1
|
Cleveland DS, Gasvoda KL, Ding A, Alsberg E. Cell Contractile Forces Drive Spatiotemporal Morphing in 4D Bioprinted Living Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.613990. [PMID: 39386675 PMCID: PMC11463471 DOI: 10.1101/2024.09.22.613990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Current 4D materials typically rely on external stimuli such as heat or light to accomplish changes in shape, limiting the biocompatibility of these materials. Here, a composite bioink consisting of oxidized and methacrylated alginate (OMA), methacrylated gelatin (GelMA), and gelatin microspheres is developed to accomplish free-standing 4D bioprinting of cell-laden structures driven by an internal stimulus: cell-contractile forces (CCF). 4D changes in shape are directed by forming bilayer constructs consisting of one cell-free and one cell-laden layer. Human mesenchymal stem cells (hMSCs) are encapsulated to demonstrate the ability to simultaneously induce changes in shape and chondrogenic differentiation. Finally, the capability to pattern each layer of the printed constructs is exhibited to obtain complex geometric changes, including bending around two separate, non-parallel axes. Bioprinting of such 4D constructs mediated by CCF empowers the formation of more complex constructs, contributing to a greater degree of in vitro biomimicry of biological 4D phenomena.
Collapse
|
2
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
3
|
Mata M, Salvador-Clavell R, Ródenas-Rochina J, Sancho-Tello M, Gallego Ferrer G, Gómez Ribelles JL. Mesenchymal Stem Cells Cultured in a 3D Microgel Environment Containing Platelet-Rich Plasma Significantly Modify Their Chondrogenesis-Related miRNA Expression. Int J Mol Sci 2024; 25:937. [PMID: 38256011 PMCID: PMC10815493 DOI: 10.3390/ijms25020937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this work is to study the effect of platelet factors on the differentiation of mesenchymal stem cells (MSCs) to hyaline cartilage chondrocytes in a three-dimensional environment. MSCs were cultured in a microgel environment with a chondrogenic medium. The microgel consisted of microspheres that combine gelatin and platelet-rich plasma (PRP). The gelatin/PRP microdroplets were produced by emulsion. The gelatin containing the microdroplets was enzymatically gelled, retaining PRP and, just before seeding the cells, platelets were activated by adding calcium chloride so that platelet growth factors were released into the culture media but not before. Platelet activation was analyzed before activation to rule out the possibility that the gelatin cross-linking process itself activated the platelets. The gene expression of characteristic chondrogenic markers and miRNA expression were analyzed in cells cultured in a differentiation medium and significant differences were found between gelation/PRP microgels and those containing only pure gelatin. In summary, the gelatin microspheres effectively encapsulated platelets that secreted and released factors that significantly contributed to cellular chondrogenic differentiation. At the same time, the microgel constituted a 3D medium that provided the cells with adherent surfaces and the possibility of three-dimensional cell-cell contact.
Collapse
Affiliation(s)
- Manuel Mata
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
| | - Rubén Salvador-Clavell
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Joaquín Ródenas-Rochina
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
| | - María Sancho-Tello
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Luis Gómez Ribelles
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
4
|
Griveau L, Bouvet M, Christin E, Paret C, Lecoq L, Radix S, Laumonier T, Sohier J, Gache V. Synthetic injectable and porous hydrogels for the formation of skeletal muscle fibers: Novel perspectives for the acellular repair of substantial volumetric muscle loss. J Tissue Eng 2024; 15:20417314241283148. [PMID: 39502329 PMCID: PMC11536390 DOI: 10.1177/20417314241283148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024] Open
Abstract
In severe skeletal muscle damage, muscle tissue regeneration process has to face the loss of resident muscle stem cells (MuSCs) and the lack of connective tissue necessary to guide the regeneration process. Biocompatible and standardized 3D structures that can be injected to the muscle injury site, conforming to the defect shape while actively guiding the repair process, holds great promise for skeletal muscle tissue regeneration. In this study, we explore the use of an injectable and porous lysine dendrimer/polyethylene glycol (DGL/PEG) hydrogel as an acellular support for skeletal muscle regeneration. We adjusted the DGL/PEG composition to achieve a stiffness conducive to the attachment and proliferation of murine immortalized myoblasts and human primary muscle stems cells, sustaining the formation and maturation of muscle fibers in vitro. We then evaluated the potential of one selected "myogenic-porous hydrogel" as a supportive structure for muscle repair in a large tibialis anterior muscle defect in rats. This injectable and porous formulation filled the defect, promoting rapid cellularization with the presence of endothelial cells, macrophages, and myoblasts, thereby supporting neo-myogenesis more specifically at the interface between the wound edges and the hydrogel. The selected porous DGL/PEG hydrogel acted as a guiding scaffold at the periphery of the defect, facilitating the formation and anchorage of aligned muscle fibers 21 days after injury. Overall, our results indicate DGL/PEG porous injectable hydrogel potential to create a pro-regenerative environment for muscle cells after large skeletal muscle injuries, paving the way for acellular treatment in regenerative muscle medicine.
Collapse
Affiliation(s)
- Louise Griveau
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, Lyon, France
| | - Marion Bouvet
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, Lyon, France
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Emilie Christin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Cloé Paret
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Sylvie Radix
- Universite Claude Bernard Lyon 1, CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), COSSBA Team, Faculté de Pharmacie, ISPB, Lyon, France
| | - Thomas Laumonier
- Department of Orthopedic Surgery & Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Jerome Sohier
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, Lyon, France
| | - Vincent Gache
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| |
Collapse
|
5
|
Khunmanee S, Yoo J, Lee JR, Lee J, Park H. Thiol-yne click crosslink hyaluronic acid/chitosan hydrogel for three-dimensional in vitro follicle development. Mater Today Bio 2023; 23:100867. [PMID: 38179228 PMCID: PMC10765241 DOI: 10.1016/j.mtbio.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
There is a great deal of potential for in vitro follicle growth to provide an alternative approach to fertility preservation. This strategy reduces the possibility of cancer cells re-exposure after transplantation, and it does not require hormone stimulation. Adopting a three-dimensional (3D) culture method helps preserve the architecture of the follicle and promotes the maturity of oocytes. In order to maintain follicle morphology, enhance the quality of mature oocytes, and facilitate meiotic spindle assembly, the current work aimed to develop the 3D in vitro preantral mouse follicle culture method. Thiolated chitosan-co-thiolated hyaluronic (CSHS) hydrogel was designed to evaluate the effects of biomaterials on ovarian follicle development. Isolated follicles from mouse ovaries were randomly divided into alginate (Alg) as a 3D control, thiolated hyaluronic acid (HASH), and CSHS groups. Single follicle was encapsulated in each hydrogel, and performed for 10 days and subsequently ovulated to retrieve mature oocytes on day 11. CSHS hydrogel promoted follicle survival and oocyte viability with maintained spherical morphology of follicle. Matured oocytes with normal appearance of meiotic spindle and chromosome alignment were higher in the CSHS group compared with those in the Alg and HASH groups. Furthermore, CSHS increased expression level of folliculogenesis genes (TGFβ-1, GDF-9) and endocrine-related genes (LHCGR, and FSHR). With various experimental setups and clinical applications, this platform could be applied as an alternative method to in vitro follicle culture with different experimental designs and clinical applications in the long-term period.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jungyoung Yoo
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do, 13135, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do, 13135, Republic of Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
6
|
Kozan NG, Caswell S, Patel M, Grasman JM. Aligned Collagen Sponges with Tunable Pore Size for Skeletal Muscle Tissue Regeneration. J Funct Biomater 2023; 14:533. [PMID: 37998102 PMCID: PMC10672557 DOI: 10.3390/jfb14110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
Volumetric muscle loss (VML) is a traumatic injury where at least 20% of the mass of a skeletal muscle has been destroyed and functionality is lost. The standard treatment for VML, autologous tissue transfer, is limited as approximately 1 in 10 grafts fail because of necrosis or infection. Tissue engineering strategies seek to develop scaffolds that can regenerate injured muscles and restore functionality. Many of these scaffolds, however, are limited in their ability to restore muscle functionality because of an inability to promote the alignment of regenerating myofibers. For aligned myofibers to form on a scaffold, myoblasts infiltrate the scaffold and receive topographical cues to direct targeted myofiber growth. We seek to determine the optimal pore size for myoblast infiltration and differentiation. We developed a method of tuning the pore size within collagen scaffolds while inducing longitudinal alignment of these pores. Significantly different pore sizes were generated by adjusting the freezing rate of the scaffolds. Scaffolds frozen at -20 °C contained the largest pores. These scaffolds promoted the greatest level of cell infiltration and orientation in the direction of pore alignment. Further research will be conducted to induce higher levels of myofiber formation, to ultimately create an off-the-shelf treatment for VML injuries.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
7
|
Rodriguez-Fernandez J, Garcia-Legler E, Villanueva-Badenas E, Donato MT, Gomez-Ribelles JL, Salmeron-Sanchez M, Gallego-Ferrer G, Tolosa L. Primary human hepatocytes-laden scaffolds for the treatment of acute liver failure. BIOMATERIALS ADVANCES 2023; 153:213576. [PMID: 37566937 DOI: 10.1016/j.bioadv.2023.213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Cell-based liver therapies based on retrieving and steadying failed metabolic function(s) for acute and chronic diseases could be a valuable substitute for liver transplants, even though they are limited by the low engraftment capability and reduced functional quality of primary human hepatocytes (PHH). In this paper we propose the use of gelatin-hyaluronic acid (Gel-HA) scaffolds seeded with PHH for the treatment of liver failure. We first optimized the composition using Gel-HA hydrogels, looking for the mechanical properties closer to the human liver and determining HepG2 cells functionality. Gel-HA scaffolds with interconnected porosity (pore size 102 μm) were prepared and used for PHH culture and evaluation of key hepatic functions. PHH cultured in Gel-HA scaffolds exhibited increased albumin and urea secretion and metabolic capacity (CYP and UGT activity levels) compared to standard monolayer cultures. The transplant of the scaffold containing PHH led to an improvement in liver function (transaminase levels, necrosis) and ameliorated damage in a mouse model of acetaminophen (APAP)-induced liver failure. The study provided a mechanistic understanding of APAP-induced liver injury and the impact of transplantation by analyzing cytokine production and oxidative stress induction to find suitable biomarkers of cell therapy effectiveness.
