integrated Manufacturing Technologies Center of Excellence Sabanci University Istanbul Turkey
- Composite Technologies Center of Excellence, Istanbul Technology Development Zone Sabanci University‐Kordsa Istanbul Turkey
- Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey
| | - Bekir Dizman
- Sabanci University Integrated Manufacturing Technologies Center of Excellence Sabanci University Istanbul Turkey
- Composite Technologies Center of Excellence, Istanbul Technology Development Zone Sabanci University‐Kordsa Istanbul Turkey
- Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey
| |
Collapse
|
12
|
Mazrad ZAI, Lai M, Davis TP, Nicolazzo JA, Thurecht KJ, Leiske MN, Kempe K. Protected amine-functional initiators for the synthesis of α-amine homo- and heterotelechelic poly(2-ethyl-2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d2py00649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Screening a series of protected amine cationic ring-opening polymerization initiators revealed the commercially available N-(3-bromopropyl)phthalimide as the most suitable to achieve defined polymers with high degree of amine functionalization.
Collapse
Affiliation(s)
- Zihnil A. I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - May Lai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Australia
| | - Meike N. Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
13
|
Morgan TE, Floyd TG, Marzullo BP, Wootton CA, Barrow MP, Bristow AWT, Perrier S, O'Connor PB. Stochasticity of poly(2-oxazoline) oligomer hydrolysis determined by tandem mass spectrometry. Polym Chem 2022; 13:4162-4169. [PMID: 35923808 PMCID: PMC9294869 DOI: 10.1039/d2py00437b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Understanding modification of synthetic polymer structures is necessary for their accurate synthesis and potential applications. In this contribution, a series of partially hydrolyzed poly(2-oxazoline) species were produced forming poly[(2-polyoxazoline)-co-(ethylenimine)] (P(EtOx-co-EI)) copolymers; EI being the hydrolyzed product of Ox. Bulk mass spectrometry (MS) measurements accurately measured the EI content. Tandem mass spectrometry analysis of the EI content in the copolymer samples determined the distribution of each monomer within the copolymer and corresponded to a theoretically modelled random distribution. The EI distribution across the polymers was shown to be effected by the choice of terminus, with a permanent hydrolysis event observed at an OH terminus. A neighbouring group effect wasn't observed at the polymer length analysed (approximately 25-mer species), suggesting that previously observed neighbouring group effects require a larger polymer chain. Although clearly useful for random polymer distribution this approach may be applied to many systems containing non-specific modifications to determine if they are directed or random locations across peptides, proteins, polymers, and nucleic acids. Tandem mass spectrometry can be used to better understand modification sites of synthetic polymer structures providing more complete chemical knowledge which is necessary for their accurate synthesis and potential applications.![]()
Collapse
Affiliation(s)
- Tomos E Morgan
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Thomas G Floyd
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Bryan P Marzullo
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Mark P Barrow
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Anthony W T Bristow
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca Charter Way Macclesfield SK102NA UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmaceutical Sciences, Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
14
|
Putra N, Tigrine A, Aksakal S, de la Rosa V, Taheri P, Fratila-Apachitei L, Mol J, Zhou J, Zadpoor A. Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112617. [DOI: 10.1016/j.msec.2021.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
|
15
|
Floyd TG, Häkkinen S, Hall SCL, Dalgliesh RM, Lehnen AC, Hartlieb M, Perrier S. Cationic Bottlebrush Copolymers from Partially Hydrolyzed Poly(oxazoline)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Thomas G. Floyd
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Satu Häkkinen
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Stephen C. L. Hall
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, U.K
| | - Robert M. Dalgliesh
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, U.K
| | - Anne-Catherine Lehnen
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam 14476, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam 14476, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
16
|
Chen Q, He Y, Zhao Y, Chen L. Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Dargaville TR, Harkin DG, Park JR, Cavalcanti A, Bolle ECL, Savi FM, Farrugia BL, Monnery BD, Bernhard Y, Van Guyse JFR, Podevyn A, Hoogenboom R. Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules 2021; 22:1590-1599. [PMID: 33764748 DOI: 10.1021/acs.biomac.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rapid photo-curing system based on poly(2-ethyl-2-oxazoline-co-2-allylamidopropyl-2-oxazoline) and its in vivo compatibility are presented. The base polymer was synthesized from the copolymerization of 2-ethyl-2-oxazoline (EtOx) and the methyl ester containing 2-methoxycarboxypropyl-2-oxazoline (C3MestOx) followed by amidation with allylamine to yield a highly water-soluble macromer. We showed that spherical hydrogels can be obtained by a simple water-in-oil gelation method using thiol-ene coupling and investigated the in vivo biocompatibility of these hydrogel spheres in a 28-day murine subdermal model. For comparison, hydrogel spheres prepared from poly(ethylene glycol) were also implanted. Both materials displayed mild, yet typical foreign body responses with little signs of fibrosis. This is the first report on the foreign body response of a poly(2-oxazoline) hydrogel, which paves the way for future investigations into how this highly tailorable class of materials can be used for implantable hydrogel devices.
