1
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
4
|
Xiao Y, Tang Z, Wang J, Liu C, Kong N, Farokhzad OC, Tao W. Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angew Chem Int Ed Engl 2020; 59:19787-19795. [DOI: 10.1002/anie.202008879] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Yufen Xiao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhongmin Tang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Junqing Wang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Chuang Liu
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Na Kong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Omid C. Farokhzad
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Wei Tao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
5
|
Xiao Y, Tang Z, Wang J, Liu C, Kong N, Farokhzad OC, Tao W. Plattformen für die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yufen Xiao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhongmin Tang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Junqing Wang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Chuang Liu
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Na Kong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Omid C. Farokhzad
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Wei Tao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
6
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
7
|
Wong CY, Martinez J, Zhao J, Al-Salami H, Dass CR. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm 2020; 46:1238-1252. [PMID: 32597264 DOI: 10.1080/03639045.2020.1788061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Therapeutic peptides are administered via parenteral route due to poor absorption in the gastrointestinal (GI) tract, instability in gastric acid, and GI enzymes. Polymeric drug delivery systems have achieved significant interest in pharmaceutical research due to its feasibility in protecting proteins, tissue targeting, and controlled drug release pattern. MATERIALS AND METHODS In this study, the size, polydispersity index, and zeta potential of insulin-loaded nanoparticles were characterized by dynamic light scattering and laser Doppler micro-electrophoresis. The main and interaction effects of chitosan concentration and Dz13Scr concentration on the physicochemical properties of the prepared insulin-loaded nanoparticles (size, polydispersity index, and zeta potential) were evaluated statistically using analysis of variance. A robust procedure of reversed-phase high-performance liquid chromatography was developed to quantify insulin release in simulated GI buffer. Results and discussion: We reported on the effect of two independent parameters, including polymer concentration and oligonucleotide concentration, on the physical characteristics of particles. Chitosan concentration was significant in predicting the size of insulin-loaded CS-Dz13Scr particles. In terms of zeta potential, both chitosan concentration and squared term of chitosan were significant factors that affect the surface charge of particles, which was attributed to the availability of positively-charged amino groups during interaction with negatively-charged Dz13Scr. The excipients used in this study could fabricate nanoparticles with negligible toxicity in GI cells and skeletal muscle cells. The developed formulation could conserve the physicochemical properties after being stored for 1 month at 4 °C. CONCLUSION The obtained results revealed satisfactory results for insulin-loaded CS-Dz13Scr nanoparticles (159.3 nm, pdi 0.331, -1.08 mV). No such similar study has been reported to date to identify the main and interactive significance of the above parameters for the characterization of insulin-loaded polymeric-oligonucleotide nanoparticles. This research is of importance for the understanding and development of protein-loaded nanoparticles for oral delivery.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - Jian Zhao
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
8
|
Clegg JR, Ludolph CM, Peppas NA. QCM-D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels. J Appl Polym Sci 2020; 137:48655. [PMID: 34732941 PMCID: PMC8562820 DOI: 10.1002/app.48655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/09/2019] [Indexed: 09/14/2023]
Abstract
Environmentally responsive nanomaterials have been developed for drug delivery applications, in an effort to target and accumulate therapeutic agents at sites of disease. Within a biological system, these nanomaterials will experience diverse conditions which encompass a variety of solute identities and concentrations. In this study, we developed a new quartz crystal microbalance with dissipation (QCM-D) assay, which enabled the quantitative analysis of nanogel swelling, protein adsorption, and biodegradation in a single experiment. As a proof of concept, we employed this assay to characterize non-degradable and biodegradable poly(acrylamide-co-methacrylic acid) nanogels. We compared the QCM-D results to those obtained by dynamic light scattering to highlight the advantages and limitations of each method. We detailed our protocol development and practical recommendations, and hope that this study will serve as a guide for others to design application-specific QCM-D assays within the nanomedicine domain.