Collapse
Affiliation(s)
- Julio Rodriguez-Fernandez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Emma Garcia-Legler
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain
| | - M Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Gomez-Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Manuel Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain; Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| |
Collapse
|
8
|
Zhang Y, Wang Z, Sun Q, Li Q, Li S, Li X. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5161. [PMID: 37512435 PMCID: PMC10386333 DOI: 10.3390/ma16145161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The extracellular matrix (ECM) of natural cells typically exhibits dynamic mechanical properties (viscoelasticity and dynamic stiffness). The viscoelasticity and dynamic stiffness of the ECM play a crucial role in biological processes, such as tissue growth, development, physiology, and disease. Hydrogels with viscoelasticity and dynamic stiffness have recently been used to investigate the regulation of cell behavior and fate. This article first emphasizes the importance of tissue viscoelasticity and dynamic stiffness and provides an overview of characterization techniques at both macro- and microscale. Then, the viscoelastic hydrogels (crosslinked via ion bonding, hydrogen bonding, hydrophobic interactions, and supramolecular interactions) and dynamic stiffness hydrogels (softening, stiffening, and reversible stiffness) with different crosslinking strategies are summarized, along with the significant impact of viscoelasticity and dynamic stiffness on cell spreading, proliferation, migration, and differentiation in two-dimensional (2D) and three-dimensional (3D) cell cultures. Finally, the emerging trends in the development of dynamic mechanical hydrogels are discussed.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuofan Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Choi K, Park CY, Choi JS, Kim YJ, Chung S, Lee S, Kim CH, Park SJ. The Effect of the Mechanical Properties of the 3D Printed Gelatin/Hyaluronic Acid Scaffolds on hMSCs Differentiation Towards Chondrogenesis. Tissue Eng Regen Med 2023; 20:593-605. [PMID: 37195569 PMCID: PMC10313889 DOI: 10.1007/s13770-023-00545-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Tissue engineering, including 3D bioprinting, holds great promise as a therapeutic tool for repairing cartilage defects. Mesenchymal stem cells have the potential to treat various fields due to their ability to differentiate into different cell types. The biomimetic substrate, such as scaffolds and hydrogels, is a crucial factor that affects cell behavior, and the mechanical properties of the substrate have been shown to impact differentiation during incubation. In this study, we examine the effect of the mechanical properties of the 3D printed scaffolds, made using different concentrations of cross-linker, on hMSCs differentiation towards chondrogenesis. METHODS The 3D scaffold was fabricated using 3D bioprinting technology with gelatin/hyaluronic acid (HyA) biomaterial ink. Crosslinking was achieved by using different concentrations of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methlymorpholinium chloride n-hydrate (DMTMM), allowing for control of the scaffold's mechanical properties. The printability and stability were also evaluated based on the concentration of DMTMM used. The effects of the gelatin/HyA scaffold on chondrogenic differentiation was analyzed by utilizing various concentrations of DMTMM. RESULTS The addition of HyA was found to improve the printability and stability of 3D printed gelatin/HyA scaffolds. The mechanical properties of the 3D gelatin/HyA scaffold could be regulated through the use of different concentrations of DMTMM cross-linker. In particular, the use of 0.25 mM DMTMM for crosslinking the 3D gelatin/HyA scaffold resulted in enhanced chondrocyte differentiation. CONCLUSION The mechanical properties of 3D printed gelatin/HyA scaffolds cross-linked using various concentrations of DMTMM can influence the differentiation of hMSCs into chondrocytes.
Collapse
Affiliation(s)
- Kyoung Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Cho Young Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, Gyeongsan-Si, 38430, Republic of Korea
| | - Seok Chung
- Program in Biomicro System Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sanghoon Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| |
Collapse
|
10
|
Simińska-Stanny J, Hachemi F, Dodi G, Cojocaru FD, Gardikiotis I, Podstawczyk D, Delporte C, Jiang G, Nie L, Shavandi A. Optimizing phenol-modified hyaluronic acid for designing shape-maintaining biofabricated hydrogel scaffolds in soft tissue engineering. Int J Biol Macromol 2023:125201. [PMID: 37270140 DOI: 10.1016/j.ijbiomac.2023.125201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
In this study, we developed a well-printable biomaterial ink for 3D printing of shape-maintaining hydrogel scaffolds. The hydrogel base comprised tyramine-modified hyaluronic acid (HA-Tyr) and gelatin methacrylate (GelMA) and was dually cross-linked. Using the Box-Behnken design, we explored how varying the ink composition affected fiber formation and shape preservation. By adjusting the polymer ratios, we produced a stable hydrogel with varying responses, from a viscous liquid to a thick gel, and optimized 3D scaffolds that were structurally stable both during and after printing, offering precision and flexibility. Our ink exhibited shear-thinning behavior and high swelling capacity, as well as ECM-like characteristics and biocompatibility, making it an ideal candidate for soft tissues matrices with storage modulus of around 300 Pa. Animal trials and CAM assays confirmed its biocompatibility and integration with host tissue.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Feza Hachemi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Université Paris Saclay, Polytech Paris Saclay, Rue Louis de Broglie, 91400 Orsay, France
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Florina D Cojocaru
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Christine Delporte
- Université libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei Nie
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; College of Life Science, Xinyang Normal University, Xinyang, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
11
|
Vaca-González JJ, Culma JJS, Nova LMH, Garzón-Alvarado DA. Anatomy, molecular structures, and hyaluronic acid - Gelatin injectable hydrogels as a therapeutic alternative for hyaline cartilage recovery: A review. J Biomed Mater Res B Appl Biomater 2023. [PMID: 37178328 DOI: 10.1002/jbm.b.35261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Cartilage damage caused by trauma or osteoarthritis is a common joint disease that can increase the social and economic burden in society. Due to its avascular characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Hydrogels have been developed into one of the most suitable biomaterials for the regeneration of cartilage because of its characteristics such as high-water absorption, biodegradation, porosity, and biocompatibility similar to natural extracellular matrix. Therefore, the present review article presents a conceptual framework that summarizes the anatomical, molecular structure and biochemical properties of hyaline cartilage located in long bones: articular cartilage and growth plate. Moreover, the importance of preparation and application of hyaluronic acid - gelatin hydrogels for cartilage tissue engineering are included. Hydrogels possess benefits of stimulating the production of Agc1, Col2α1-IIa, and SOX9, molecules important for the synthesis and composition of the extracellular matrix of cartilage. Accordingly, they are believed to be promising biomaterials of therapeutic alternatives to treat cartilage damage.