Collapse
Affiliation(s)
- Tim R Dargaville
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Damien G Harkin
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Jong-Ryul Park
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Amanda Cavalcanti
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Eleonore C L Bolle
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Flavia Medeiros Savi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bryn D Monnery
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
18
|
Xu K, Zhang L, Gu Y, Yang H, Du B, Liu H, Li Y. Increased the TMZ concentration in brain by poly(2-ethyl-2-oxazoline) conjugated temozolomide prodrug micelles for glioblastoma treatment. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Göppert NE, Dirauf M, Weber C, Schubert US. Block copolymers comprising degradable poly(2-ethyl-2-oxazoline) analogues via copper-free click chemistry. Polym Chem 2021. [DOI: 10.1039/d1py00853f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present the synthesis development of amphiphilic, degradable poly(2-ethyl-2-oxazoline) (PEtOx) analogue block copolymers in a modular fashion utilizing the strain-promoted azide–alkyne cycloaddition (SPAAC).
Collapse
Affiliation(s)
- Natalie E. Göppert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
20
|
Gulyuz S, Ozkose UU, Parlak Khalily M, Kesici MS, Kocak P, Bolat ZB, Kara A, Ozturk N, Özçubukçu S, Bozkir A, Alpturk O, Telci D, Sahin F, Vural I, Yilmaz O. Poly(2-ethyl-2-oxazoline- co-ethyleneimine)- block-poly(ε-caprolactone) based micelles: synthesis, characterization, peptide conjugation and cytotoxic activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj01647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present self-assembled polymeric micelles as potential delivery systems for therapeutic agents with highly tunable properties.
Collapse
|
21
|
Halupczok S, Pfister M, Ringhand A, Fetsch C, Cubukova A, Appelt-Menzel A, Luxenhofer R. Poly(2-ethyl-2-oxazoline- co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicity. Polym Chem 2021. [DOI: 10.1039/d0py01258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers obtained via partial reduction of poly(2-ethy-2-oxazoline)s were studied on their cytocompatibility and their buffer capacity in acidic environment.
Collapse
Affiliation(s)
- Sebastian Halupczok
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Maria Pfister
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Annemarie Ringhand
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Corinna Fetsch
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Alevtina Cubukova
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
- University Hospital Würzburg
| | - Robert Luxenhofer
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| |
Collapse
|
22
|
Göppert NE, Kleinsteuber M, Weber C, Schubert US. Degradable Poly(2-oxazoline) Analogues from Partially Oxidized Poly(ethylene imine). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Natalie E. Göppert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maximilian Kleinsteuber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
23
|
Oleszko-Torbus N, Mendrek B, Kowalczuk A, Utrata-Wesołek A, Dworak A, Wałach W. Selective Partial Hydrolysis of 2-isopropyl-2-oxazoline Copolymers towards Decreasing the Ability to Crystallize. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3403. [PMID: 32752250 PMCID: PMC7435452 DOI: 10.3390/ma13153403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Poly(2-isopropyl-2-oxazoline) (PiPrOx) is readily prone to crystallization both in solid and from solutions. This feature is detrimental for certain applications. Here, we examine whether the presence of unsubstituted ethyleneimine (EI) units, a gradient distributed within a polymer chain composed of 2-isopropyl-2-oxazoline (iPrOx) and 2-methyl-2-oxazoline (MOx) units, decreases the ability to crystallize the copolymer and affects thermal properties compared to the homopolymer of iPrOx. We assumed that the separation of stiff iPrOx units by the more flexible EI will affect the spatial arrangements of the ordered chains, slightly plasticize and, as a result, decrease their ability to crystallize. The selective hydrolysis of gradient iPrOx and 2-methyl-2-oxazoline (MOx) copolymers, carried out under mild conditions, led to iPrOx/MOx/EI copolymers. To the best of our knowledge, the selective hydrolysis of these copolymers has never been carried out before. Their thermal properties and crystallization abilities, both in a solid state and from an aqueous solution, were analyzed. Based on the analysis of polymer charge and cytotoxicity studies, the potential use of the copolymers obtained was indicated in some biological systems.
Collapse
Affiliation(s)
- Natalia Oleszko-Torbus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (B.M.); (A.K.); (A.U.-W.); (A.D.); (W.W.)
| | | | | | | | | | | |
Collapse
|
24
|
Lu W, Xu X, Imbernon L, Zhu J, Hoogenboom R, Du Prez FE, Pan X. On-Demand Dissoluble Diselenide-Containing Hydrogel. Biomacromolecules 2020; 21:3308-3317. [PMID: 32658477 DOI: 10.1021/acs.biomac.0c00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
On-demand dissolution of hydrogels is being increasingly studied for their potential use in burn wound dressing applications. Herein, a dynamic diselenide-containing hydrogel is developed through a very simple one-pot and two-step process starting from the selenol functionalization of a partially hydrolyzed poly(2-ethyl-2-oxazoline) with γ-butyroselenolactone. The hydrogel spontaneously cross-links via an in situ oxidation of the selenol functionalities in air. The gelation process and the final viscoelastic properties of the gel are characterized by rheological experiments. The mechanical properties of those new diselenide-containing hydrogels are easily tuned by varying the concentration of γ-butyroselenolactone. The materials also show good skin adhesion and UV light responsiveness. A unique feature of the hydrogel is its capability to be fully and rapidly dissolved on-demand, via oxidation or reduction of the diselenide cross-links, making them particularly attractive for burn wound dressing applications.
Collapse
|
25
|
Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Haladjova E, Smolíček M, Ugrinova I, Momekova D, Shestakova P, Kroneková Z, Kronek J, Rangelov S. DNA delivery systems based on copolymers of poly (2‐methyl‐2‐oxazoline) and polyethyleneimine: Effect of polyoxazoline moieties on the endo‐lysosomal escape. J Appl Polym Sci 2020. [DOI: 10.1002/app.49400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Maroš Smolíček
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Mlynská dolina Bratislava Slovakia
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences Sofia Bulgaria
| | | | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Zuzana Kroneková
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | - Juraj Kronek
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | | |
Collapse
|
27
|
Simon L, Marcotte N, Devoisselle JM, Begu S, Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int J Pharm 2020; 585:119536. [PMID: 32531447 DOI: 10.1016/j.ijpharm.2020.119536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Facing the growing demand in nano drug delivery systems (nDDS), hybrid excipients based on natural molecules and well-defined synthetic polymers are intensively investigated. Lipopolyoxazolines (LipoPOx) composed of a polyoxazoline block (POx) and a lipid or lipid-like derivative are detailed in this review. The nature of lipids used, the route to synthesize LipoPOx and their advantages for the formulation of drugs are reported. The place of POx family in nanomedicine is discussed compared to PEG, considered as the gold standard of hydrophilic polymers. LipoPOx nanoformulations including liposomes, mixed micelles, lipid nanocapsules are provided alongside discussion of the nDDS for intravenous or topical administration.
Collapse
Affiliation(s)
- L Simon
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N Marcotte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - V Lapinte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
28
|
Wang X, Hadjichristidis N. Organocatalytic Ring-Opening Polymerization of N-Acylated-1,4-oxazepan-7-ones Toward Well-Defined Poly(ester amide)s: Biodegradable Alternatives to Poly(2-oxazoline)s. ACS Macro Lett 2020; 9:464-470. [PMID: 35648503 DOI: 10.1021/acsmacrolett.0c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a series of poly(ester amide)s (PEAs) synthesized by organocatalytic ring-opening polymerization (ROP) of N-acylated-1,4-oxazepan-7-one (OxP) monomers, produced from N-acylated-4-piperidones using the Baeyer-Villiger oxidation reaction. The ROP of OxPs, conducted in CH2Cl2 at room temperature with benzyl alcohol as initiator and TBD/TU (1,5,7-triazabicyclo[4.4.0]dec-5-ene/thiourea) as a binary organocatalytic system, revealed a controlled/living character. The thermodynamics of the ROP highly depends on the N-acylated substituent of monomers, with the following reactivity order: OxPPh > OxPMe > OxPPr > OxPBn. Based on NMR results, it seems that our system follows the hydrogen bonding bifunctional activation mechanism. All intermediates and final products were characterized by NMR, MALDI-TOF MS, SEC, and DSC techniques. All poly(N-acylated-1,4-oxazepan-7-one) (POxP) polymers are amorphous with different glass transition temperatures (Tg), depending on the N-acylated substituent (Tg: -2.90 to 43.75 °C). Among the synthesized polymers, only POxPMe was water-soluble and it degraded much faster than polycaprolactone in an aqueous phosphate buffer saline solution (pH = 7.4). Therefore, poly(N-acylated-1,4-oxazepan-7-one)s are potential biodegradable alternatives to poly(2-oxazoline)s.