Collapse
Affiliation(s)
- Juan Jairo Vaca-González
- Escuela de Pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede de La Paz, Cesar, Colombia
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan José Saiz Culma
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Diego Alexander Garzón-Alvarado
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Zhang Z, Liu Y, Tao X, Du P, Enkhbat M, Lim KS, Wang H, Wang PY. Engineering Cell Microenvironment Using Nanopattern-Derived Multicellular Spheroids and Photo-Crosslinked Gelatin/Hyaluronan Hydrogels. Polymers (Basel) 2023; 15:polym15081925. [PMID: 37112072 PMCID: PMC10144125 DOI: 10.3390/polym15081925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cell cultures of dispersed cells within hydrogels depict the interaction of the cell-extracellular matrix (ECM) in 3D, while the coculture of different cells within spheroids combines both the effects of cell-cell and cell-ECM interactions. In this study, the cell co-spheroids of human bone mesenchymal stem cells/human umbilical vein endothelial cells (HBMSC/HUVECs) are prepared with the assistance of a nanopattern, named colloidal self-assembled patterns (cSAPs), which is superior to low-adhesion surfaces. A phenol-modified gelatin/hyaluronan (Gel-Ph/HA-Ph) hydrogel is used to encapsulate the multicellular spheroids and the constructs are photo-crosslinked using blue light. The results show that Gel-Ph/HA-Ph hydrogels with a 5%-to-0.3% ratio have the best properties. Cells in HBMSC/HUVEC co-spheroids are more favorable for osteogenic differentiation (Runx2, ALP, Col1a1 and OPN) and vascular network formation (CD31+ cells) compared to HBMSC spheroids. In a subcutaneous nude mouse model, the HBMSC/HUVEC co-spheroids showed better performance than HBMSC spheroids in angiogenesis and the development of blood vessels. Overall, this study paves a new way for using nanopatterns, cell coculturing and hydrogel technology for the generation and application of multicellular spheroids.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, NSW 2052, Australia
| | - Huaiyu Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023; 9:gels9030230. [PMID: 36975679 PMCID: PMC10048521 DOI: 10.3390/gels9030230] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogels have been developed for different biomedical applications such as in vitro culture platforms, drug delivery, bioprinting and tissue engineering. Enzymatic cross-linking has many advantages for its ability to form gels in situ while being injected into tissue, which facilitates minimally invasive surgery and adaptation to the shape of the defect. It is a highly biocompatible form of cross-linking, which permits the harmless encapsulation of cytokines and cells in contrast to chemically or photochemically induced cross-linking processes. The enzymatic cross-linking of synthetic and biogenic polymers also opens up their application as bioinks for engineering tissue and tumor models. This review first provides a general overview of the different cross-linking mechanisms, followed by a detailed survey of the enzymatic cross-linking mechanism applied to both natural and synthetic hydrogels. A detailed analysis of their specifications for bioprinting and tissue engineering applications is also included.
Collapse
Affiliation(s)
- Raquel Naranjo-Alcazar
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence:
| | - Sophie Bendix
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
14
|
Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl 2023; 37:1243-1258. [PMID: 36217954 DOI: 10.1177/08853282221132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive studies, hydrogels are unable to meet the mechanical and biological requirements for successful outcomes in cartilage tissue engineering. In the present study, beta cyclodextrin (β-CD)-modified alginate/cartilage extracellular matrix (ECM)-based interpenetrating polymer network (IPN) hydrogel was developed for sustained release of Kartogenin (KGN). Furthermore, the hydrogel was incorporated within a 3D-printed poly (ε-caprolactone) (PCL)/starch microfiber network in order to reinforce the construct for cartilage tissue engineering. All the synthesized compounds were characterized by H1-NMR spectroscopy. The hydrogel/microfiber composite with a microfiber strand size and strand spacing of 300 μm and 2 mm, respectively showed a compressive modulus of 17.2 MPa, resembling the properties of the native cartilage tissue. Considering water uptake capacity, degradation rate, mechanical property, cell cytotoxicity and glycosaminoglycan secretions, β-CD-modified hydrogel reinforced with printed PCL/starch microfibers with controlled release of KGN may be considered as a promising candidate for using in articular cartilage defects.
Collapse
Affiliation(s)
- Sadaf Mohsenifard
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Hanieh Safari
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Guillot-Ferriols M, García-Briega MI, Tolosa L, Costa CM, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Magnetically Activated Piezoelectric 3D Platform Based on Poly(Vinylidene) Fluoride Microspheres for Osteogenic Differentiation of Mesenchymal Stem Cells. Gels 2022; 8:680. [PMID: 36286181 PMCID: PMC9602007 DOI: 10.3390/gels8100680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) osteogenic commitment before injection enhances bone regeneration therapy results. Piezoelectric stimulation may be an effective cue to promote MSCs pre-differentiation, and poly(vinylidene) fluoride (PVDF) cell culture supports, when combined with CoFe2O4 (CFO), offer a wireless in vitro stimulation strategy. Under an external magnetic field, CFO shift and magnetostriction deform the polymer matrix varying the polymer surface charge due to the piezoelectric effect. To test the effect of piezoelectric stimulation on MSCs, our approach is based on a gelatin hydrogel with embedded MSCs and PVDF-CFO electroactive microspheres. Microspheres were produced by electrospray technique, favouring CFO incorporation, crystallisation in β-phase (85%) and a crystallinity degree of around 55%. The absence of cytotoxicity of the 3D construct was confirmed 24 h after cell encapsulation. Cells were viable, evenly distributed in the hydrogel matrix and surrounded by microspheres, allowing local stimulation. Hydrogels were stimulated using a magnetic bioreactor, and no significant changes were observed in MSCs proliferation in the short or long term. Nevertheless, piezoelectric stimulation upregulated RUNX2 expression after 7 days, indicating the activation of the osteogenic differentiation pathway. These results open the door for optimising a stimulation protocol allowing the application of the magnetically activated 3D electroactive cell culture support for MSCs pre-differentiation before transplantation.
Collapse
Affiliation(s)
- Maria Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - María Inmaculada García-Briega
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - Laia Tolosa
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
- Experimental Hepatology Unit, Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Carlos M. Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
16
|
Warwar Damouny C, Martin P, Vasilyev G, Vilensky R, Fadul R, Redenski I, Srouji S, Zussman E. Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules 2022; 23:3222-3234. [PMID: 35771870 DOI: 10.1021/acs.biomac.2c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work dealt with the development of physically cross-linked injectable hydrogels with potential applications in tissue engineering. The hydrogels were composed of a ternary mixture of a polyanion and a polyampholyte, hyaluronic acid (HA) and gelatin, respectively, bridged by cationic cellulose nanocrystals (cCNCs). A 3D network is formed by employing attractive electrostatic interactions and hydrogen bonding between these components under physiological conditions. The hydrogels demonstrated low viscosity at high stresses, enabling easy injection, structural stability at low stresses (<15 Pa), and nearly complete structure recovery within several minutes. Increasing the cCNC content (>3%) reduced hydrogel swelling and decelerated the degradation in phosphate-buffered saline as compared to that in pure HA and HA-gelatin samples. Biological evaluation of the hydrogel elutions showed excellent cell viability. The proliferation of fibroblasts exposed to elutions of hydrogels with 5% cCNCs reached ∼200% compared to that in the positive control after 11 days. Considering these results, the prepared hydrogels hold great potential in biomedical applications, such as injectable dermal fillers, 3D bioprintable inks, or 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
- Christine Warwar Damouny
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Reema Fadul
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Idan Redenski
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
17
|
Khunmanee S, Chun SY, Ha YS, Lee JN, Kim BS, Gao WW, Kim IY, Han DK, You S, Kwon TG, Park H. Improvement of IgA Nephropathy and Kidney Regeneration by Functionalized Hyaluronic Acid and Gelatin Hydrogel. Tissue Eng Regen Med 2022; 19:643-658. [PMID: 35325404 PMCID: PMC9130434 DOI: 10.1007/s13770-022-00442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Immunoglobulin A (IgA) nephropathy (IgAN) is one of an important cause of progressive kidney disease and occurs when IgA settles in the kidney resulted in disrupts kidney's ability to filter waste and excess water. Hydrogels are promising material for medical applications owing to their excellent adaptability and filling ability. Herein, we proposed a hyaluronic acid/gelatin (CHO-HA/Gel-NH2) bioactive hydrogel as a cell carrier for therapeutic kidney regeneration in IgAN. METHODS CHO-HA/Gel-NH2 hydrogel was fabricated by Schiff-base reaction without any additional crosslinking agents. The hydrogel concentrations and ratios were evaluated to enhance adequate mechanical properties and biocompatibility for further in vivo study. High serum IgA ddY mice kidneys were treated with human urine-derived renal progenitor cells encapsulated in the hydrogel to investigate the improvement of IgA nephropathy and kidney regeneration. RESULTS The stiffness of the hydrogel was significantly enhanced and could be modulated by altering the concentrations and ratios of hydrogel. CHO-HA/Gel-NH2 at a ratio of 3/7 provided a promising milieu for cells viability and cells proliferation. From week four onwards, there was a significant reduction in blood urea nitrogen and serum creatinine level in Cell/Gel group, as well as well-organized glomeruli and tubules. Moreover, the expression of pro-inflammatory and pro-fibrotic molecules significantly decreased in the Gel/Cell group, whereas anti-inflammatory gene expression was elevated compared to the Cell group. CONCLUSION Based on in vivo studies, the renal regenerative ability of the progenitor cells could be further increased by this hydrogel system.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Korea
| | - Yun-Sok Ha
- Department of Urology, Kyungpook National University Hospital, Daegu, 41944, Korea
- Department of Urology, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea
| | - Jun Nyung Lee
- Department of Urology, Kyungpook National University Hospital, Daegu, 41944, Korea
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41566, Korea
| | - Bum Soo Kim
- Department of Urology, Kyungpook National University Hospital, Daegu, 41944, Korea
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41566, Korea
| | - Wei-Wei Gao
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Korea
| | - In Yong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Korea
| | - Dong Keun Han
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Korea
| | - Tae Gyun Kwon
- Department of Urology, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea.
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41566, Korea.
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Korea.
| |
Collapse
|
18
|
Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel) 2022; 14:polym14102097. [PMID: 35631979 PMCID: PMC9145843 DOI: 10.3390/polym14102097] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Jingzhi Fan
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Keyvan Abedi-Dorcheh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fereshteh Kazemi-Aghdam
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Masoume Sohrabinejad
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Mina Ghorbani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fatemeh Rastegar Adib
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Zahra Ghasemi
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| |
Collapse
|
19
|
Clara-Trujillo S, Tolosa L, Cordón L, Sempere A, Gallego Ferrer G, Gómez Ribelles JL. Novel microgel culture system as semi-solid three-dimensional in vitro model for the study of multiple myeloma proliferation and drug resistance. BIOMATERIALS ADVANCES 2022; 135:212749. [PMID: 35929221 DOI: 10.1016/j.bioadv.2022.212749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy in which the patient's drug resistance is one of the main clinical problems. As 2D cultures do not recapitulate the cellular microenvironment, which has a key role in drug resistance, there is an urgent need for better biomimetic models. Here, a novel 3D platform is used to model MM. The semi-solid culture consists of a dynamic suspension of microspheres and MM cells, termed as microgel. Microspheres are synthesized with acrylic polymers of different sizes, compositions, and functionalities (fibronectin or hyaluronic acid). Optimal conditions for the platform in terms of agitation speed and microsphere size have been determined. With these parameters the system allows good proliferation of the MM cell lines RPMI8226, U226, and MM1.S. Interestingly, when used for drug resistance studies, culture of the three MM cell lines in microgels showed close agreement in revealing the role of acrylic acid in resistance to anti-MM drugs such as dexamethasone and bortezomib. This work presents a unique platform for the in vitro modeling of non-solid tumors since it allows keeping non-adherent cells in suspension conditions but in a 3D context that can be easily tuned with different functionalizations.
Collapse
Affiliation(s)
- Sandra Clara-Trujillo
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain.
| | - Laia Tolosa
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain; Experimental Hepatology Unit, Health Research Institute La Fe (IIS La Fe), Valencia 46026, Spain
| | - Lourdes Cordón
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain; Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Amparo Sempere
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain; Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| |
Collapse
|
20
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
21
|
Su Y, Wang Z, Legrand A, Aoyama T, Ma N, Wang W, Otake KI, Urayama K, Horike S, Kitagawa S, Furukawa S, Gu C. Hypercrosslinked Polymer Gels as a Synthetic Hybridization Platform for Designing Versatile Molecular Separators. J Am Chem Soc 2022; 144:6861-6870. [PMID: 35315656 DOI: 10.1021/jacs.2c01090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypercrosslinked polymers (HCPs), amorphous microporous three-dimensional networks based on covalent linkage of organic building blocks, are a promising class of materials due to their high surface area and easy functionalization; however, this type of material lacks processability due to its network rigidity based on covalent crosslinking. Indeed, the development of strategies to improve its solution processability for broader applications remains challenging. Although HCPs have similar three-dimensionally crosslinked networks to polymer gels, HCPs usually do not form gels but insoluble powders. Herein, we report the synthesis of HCP gels from a thermally induced polymerization of a tetrahedral monomer, which undergoes consecutive solubilization, covalent bond formation, colloidal formation, followed by their aggregation and percolation to yield a hierarchically porous network. The resulting gels feature concentration-dependent hierarchical porosities and mechanical stiffness. Furthermore, these HCP gels can be used as a platform to achieve molecular-level hybridization with a two-dimensional polymer during the HCP gel formation. This method provides functional gels and corresponding aerogels with the enhancement of porosities and mechanical stiffness. Used in column- and membrane-based molecular separation systems, the hybrid gels exhibited a separation of water contaminants with the efficiency of 97.9 and 98.6% for methylene blue and KMnO4, respectively. This result demonstrated the potentials of the HCP gels and their hybrid derivatives in separation systems requiring macroscopic scaffolds with hierarchical porosity.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, P. R. China
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Weitao Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, P. R. China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, P. R. China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, P. R. China
| |
Collapse
|
22
|
Bell RAV, Al-Khalaf MH, Brunette S, Alsowaida D, Chu A, Bandukwala H, Dechant G, Apostolova G, Dilworth FJ, Megeney LA. Chromatin Reorganization during Myoblast Differentiation Involves the Caspase-Dependent Removal of SATB2. Cells 2022; 11:cells11060966. [PMID: 35326417 PMCID: PMC8946544 DOI: 10.3390/cells11060966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that the removal of the special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. The deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, which is dependent on the caspase 7-mediated cleavage of SATB2. A genome-wide analysis indicates that SATB2 binding within chromatin loops and near anchor points influences both loop and sub-TAD domain formation. Consequently, the chromatin changes that occur with the removal of SATB2 lead to the derepression of differentiation-inducing factors while also limiting the expression of genes that inhibit this cell fate change. Taken together, this study demonstrates that the temporal control of the SATB2 protein is critical in shaping the chromatin environment and coordinating the myogenic differentiation program.
Collapse
Affiliation(s)
- Ryan A. V. Bell
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mohammad H. Al-Khalaf
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steve Brunette
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
| | - Dalal Alsowaida
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alphonse Chu
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hina Bandukwala
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
| | - Georg Dechant
- Institute of Neuroscience, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (G.D.); (G.A.)
| | - Galina Apostolova
- Institute of Neuroscience, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (G.D.); (G.A.)
| | - F. Jeffrey Dilworth
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Lynn A. Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
23
|
Multiscale-Engineered Muscle Constructs: PEG Hydrogel Micro-Patterning on an Electrospun PCL Mat Functionalized with Gold Nanoparticles. Int J Mol Sci 2021; 23:ijms23010260. [PMID: 35008686 PMCID: PMC8745500 DOI: 10.3390/ijms23010260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
The development of new, viable, and functional engineered tissue is a complex and challenging task. Skeletal muscle constructs have specific requirements as cells are sensitive to the stiffness, geometry of the materials, and biological micro-environment. The aim of this study was thus to design and characterize a multi-scale scaffold and to evaluate it regarding the differentiation process of C2C12 skeletal myoblasts. The significance of the work lies in the microfabrication of lines of polyethylene glycol, on poly(ε-caprolactone) nanofiber sheets obtained using the electrospinning process, coated or not with gold nanoparticles to act as a potential substrate for electrical stimulation. The differentiation of C2C12 cells was studied over a period of seven days and quantified through both expression of specific genes, and analysis of the myotubes’ alignment and length using confocal microscopy. We demonstrated that our multiscale bio-construct presented tunable mechanical properties and supported the different stages skeletal muscle, as well as improving the parallel orientation of the myotubes with a variation of less than 15°. These scaffolds showed the ability of sustained myogenic differentiation by enhancing the organization of reconstructed skeletal muscle. Moreover, they may be suitable for applications in mechanical and electrical stimulation to mimic the muscle’s physiological functions.