Collapse
Affiliation(s)
- Xin Wang
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
29
|
Tian J, Zhou H, Jiang R, Chen J, Mao L, Liu M, Deng F, Liu L, Zhang X, Wei Y. Preparation and biological imaging of fluorescent hydroxyapatite nanoparticles with poly(2-ethyl-2-oxazoline) through surface-initiated cationic ring-opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110424. [PMID: 31923979 DOI: 10.1016/j.msec.2019.110424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
Fluorescent hydroxyapatite (HAp) nanoparticles have received significant attention in biomedical fields due to their outstanding advantages, such as low immunogenicity, excellent biocompatibility and biodegradability. However, fluorescent HAp nanoparticles with well controlled size and morphology are coated with hydrophobic molecules and their biomedical applications are largely restricted by their poor dispersibility in physiological solutions. Therefore, surface modification of these hydrophobic fluorescent HAp nanoparticles to render them water dispersibility is of utmost importance for biomedical applications. In this work, we reported for the first time for preparation of water-dispersible hydrophilic fluorescent Eu3+-doped HAp nanoparticles (named as HAp-PEOTx) through the cationic ring-opening polymerization using hydrophilic and biocompatible 2-ethyl-2-oxazoline (EOTx) as the monomer. The characterization techniques, such as nuclear magnetic resonance (NMR) spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have been used to characterize these samples. Results confirmed that we could successfully obtain the hydrophilic fluorescent HAp-PEOTx composites through the strategy described above. These fluorescent HAp-PEOTx composites display great water dispersibility, unique fluorescent properties and excellent biocompatibility, making them promising for in vitro bioimaging applications.
Collapse
Affiliation(s)
- Jianwen Tian
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Huajian Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liucheng Mao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liangji Liu
- Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang, Jiangxi 330006, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry, Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry, Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
30
|
|
31
|
Abstract
The poor pharmacokinetic parameters and low solubility of many anticancer therapeutics have warranted the use of drug-delivery systems such as liposomes. Overcoming some drawbacks of the conventional liposomes, targeted liposomal delivery by longer circulation time by addition of poly(ethylene glycol) to the liposomal surface and further adding specific ligands to achieve ligand selective retention and uptake has been introduced. PEGylated liposomes are the only second-generation liposomal formulations in clinical use and are now being challenged with the allergenic response they pose even in the treatment of naive patients. This article will review the challenges and hindrances in the use of long circulating liposomes and explore the opportunities to overcome this issue.
Collapse
|
32
|
Arraez FJ, Xu X, Van Steenberge PHM, Jerca VV, Hoogenboom R, D’hooge DR. Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Xiaowen Xu
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Valentin-Victor Jerca
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
- Centre of Organic Chemistry “Costin D. Nenitzescu” Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, B-9052 Ghent, Belgium
| |
Collapse
|
33
|
Li Y, Vergaelen M, Schoolaert E, Hoogenboom R, De Clerck K. Effect of crosslinking stage on photocrosslinking of benzophenone functionalized poly(2-ethyl-2-oxazoline) nanofibers obtained by aqueous electrospinning. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Chen Y, Yang C, Mao J, Li H, Ding J, Zhou W. Spermine modified polymeric micelles with pH-sensitive drug release for targeted and enhanced antitumor therapy. RSC Adv 2019; 9:11026-11037. [PMID: 35520220 PMCID: PMC9063029 DOI: 10.1039/c9ra00834a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022] Open
Abstract
Tumor targeting delivery of chemotherapeutic drugs by nanocarriers has been demonstrated to be a promising strategy for cancer therapy with improved therapeutic efficacy. In this work, we reported a novel type of active targeting micelle with pH-responsive drug release by using biodegradable poly(lactide)-poly(2-ethyl-2-oxazoline) di-block copolymers functionalized with spermine (SPM). SPM has been considered as a tumor binding ligand through its specific interaction with the polyamine transport system (PTS), a transmembrane protein overexpressed on various types of cancer cell, while its application in nano-drug delivery systems has rarely been explored. The micelles with spherical shape (∼110 nm) could load hydrophobic paclitaxel (PTX) with high capacity, and release the payload much faster at acidic pH (4.5–6.5) than at pH 7.4. This pH-responsive