Collapse
|
24
|
Nguyen TPT, Li F, Shrestha S, Tuan RS, Thissen H, Forsythe JS, Frith JE. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021; 279:121214. [PMID: 34736147 DOI: 10.1016/j.biomaterials.2021.121214] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| |
Collapse
|
25
|
Shojarazavi N, Mashayekhan S, Pazooki H, Mohsenifard S, Baniasadi H. Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering. J Biomater Appl 2021; 36:803-817. [PMID: 34121491 DOI: 10.1177/08853282211024020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was optimized to reach a desired mechanical stiffness. Accordingly, the concentrations of alginate and SFN to have an optimum compression modulus in the hydrogel were found to be 1.685 and 1.724% w/v, respectively. The gelation time was found to be about 10 s for all the samples. Scanning electron microscope (SEM) images showed homogeneous dispersion of the SFN in the hydrogel, mimicking the natural cartilage environment. Furthermore, water uptake capacity, degradation rate, cell cytotoxicity, and glycosaminoglycan and collagen II secretions were determined for the optimum hydrogel to support its potential as an injectable scaffold for articular cartilage defects.
Collapse
Affiliation(s)
- Nastaran Shojarazavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Pazooki
- Department of Chemical and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sadaf Mohsenifard
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
26
|
Hong BM, Hong GL, Gwak MA, Kim KH, Jeong JE, Jung JY, Park SA, Park WH. Self-crosslinkable hyaluronate-based hydrogels as a soft tissue filler. Int J Biol Macromol 2021; 185:98-110. [PMID: 34119550 DOI: 10.1016/j.ijbiomac.2021.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
With increasing interest in aging and skin care, the use of fillers to increase the volume of soft tissue volume is increasing globally. However, the side effects caused by the residual chemical crosslinking agents present in these fillers limit the effective application of commercialized filler products. Therefore, the development of a novel crosslinking system with a non-toxic chemical crosslinking agent is required to overcome the limitations of commercial hyaluronate (HA)-based fillers. In this paper, a new injectable hydrogel with enhanced mechanical properties, tissue adhesion, injectability, and biocompatibility is reported. The HA derivatives modified with catechol groups (HA-DA) were crosslinked by self-oxidation under in vivo physiological conditions (pH 7.4) without chemical crosslinkers to form hydrogels, which can be further accelerated by the dissolved oxygen in the body. The fabricated HA-DA filler showed excellent mechanical properties and could be easily injected with a low injection force. Further, the HA-DA filler stably attached to the injection site due to the tissue adhesion properties of the catechol groups, thus leading to an improved displacement stability. In addition, the HA-DA filler showed excellent cell viability, cell proliferation, and biocompatibility. Therefore, the HA-DA hydrogel is a novel soft tissue filler with great potential to overcome the limitations of commercial soft tissue fillers.
Collapse
Affiliation(s)
- Bo Min Hong
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Geum Lan Hong
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea
| | - Min A Gwak
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Kyung Hyun Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea
| | - Jae Eun Jeong
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Ju Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
27
|
Kim MH, Lee J, Lee JN, Lee H, Park WH. Mussel-inspired poly(γ-gl utamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration. Acta Biomater 2021; 123:254-262. [PMID: 33465509 DOI: 10.1016/j.actbio.2021.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
It was demonstrated herein that the adhesive property of catechol-functionalized nanocomposite hydrogel can be enhanced by tuning the cohesive strength due to the secondary crosslinking between catechol and synthetic bioactive nanosilicate, viz. Laponite (LP). The nanocomposite hydrogel consists of the natural anionic poly(γ-glutamic acid) (γ-PGA), which was functionalized with catechol moiety, and incorporated with disk-structured LP. The dual-crosslinked hydrogel was fabricated by enzymatic chemical crosslinking of catechol in the presence of horseradish peroxidase (HRP) and H2O2, and physical crosslinking between γ-PGA-catechol conjugate and LP. The PGADA/LP nanocomposite hydrogels with catechol moieties showed strong adhesiveness to various tissue layers and demonstrated an excellent hemostatic properties. These PGADA/LP nanocomposite hydrogels are potentially applied for injectable tissue engineering hydrogels, tissue adhesives, and hemostatic materials. STATEMENT OF SIGNIFICANCE: Recently, many attempts have been performed to manufacture high-performance tissue adhesives using synthetic and natural polymer-based materials. In order to apply in various biological substrates, commercially available tissue adhesives should have an improved adhesive property in wet conditions. Here, we designed a mussel-inspired dual crosslinked tissue adhesive that meets most of conditions as an ideal tissue adhesive. The designed tissue adhesive is composed of poly(γ-glutamic acid)-dopamine conjugate (PGADA)-gluing macromer, horseradish peroxidase (HRP)/hydrogen peroxide (H2O2)-enzymatic crosslinker, and Laponite (LP)-additional physical crosslinking nanomaterial. The PGADA hydrogel has tunable physicochemical properties by controlling the LP concentration. Furthermore, this dual crosslinked hydrogel shows strong tissue adhesive property, regardless of the tissue types. Specially the PGADA hydrogel has tissue adhesive strength four times higher than commercial bioadhesive. This dual crosslinked PGADA hydrogel with improved tissue adhesion property is a promising biological tissue adhesive for various tissue type in surgical operation.
Collapse
|
28
|
Tamay DG, Hasirci N. Bioinks-materials used in printing cells in designed 3D forms. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1072-1106. [PMID: 33720806 DOI: 10.1080/09205063.2021.1892470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Use of materials to activate non-functional or damaged organs and tissues goes back to early ages. The first materials used for this purpose were metals, and in time, novel materials such as ceramics, polymers and composites were introduced to the field to serve in medical applications. In the last decade, the advances in material sciences, cell biology, technology and engineering made 3D printing of living tissues or organ models in the designed structure and geometry possible by using cells alone or together with hydrogels through additive manufacturing. This review aims to give a brief information about the chemical structures and properties of bioink materials and their applications in the production of 3D tissue constructs.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Department of Chemistry, Middle East Technical University, Ankara, Turkey.,Tissue Engineering and Biomaterial Research Center, Near East University, TRNC, Mersin 10, Turkey
| |
Collapse
|
29
|
A dual-cross-linked hydrogel based on hyaluronic acid/gelatin tethered via tannic acid: mechanical properties’ enhancement and stability control. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-020-00891-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Sodhi H, Panitch A. Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules 2020; 11:E29. [PMID: 33383795 PMCID: PMC7823287 DOI: 10.3390/biom11010029] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosaminoglycans are native components of the extracellular matrix that drive cell behavior and control the microenvironment surrounding cells, making them promising therapeutic targets for a myriad of diseases. Recent studies have shown that recapitulation of cell interactions with the extracellular matrix are key in tissue engineering, where the aim is to mimic and regenerate endogenous tissues. Because of this, incorporation of glycosaminoglycans to drive stem cell fate and promote cell proliferation in engineered tissues has gained increasing attention. This review summarizes the role glycosaminoglycans can play in tissue engineering and the recent advances in their use in these constructs. We also evaluate the general trend of research in this niche and provide insight into its future directions.
Collapse
Affiliation(s)
- Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA;
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA;
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
31
|
Visible-light-induced hyaluronate hydrogel for soft tissue fillers. Int J Biol Macromol 2020; 165:2834-2844. [DOI: 10.1016/j.ijbiomac.2020.10.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023]
|
32
|
Sakai S, Yoshii A, Sakurai S, Horii K, Nagasuna O. Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Mater Today Bio 2020; 8:100078. [PMID: 33083780 PMCID: PMC7552084 DOI: 10.1016/j.mtbio.2020.100078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
Here, we investigated the usefulness of silk fibroin nanofibers obtained via mechanical grinding of degummed silkworm silk fibers as an additive in bioinks for extrusion three-dimensional (3D) bioprinting of cell-laden constructs. The nanofibers could be sterilized by autoclaving, and addition of the nanofibers improved the shear thinning of polymeric aqueous solutions, independent of electric charge and the content of cross-linkable moieties in the polymers. The addition of nanofibers to bioinks resulted in the fabrication of hydrogel constructs with higher fidelity to blueprints. Mammalian cells in the constructs showed >85% viability independent of the presence of nanofibers. The nanofibers did not affect the morphologies of enclosed cells. These results demonstrate the great potential of silk fibroin nanofibers obtained via mechanical grinding of degummed silkworm silk fibers as an additive in bioinks for extrusion 3D bioprinting.
Collapse
Affiliation(s)
- S. Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan
| | - A. Yoshii
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan
| | - S. Sakurai
- Nagasuna Mayu Inc., Kyotango, Kyoto, 629-3101, Japan
| | - K. Horii
- Nagasuna Mayu Inc., Kyotango, Kyoto, 629-3101, Japan
| | - O. Nagasuna
- Nagasuna Mayu Inc., Kyotango, Kyoto, 629-3101, Japan
| |
Collapse
|
33
|
Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels. Biomolecules 2020; 10:biom10081185. [PMID: 32824101 PMCID: PMC7464976 DOI: 10.3390/biom10081185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
Polysaccharides are widely used as building blocks of scaffolds and hydrogels in tissue engineering, which may require their chemical modification to permit crosslinking. The goal of this study was to generate a library of oxidized alginate (oALG) and oxidized hyaluronic acid (oHA) that can be used for in situ gelling hydrogels by covalent reaction between aldehyde groups of the oxidized polysaccharides (oPS) and amino groups of carboxymethyl chitosan (CMC) through imine bond formation. Here, we studied the effect of sodium periodate concentration and reaction time on aldehyde content, molecular weight of derivatives and cytotoxicity of oPS towards 3T3-L1 fibroblasts. It was found that the molecular weights of all oPs decreased with oxidation and that the degree of oxidation was generally higher in oHA than in oALG. Studies showed that only oPs with an oxidation degree above 25% were cytotoxic. Initial studies were also done on the crosslinking of oPs with CMC showing with rheometry that rather soft gels were formed from higher oxidized oPs possessing a moderate cytotoxicity. The results of this study indicate the potential of oALG and oHA for use as in situ gelling hydrogels or inks in bioprinting for application in tissue engineering and controlled release.
Collapse
|
34
|
Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry 2020; 134:107536. [DOI: 10.1016/j.bioelechem.2020.107536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
|
35
|
Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch R, Boccaccini AR. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication 2020; 12:045005. [PMID: 32485696 DOI: 10.1088/1758-5090/ab98e4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biofabrication can be a tool to three-dimensionally (3D) print muscle cells embedded inside hydrogel biomaterials, ultimately aiming to mimic the complexity of the native muscle tissue and to create in-vitro muscle analogues for advanced repair therapies and drug testing. However, to 3D print muscle analogues of high cell alignment and synchronous contraction, the effect of biofabrication process parameters on myoblast growth has to be understood. A suitable biomaterial matrix is required to provide 3D printability as well as matrix degradation to create space for cell proliferation, matrix remodelling capacity, and cell differentiation. We demonstrate that by the proper selection of nozzle size and extrusion pressure, the shear stress during extrusion-bioprinting of mouse myoblast cells (C2C12) can achieve cell orientation when using oxidized alginate-gelatin (ADA-GEL) hydrogel bionk. The cells grow in the direction of printing, migrate to the hydrogel surface over time, and differentiate into ordered myotube segments in areas of high cell density. Together, our results show that ADA-GEL hydrogel can be a simple and cost-efficient biodegradable bioink that allows the successful 3D bioprinting and cultivation of C2C12 cells in-vitro to study muscle engineering.
Collapse
Affiliation(s)
- Thomas Distler
- Department of Materials Science and Engineering, Institute of Biomaterials, Erlangen 91058, Germany. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
36
|
Keller S, Bakker T, Kimmel B, Rebers L, Götz T, Tovar GEM, Kluger PJ, Southan A. Azido-functionalized gelatin via direct conversion of lysine amino groups by diazo transfer as a building block for biofunctional hydrogels. J Biomed Mater Res A 2020; 109:77-91. [PMID: 32421917 DOI: 10.1002/jbm.a.37008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 12/25/2022]
Abstract
Gelatin is one of the most prominent biopolymers in biomedical material research and development. It is frequently used in hybrid hydrogels, which combine the advantageous properties of bio-based and synthetic polymers. To prevent the biological component from leaching out of the hydrogel, the biomolecules can be equipped with azides. Those groups can be used to immobilize gelatin covalently in hydrogels by the highly selective and specific azide-alkyne cycloaddition. In this contribution, we functionalized gelatin with azides at its lysine residues by diazo transfer, which offers the great advantage of only minimal side-chain extension. Approximately 84-90% of the amino groups are modified as shown by 1 H-NMR spectroscopy, 2,4,6-trinitrobenzenesulfonic acid assay as well as Fourier-transform infrared spectroscopy, rheology, and the determination of the isoelectric point. Furthermore, the azido-functional gelatin is incorporated into hydrogels based on poly(ethylene glycol) diacrylate (PEG-DA) at different concentrations (0.6, 3.0, and 5.5%). All hydrogels were classified as noncyctotoxic with significantly enhanced cell adhesion of human fibroblasts on their surfaces compared to pure PEG-DA hydrogels. Thus, the new gelatin derivative is found to be a very promising building block for tailoring the bioactivity of materials.
Collapse
Affiliation(s)
- Silke Keller
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Tomke Bakker
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Benjamin Kimmel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Lisa Rebers
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Tobias Götz
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Petra J Kluger
- School of Applied Chemistry, Reutlingen University, Reutlingen, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
37
|
Shoma Suresh K, Bhat S, Guru BR, Muttigi MS, Seetharam RN. A nanocomposite hydrogel delivery system for mesenchymal stromal cell secretome. Stem Cell Res Ther 2020; 11:205. [PMID: 32460846 PMCID: PMC7251860 DOI: 10.1186/s13287-020-01712-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cell conditioned medium (MSC-CM) contains a cocktail of bioactive factors that act synergistically to induce therapeutic effects. This has been clearly demonstrated by in vivo applications of MSC-CM, but the establishment of controlled delivery systems is an unmet requirement for clinical translation. Methods We developed a nanocomposite-hydrogel (NP-H) comprised of poly-L-lactide nanoparticles (NPs) embedded in gelatin/hyaluronic acid (Gel/HA) hydrogel as a delivery vehicle for MSC-CM. First, we optimized the culture conditions for bone marrow-derived MSCs using serum-containing medium (SCM) and serum-free medium (SFM) and characterized the corresponding CM (serum-containing conditioned medium (ScCM) and serum-free conditioned medium (SfCM), respectively) for its potency and xeno markers. Then we prepared a composite matrix followed by physiochemical characterization and functional assays were performed. Results Nanocomposite hydrogel displayed an even distribution of NPs along with high porosity (> 60%) and swelling ratios > 1500%, while its protein release pattern corresponded to a mix of degradation and diffusion kinetics. Functional evaluation of the composites was determined using MSCs and human fibroblasts (HFFs). The cells seeded directly onto the composites displayed increasing metabolic activities over time, with ScCM-NP-H groups having maximum activity. The cells treated in vitro with 5% and 10% extracts of ScCM-NP-H and SfCM-NP-H exhibited a dose- and duration-dependent response. Cell activities reduced considerably for all groups, except 10% ScCM-NP-H, which displayed a significant increase over time. Conclusion We observed that sustained release of MSC-CM is required to prevent dose-dependent cytotoxicity. The proposed nanocomposite hydrogel for MSC-CM delivery can open up a new array for its clinical application.
Collapse
Affiliation(s)
- K Shoma Suresh
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India.,Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Samatha Bhat
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manjunatha S Muttigi
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India.