property assisted the rapid escape of drug from the endo/lysosome after internalization as demonstrated by confocal laser scanning microscopy images using coumarin-6 (Cou-6) as a fluorescent probe. With surface SPM modification, the micelles displayed much higher cellular uptake than SPM lacking micelles in various types of cancer cells, demonstrating tumor targeting ability. The uptake mechanism of SPM modified micelles was explored by flow cytometry, which suggested an energy-consuming sag vesicle-mediated endocytosis pathway. As expected, the micelles displayed significantly enhanced anti-cancer activity. This work demonstrates that SPM modified pH-sensitive micelles may be potential drug delivery vehicles for targeting and effective cancer therapy. Tumor targeting delivery of SPM functionalized micelles via PTS binding and their endocytosis and pH-triggered endo/lysosome drug release for anti-cancer therapy.![]()
Collapse
Affiliation(s)
- Yang Chen
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Cejun Yang
- Department of Radiology
- The Third Xiangya Hospital
- Central South University
- Changsha
- P. R. China
| | - Juan Mao
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Haigang Li
- School of Pharmaceutical Sciences
- Changsha Medical University
- Changsha
- China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| |
Collapse
|
35
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Bauer M, Tauhardt L, Lambermont-Thijs HM, Kempe K, Hoogenboom R, Schubert US, Fischer D. Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. Eur J Pharm Biopharm 2018; 133:112-121. [DOI: 10.1016/j.ejpb.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023]
|
37
|
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018; 178:204-280. [DOI: 10.1016/j.biomaterials.2018.05.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|
38
|
Kara A, Ozturk N, Esendagli G, Ozkose UU, Gulyuz S, Yilmaz O, Telci D, Bozkir A, Vural I. Development of novel self-assembled polymeric micelles from partially hydrolysed poly(2-ethyl-2-oxazoline)-co-PEI-b-PCL block copolymer as non-viral vectors for plasmid DNA in vitro transfection. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S264-S273. [DOI: 10.1080/21691401.2018.1491478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Asli Kara
- Department of Biology, Faculty of Art and Science, Hitit University, Corum, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University Institute of Science, Ankara, Turkey
| | - Naile Ozturk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Umut Ugur Ozkose
- Materials Institute, Marmara Research Center, TUBITAK, Gebze, Turkey
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
- Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Istanbul, Turkey
| | - Sevgi Gulyuz
- Materials Institute, Marmara Research Center, TUBITAK, Gebze, Turkey
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Ozgur Yilmaz
- Materials Institute, Marmara Research Center, TUBITAK, Gebze, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Asuman Bozkir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Imran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
39
|
Blakney AK, Yilmaz G, McKay PF, Becer CR, Shattock RJ. One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules 2018; 19:2870-2879. [PMID: 29698602 DOI: 10.1021/acs.biomac.8b00429] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - Gokhan Yilmaz
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Paul F McKay
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - C Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Robin J Shattock
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| |
Collapse
|
40
|
Mees MA, Hoogenboom R. Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. Polym Chem 2018. [DOI: 10.1039/c8py00978c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the full and partial hydrolysis of poly(2-oxazoline)s as well as the synthetic methods that have been reported to modify the resulting secondary amine groups.
Collapse
Affiliation(s)
- Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
41
|
Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease – Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.09.052] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Toncheva-Moncheva N, Veleva-Kostadinova E, Tsvetanov C, Momekova D, Rangelov S. Preparation and properties of positively charged mesoglobules based on poly(2-isopropyl-2-oxazoline) and evaluation of their potential as carriers of polynucleotides. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Bus T, Englert C, Reifarth M, Borchers P, Hartlieb M, Vollrath A, Hoeppener S, Traeger A, Schubert US. 3rd generation poly(ethylene imine)s for gene delivery. J Mater Chem B 2017; 5:1258-1274. [DOI: 10.1039/c6tb02592g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, a series of high molar mass poly(2-oxazoline)-based copolymers was synthesized, introducing 2-ethyl-2-oxazoline, ethylene imine, and primary amine bearing monomer units representing a new generation of PEI.