| | - Raviraja N Seetharam
- Stempeutics Research Private Limited, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India. .,Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
38
|
Kim MH, Lee JN, Lee J, Lee H, Park WH. Enzymatically Cross-Linked Poly(γ-glutamic acid) Hydrogel with Enhanced Tissue Adhesive Property. ACS Biomater Sci Eng 2020; 6:3103-3113. [DOI: 10.1021/acsbiomaterials.0c00411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Min Hee Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jee Na Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jeehee Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34134, South Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
39
|
Hasturk O, Jordan KE, Choi J, Kaplan DL. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 2020; 232:119720. [PMID: 31896515 PMCID: PMC7667870 DOI: 10.1016/j.biomaterials.2019.119720] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Silk fibroin (SF) was enzymatically crosslinked with tyramine-substituted silk fibroin (SF-TA) or gelatin (G-TA) to fabricate hybrid hydrogels with tunable gelation kinetics, mechanical properties and bioactivity. Horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) mediated crosslinking of SF in physiological buffers results in slow gelation and limited mechanical properties. Moreover, SF lacks cell attachment sequences, leading to poor cell-material interactions. These shortcomings can limit the uses of enzymatically crosslinked silk hydrogels in injectable tissue fillings, 3D bioprinting or cell microencapsulation, where rapid gelation and high bioactivity are desired. Here SF/SF-TA and SF/G-TA composite hydrogels were characterized for hydrogel properties and the influence of conjugated cyclic arginine-glycine-aspartic acid (RGD) peptide or G-TA content on bioactivity was explored. Both SF-TA and G-TA significantly increased gelation kinetics, improved mechanical properties and delayed enzymatic degradation in a concentration-dependent manner. β-Sheet formation and hydrogel stiffening were accelerated by SF-TA content but delayed by G-TA. Both cyclic RGD and G-TA significantly improved morphology and metabolic activity of human mesenchymal stem cells (hMSCs) cultured on or encapsulated in composite hydrogels. The hydrogel formulations introduced in this study provide improved control of gel formation and properties, along with biocompatible systems that can be utilized in tissue engineering and cell delivery applications.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Kathryn E Jordan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
40
|
Strätz J, Liedmann A, Heinze T, Fischer S, Groth T. Effect of Sulfation Route and Subsequent Oxidation on Derivatization Degree and Biocompatibility of Cellulose Sulfates. Macromol Biosci 2019; 20:e1900403. [DOI: 10.1002/mabi.201900403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Juliane Strätz
- Institute of Plant and Wood ChemistryTechnische Universität Dresden Pienner Str. 19 01737 Tharandt Germany
| | - Andrea Liedmann
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐Wittenberg Heinrich‐Damerow‐Str. 4 06120 Halle (Saale) Germany
| | - Thomas Heinze
- Institute for Organic Chemistry and Macromolecular ChemistryCenter of Excellence for Polysaccharide ResearchFriedrich Schiller University of Jena Humboldtstr. 10 07743 Jena Germany
| | - Steffen Fischer
- Institute of Plant and Wood ChemistryTechnische Universität Dresden Pienner Str. 19 01737 Tharandt Germany
| | - Thomas Groth
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐Wittenberg 06099 Halle (Saale) Germany
| |
Collapse
|
41
|
Lam T, Dehne T, Krüger JP, Hondke S, Endres M, Thomas A, Lauster R, Sittinger M, Kloke L. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J Biomed Mater Res B Appl Biomater 2019; 107:2649-2657. [PMID: 30860678 PMCID: PMC6790697 DOI: 10.1002/jbm.b.34354] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
To create artificial cartilage in vitro, mimicking the function of native extracellular matrix (ECM) and morphological cartilage-like shape is essential. The interplay of cell patterning and matrix concentration has high impact on the phenotype and viability of the printed cells. To advance the capabilities of cartilage bioprinting, we investigated different ECMs to create an in vitro chondrocyte niche. Therefore, we used methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (HAMA) in a stereolithographic bioprinting approach. Both materials have been shown to support cartilage ECM formation and recovery of chondrocyte phenotype. We used these materials as bioinks to create cartilage models with varying chondrocyte densities. The models maintained shape, viability, and homogenous cell distribution over 14 days in culture. Chondrogenic differentiation was demonstrated by cartilage-typical proteoglycan and type II collagen deposition and gene expression (COL2A1, ACAN) after 14 days of culture. The differentiation pattern was influenced by cell density. A high cell density print (25 × 106 cells/mL) led to enhanced cartilage-typical zonal segmentation compared to cultures with lower cell density (5 × 106 cells/mL). Compared to HAMA, GelMA resulted in a higher expression of COL1A1, typical for a more premature chondrocyte phenotype. Both bioinks are feasible for printing in vitro cartilage with varying differentiation patterns and ECM organization depending on starting cell density and chosen bioink. The presented technique could find application in the creation of cartilage models and in the treatment of articular cartilage defects using autologous material and adjusting the bioprinted constructs size and shape to the patient. © 2019 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2649-2657, 2019.
Collapse
Affiliation(s)
| | - Tilo Dehne
- Charité ‐ Universitätsmedizin BerlinDepartment of Rheumatology and Clinical Immunology, Laboratory for Tissue Engineering
| | | | | | | | | | - Roland Lauster
- Technische Universität BerlinInstitute of Medical BiotechnologyBerlinGermany
| | - Michael Sittinger
- Charité ‐ Universitätsmedizin BerlinDepartment of Rheumatology and Clinical Immunology, Laboratory for Tissue Engineering
| | | |
Collapse
|
42
|
Kripotou S, Stefanopoulou E, Culebras-Martínez M, Morales-Román RM, Gallego Ferrer G, Kyritsis A. Water dynamics and thermal properties of tyramine-modified hyaluronic acid - Gelatin hydrogels. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Kripotou S, Zafeiris K, Culebras-Martínez M, Gallego Ferrer G, Kyritsis A. Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:109. [PMID: 31444585 DOI: 10.1140/epje/i2019-11871-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We employed broadband dielectric spectroscopy (BDS), for the investigation of the water dynamics in partially hydrated hyaluronic acid (HA), and gelatin (Gel), enzymatically crosslinked hydrogels, in the water fraction ranges [Formula: see text]. Our results indicate that at low hydrations ([Formula: see text]), where the dielectric response of the hydrogels is identical during cooling and heating, water plasticizes strongly the polymeric matrix and is organized in clusters giving rise to [Formula: see text]-process, secondary water relaxation and to an additional slower relaxation process. This later process has been found to be related with the dc charge conductivity and can be described in terms of the conduction current relaxation mechanism. At slightly higher hydrations, however, always below the hydration level where ice is formed during cooling, we have recorded in HA hydrogel a strong water dielectric relaxation process, [Formula: see text], which has Arrhenius-like temperature dependence and large time scale resembling relaxation processes recorded in bulk low density amorphous solid water structures. This relaxation process shows a strong-to-fragile transition at [Formula: see text]C and our data suggest that the VTF-like process recorded at [Formula: see text]C is controlled by the same molecular process like long range charge transport. In addition, our data imply that the crossover temperature is related with the onset of structural rearrangements (increase in configurational entropy) of the macromolecules. In partially crystallized hydrogels ([Formula: see text]) HA exhibits at low temperatures the ice dielectric process consistent with the bulk hexagonal ice, whereas Gel hydrogel exhibits as main low temperature process a slow relaxation process that refers to open tetrahedral structures of water similar to low density amorphous ice structures and to bulk cubic ice. Regarding the water secondary relaxation processes, we have shown that the [Formula: see text]-process and the [Formula: see text] process are activated in water hydrogen bond networks with different structures.
Collapse
Affiliation(s)
- Sotiria Kripotou
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece
| | - Konstantinos Zafeiris
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece
| | - Maria Culebras-Martínez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Apostolos Kyritsis
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|
44
|
Sakai S, Ohi H, Taya M. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors. Biomolecules 2019; 9:E342. [PMID: 31387235 PMCID: PMC6722789 DOI: 10.3390/biom9080342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Composite hydrogels of hyaluronic acid and gelatin attract great attention in biomedical fields. In particular, the composite hydrogels obtained through processes that are mild for cells are useful in tissue engineering. In this study, hyaluronic acid/gelatin composite hydrogels obtained through a blue light-induced gelation that is mild for mammalian cells were studied for the effect of the content of each polymer in the precursor solution on gelation, properties of resultant hydrogels, and behaviors of human adipose stem cells laden in the hydrogels. Control of the content enabled gelation in less than 20 s, and also enabled hydrogels to be obtained with 0.5-1.2 kPa Young's modulus. Human adipose stem cells were more elongated in hydrogels with a higher rather than lower content of hyaluronic acid. Stem cell marker genes, Nanog, Oct4, and Sox2, were expressed more in the cells in the composite hydrogels with a higher content of hyaluronic acid compared with those in the hydrogel composed of gelatin alone and on tissue culture dishes. These results are useful for designing conditions for using gelatin/hyaluronic acid composite hydrogels obtained through blue light-induced gelation suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Hiromi Ohi
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masahito Taya
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
45
|
Silva Garcia JM, Panitch A, Calve S. Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior. Acta Biomater 2019; 84:169-179. [PMID: 30508655 DOI: 10.1016/j.actbio.2018.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023]
Abstract
Volumetric muscle loss (VML) occurs when skeletal muscle injury is too large for the body to fully self-repair. Typically, fibrotic tissue fills the void, which reduces muscle functionality and limb movement. Although a wide variety of natural and synthetic scaffolds have been studied with the purpose of providing the appropriate structural support, to date no scaffold has significantly restored muscle functionality after VML. Satellite cells, adult stem cells within the muscle capable of restoring smaller injuries, are sensitive to the stiffness and composition of the surrounding environment. Scaffolds that only address structural support are not sufficient to restore functionality and instead need to be designed to both promote satellite cell activation and prevent excessive fibroblast recruitment. The objective of this study was to design a scaffold that mimicked the regenerative environment and determine how the biomechanical properties differentially influence myogenic precursor and connective tissue cells. One of the main extracellular matrix (ECM) molecules upregulated during regeneration is hyaluronic acid (HA). Therefore, thiol-modified HA and poly(ethylene glycol) diacrylate hydrogels were generated and functionalized with peptides based on ECM known to influence regeneration, including fibronectin, laminin and tenascin-C. Scaffolds with different stiffness were created by varying HA content. The influence of HA stiffness and peptide functionalization on myogenic precursor and connective tissue cell proliferation, migration and gene expression was quantified. Our results indicated that HA hydrogels functionalized with the laminin peptide, IKVAV, show potential due to the enhanced promotion of myogenic cell behaviors including migration, proliferation and an increase in relevant transcription factors. STATEMENT OF SIGNIFICANCE: The goal of this study was to identify hyaluronic acid (HA) hydrogels with peptide and stiffness combinations that will direct muscle-derived cells towards regenerating phenotypes. While the interaction of skeletal muscle with RGD-functionalized HA hydrogels has been investigated, none of the other peptides described in this study had been used in the context of HA-based scaffolds and skeletal muscle-derived cells. Notably, the response of cells to variations in mechanics was dependent on ECM coating and lineage. The 3% HA functionalized with the laminin peptide, IKVAV, showed the most promise for future in vivo studies, as these hydrogels best promoted myoblast cell proliferation, attachment and spreading, enhanced migration over connective tissue cells and upregulated transcription factors associated with activated satellite cells.
Collapse
|
46
|
Sakai S, Mochizuki K, Qu Y, Mail M, Nakahata M, Taya M. Peroxidase-catalyzed microextrusion bioprinting of cell-laden hydrogel constructs in vaporized ppm-level hydrogen peroxide. Biofabrication 2018; 10:045007. [PMID: 30137024 DOI: 10.1088/1758-5090/aadc9e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrogels were prepared by contacting air containing 10-50 ppm H2O2 with an aqueous solution containing polymer(s) possessing phenolic hydroxyl (Ph) moieties (polymer-Ph) and horseradish peroxidase (HRP). In this system, HRP catalyzes cross-linking of the Ph moieties by consuming H2O2 diffused from the air. The hydrogelation rate and mechanical properties of the resultant hydrogels can be tuned by controlling the H2O2 concentration in air, the exposure time of the air containing H2O2 to the solution containing polymer-Phs and HRP, and the HRP concentration. The shortest hydrogelation time of the solution stirred in air containing 16 ppm H2O2 was 6 s. Based on these findings, this hydrogelation system was applied to microextrusion bioprinting, in which bioink containing polymer-Phs, HRP, and cells were extruded into air containing H2O2. The superior cytocompatibility of the bioprinting method was confirmed by more than 90% viability, migration, and the spreading of mouse fibroblast 10T1/2 cells enclosed in the bioprinted hydrogels composed of derivatives of hyaluronic acid and gelatin, both possessing Ph moieties. These results demonstrate the great potency of HRP-catalyzed hydrogelation consuming H2O2 supplied in surrounding air for various biomedical applications, especially bioprinting.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Thomas D, O'Brien T, Pandit A. Toward Customized Extracellular Niche Engineering: Progress in Cell-Entrapment Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703948. [PMID: 29194781 DOI: 10.1002/adma.201703948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The primary aim in tissue engineering is to repair, replace, and regenerate dysfunctional tissues to restore homeostasis. Cell delivery for repair and regeneration is gaining impetus with our understanding of constructing tissue-like environments. However, the perpetual challenge is to identify innovative materials or re-engineer natural materials to model cell-specific tissue-like 3D modules, which can seamlessly integrate and restore functions of the target organ. To devise an optimal functional microenvironment, it is essential to define how simple is complex enough to trigger tissue regeneration or restore cellular function. Here, the purposeful transition of cell immobilization from a cytoprotection point of view to that of a cell-instructive approach is examined, with advances in the understanding of cell-material interactions in a 3D context, and with a view to further application of the knowledge for the development of newer and complex hierarchical tissue assemblies for better examination of cell behavior and offering customized cell-based therapies for tissue engineering.
Collapse
Affiliation(s)
- Dilip Thomas
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
48
|
Moulisová V, Poveda-Reyes S, Sanmartín-Masiá E, Quintanilla-Sierra L, Salmerón-Sánchez M, Gallego Ferrer G. Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS OMEGA 2017; 2:7609-7620. [PMID: 29214232 PMCID: PMC5709783 DOI: 10.1021/acsomega.7b01303] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/13/2017] [Indexed: 05/14/2023]
Abstract
Gelatin-hyaluronic acid (Gel-HA) hybrid hydrogels have been proposed as matrices for tissue engineering because of their ability to mimic the architecture of the extracellular matrix. Our aim was to explore whether tyramine conjugates of Gel and HA, producing injectable hydrogels, are able to induce a particular phenotype of encapsulated human mesenchymal stem cells without the need for growth factors. While pure Gel allowed good cell adhesion without remarkable differentiation and pure HA triggered chondrogenic differentiation without cell spreading, the hybrids, especially those rich in HA, promoted chondrogenic differentiation as well as cell proliferation and adhesion. Secretion of chondrogenic markers such as aggrecan, SOX-9, collagen type II, and glycosaminoglycans was observed, whereas osteogenic, myogenic, and adipogenic markers (RUNX2, sarcomeric myosin, and lipoproteinlipase, respectively) were not present after 2 weeks in the growth medium. The most promising matrix for chondrogenesis seems to be a mixture containing 70% HA and 30% Gel as it is the material with the best mechanical properties from all compositions tested here, and at the same time, it provides an environment suitable for balanced cell adhesion and chondrogenic differentiation. Thus, it represents a system that has a high potential to be used as the injectable material for cartilage regeneration therapies.
Collapse
Affiliation(s)
- Vladimíra Moulisová
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Rankine Bld, Oakfield Avenue G12 8LT, Glasgow, U.K.
| | - Sara Poveda-Reyes
- Centre
for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n. 46022 Valencia, Spain
| | - Esther Sanmartín-Masiá
- Centre
for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n. 46022 Valencia, Spain
| | - Luis Quintanilla-Sierra
- BIOFORGE
Group, Centro de Investigación Científica y Desarrollo
Tecnológico, Universidad de Valladolid, Campus Miguel Delibes 47011 Valladolid, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, pabellón
11, planta 0, 28029 Madrid, Spain
| | - Manuel Salmerón-Sánchez
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Rankine Bld, Oakfield Avenue G12 8LT, Glasgow, U.K.
| | - Gloria Gallego Ferrer
- Centre
for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n. 46022 Valencia, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, pabellón
11, planta 0, 28029 Madrid, Spain
| |
Collapse
|
49
|
Mora-Boza A, Puertas-Bartolomé M, Vázquez-Lasa B, San Román J, Pérez-Caballer A, Olmeda-Lozano M. Contribution of bioactive hyaluronic acid and gelatin to regenerative medicine. Methodologies of gels preparation and advanced applications. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Oryan A, Sharifi P, Moshiri A, Silver IA. The role of three-dimensional pure bovine gelatin scaffolds in tendon healing, modeling, and remodeling: an in vivo investigation with potential clinical value. Connect Tissue Res 2017; 58:424-437. [PMID: 27662266 DOI: 10.1080/03008207.2016.1238468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY Large tendon defects involving extensive tissue loss present complex clinical problems. Surgical reconstruction of such injuries is normally performed by transplanting autogenous and allogenous soft tissues that are expected to remodel to mimic a normal tendon. However, the use of grafts has always been associated with significant limitations. Tissue engineering employing artificial scaffolds may provide acceptable alternatives. Gelatin is a hydrolyzed form of collagen that is bioactive, biodegradable, and biocompatible. The present study has investigated the suitability of gelatin scaffold for promoting healing of a large tendon-defect model in rabbits. MATERIALS AND METHODS An experimental model of a large tendon defect was produced by partial excision of the Achilles tendon of the left hind leg in adult rabbits. To standardize and stabilize the length of the tendon defect a modified Kessler core suture was anchored in the sectioned tendon ends. The defects were either left untreated or filled with three-dimensional gelatin scaffold. Before euthanasia 60 days after injury, the progress of healing was evaluated clinically. Samples of healing tendon were harvested at autopsy and evaluated by gross, histopathologic, scanning, and transmission electron microscopy, and by biomechanical testing. RESULTS The treated animals showed superior weight-bearing and physical activity compared with those untreated, while frequency of peritendinous adhesions around the healing site was reduced. The gelatin scaffold itself was totally degraded and replaced by neo-tendon that morphologically had significantly greater numbers, diameters, density, and maturation of collagen fibrils, fibers, and fiber bundles than untreated tendon scar tissue. It also had mechanically higher ultimate load, yield load, stiffness, maximum stress and elastic modulus, when compared to the untreated tendons. CONCLUSION Gelatin scaffold may be a valuable option in surgical reconstruction of large tendon defects.
Collapse
Affiliation(s)
- Ahmad Oryan
- a Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Pardis Sharifi
- a Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Ali Moshiri
- b RAZI Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Ian A Silver
- c Department of Anatomy, Center for Comparative and Clinical Anatomy , School of Veterinary Science , Bristol , UK
| |
Collapse
|