Collapse
Affiliation(s)
- Tanja Bus
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Christoph Englert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Philipp Borchers
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Matthias Hartlieb
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
44
|
Mees MA, Effenberg C, Appelhans D, Hoogenboom R. Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination. Biomacromolecules 2016; 17:4027-4036. [DOI: 10.1021/acs.biomac.6b01451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maarten A. Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Christiane Effenberg
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
45
|
Mees M, Haladjova E, Momekova D, Momekov G, Shestakova PS, Tsvetanov CB, Hoogenboom R, Rangelov S. Partially Hydrolyzed Poly(n-propyl-2-oxazoline): Synthesis, Aqueous Solution Properties, and Preparation of Gene Delivery Systems. Biomacromolecules 2016; 17:3580-3590. [DOI: 10.1021/acs.biomac.6b01088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maarten Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | | - Denitsa Momekova
- Faculty
of Pharmacy, Medical University of Sofia, 2 Dunav str., Sofia 1000, Bulgaria
| | - Georgi Momekov
- Faculty
of Pharmacy, Medical University of Sofia, 2 Dunav str., Sofia 1000, Bulgaria
| | | | | | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
46
|
wyffels L, Verbrugghen T, Monnery BD, Glassner M, Stroobants S, Hoogenboom R, Staelens S. μPET imaging of the pharmacokinetic behavior of medium and high molar mass 89 Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol). J Control Release 2016; 235:63-71. [DOI: 10.1016/j.jconrel.2016.05.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/20/2023]
|
47
|
Lakshmanan R, Krishnan UM, Sethuraman S. Multidimensional nanofibrous scaffolds of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) with improved features for cardiac tissue engineering. Nanomedicine (Lond) 2015; 10:3451-67. [DOI: 10.2217/nnm.15.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: The aim of the study is to develop scaffolds that mimic native tissue properties for effective regeneration of the myocardium, which is affected by the gradual thinning of left ventricular tissue after an infarction. Materials & methods: Heterogenous nanofibrous scaffolds made of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) were characterized for physico-chemical properties. The biocompatibility of the scaffolds was evaluated by studying the adhesion, proliferation and differentiation of H9c2 cells. Results: The scaffolds mimic the cardiac extracellular matrix and showed enhanced tensile strength, improved cell compatibility along with the expression of cardiac marker proteins. Conclusion: Our experimental data confirmed the importance of native tissue architecture and mechanical strength for improved cell response in cardiac tissue engineering.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| |
Collapse
|
48
|
Luef KP, Hoogenboom R, Schubert US, Wiesbrock F. Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. ADVANCES IN POLYMER SCIENCE = FORTSCHRITTE DER HOCHPOLYMEREN-FORSCHUNG 2015; 274:183-208. [PMID: 28239203 PMCID: PMC5321602 DOI: 10.1007/12_2015_340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unlike any other polymer class, the (co-)poly(2-oxazoline)s have tremendously benefited from the introduction of microwave reactors into chemical laboratories. This review focuses on the research activities in the area of (co-)poly(2-oxazoline)s prepared by microwave-assisted syntheses and, correspondingly, summarizes the current-state-of the-art of the microwave-assisted synthesis of 2-oxazoline monomers and the microwave-assisted ring-opening (co-)polymerization of 2-oxazolines as well as prominent examples of post-polymerization modification of (co-)poly(2-oxazoline)s. Special attention is attributed to the kinetic analysis of the microwave-assisted polymerization of 2-oxazolines and the discussion of non-thermal microwave effects.
Collapse
Affiliation(s)
- Klaus P. Luef
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
- Graz University of Technology, Institute for Chemistry and Technology of Materials, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ulrich S. Schubert
- Laboratory for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Frank Wiesbrock
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
49
|
He Z, Miao L, Jordan R, S-Manickam D, Luxenhofer R, Kabanov AV. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector. Macromol Biosci 2015; 15:1004-20. [PMID: 25846127 PMCID: PMC4893346 DOI: 10.1002/mabi.201500021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/12/2015] [Indexed: 01/01/2023]
Abstract
Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.
Collapse
Affiliation(s)
- Zhijian He
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Lei Miao
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Rainer Jordan
- Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Devika S-Manickam
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, Universität Würzburg, 97070 Würzburg, Germany.
| | - Alexander V Kabanov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119899, Russia.
| |
Collapse
|
50
|
Mees MA, Hoogenboom R. Functional Poly(2-oxazoline)s by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00290] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Maarten A. Mees
- Supramolecular Chemistry
Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry
Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent Belgium
| |
Collapse
|