Collapse
Affiliation(s)
- John R. Clegg
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712
| | - Catherine M. Ludolph
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, the University of Texas at Austin, 107 W. Dean Keeton St., Stop C0800, Austin, Texas P. O. Box 78712
| |
Collapse
|
9
|
Ozay O, Ilgin P, Ozay H, Gungor Z, Yilmaz B, Kıvanç MR. The preparation of various shapes and porosities of hydroxyethyl starch/p(HEMA-co-NVP) IPN hydrogels as programmable carrier for drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1700803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Pinar Ilgin
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Canakkale Onsekiz Mart University, Canakkale/Lapseki, Turkey
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Zeynep Gungor
- Graduate School of Natural and Applied Sciences, Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Betul Yilmaz
- Graduate School of Natural and Applied Sciences, Department of Bioengineering and Materials Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehmet Rıza Kıvanç
- Department of Chemistry, Faculty of Education, Van Yüzüncü YılUniversity, Van, Turkey
| |
Collapse
|
10
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Wang J, Deng M, Xiao Y, Hao W, Zhu C. Dielectric and transport properties of cationic polyelectrolyte membrane P(NVP-co-DMDAAC)/PVA for solid-state supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj00468h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic polyelectrolyte with good ionic conductivity and dielectric properties was prepared; the membrane thickness is a key parameter.
Collapse
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Mengde Deng
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Yahui Xiao
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Wentao Hao
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| | - Chengfeng Zhu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei 23009
- P. R. China
| |
Collapse
|
13
|
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018; 8:147-164. [PMID: 29719776 PMCID: PMC5925450 DOI: 10.1016/j.apsb.2018.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins and peptides have revolutionized treatment for a number of diseases, and the expected increase in macromolecule-based therapies brings a new set of challenges for the pharmaceutics field. Due to their poor stability, large molecular weight, and poor transport properties, therapeutic proteins and peptides are predominantly limited to parenteral administration. The short serum half-lives typically require frequent injections to maintain an effective dose, and patient compliance is a growing issue as therapeutic protein treatments become more widely available. A number of studies have underscored the relationship of subcutaneous injections with patient non-adherence, estimating that over half of insulin-dependent adults intentionally skip injections. The development of oral formulations has the potential to address some issues associated with non-adherence including the interference with daily activities, embarrassment, and injection pain. Oral delivery can also help to eliminate the adverse effects and scar tissue buildup associated with repeated injections. However, there are several major challenges associated with oral delivery of proteins and peptides, such as the instability in the gastrointestinal (GI) tract, low permeability, and a narrow absorption window in the intestine. This review provides a detailed overview of the oral delivery route and associated challenges. Recent advances in formulation and drug delivery technologies to enhance bioavailability are discussed, including the co-administration of compounds to alter conditions in the GI tract, the modification of the macromolecule physicochemical properties, and the use of improved targeted and controlled release carriers.
Collapse
Affiliation(s)
- Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Margaret P. Gran
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. Tel.: +1 512 471 6644; fax: +1 512 471 8227.
| |
Collapse
|
14
|
Sharpe LA, Vela Ramirez JE, Haddadin OM, Ross KA, Narasimhan B, Peppas NA. pH-Responsive Microencapsulation Systems for the Oral Delivery of Polyanhydride Nanoparticles. Biomacromolecules 2018; 19:793-802. [PMID: 29443509 DOI: 10.1021/acs.biomac.7b01590] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multicompartmental polymer carriers, referred to as Polyanhydride-Releasing Oral MicroParticle Technology (PROMPT), were formed by a pH-triggered antisolvent precipitation technique. Polyanhydride nanoparticles were encapsulated into anionic pH-responsive microparticle gels, allowing for nanoparticle encapsulation in acidic conditions and subsequent release in neutral pH conditions. The effects of varying the nanoparticle composition and feed ratio on the encapsulation efficiency were evaluated. Nanoparticle encapsulation was confirmed by confocal microscopy and infrared spectroscopy. pH-triggered protein delivery from PROMPT was explored using ovalbumin (ova) as a model drug. PROMPT microgels released ova in a pH-controlled manner. Increasing the feed ratio of nanoparticles into the microgels increased the total amount of ova delivered, as well as decreased the observed burst release. The cytocompatibility of the polymer materials were assessed using cells representative of the GI tract. Overall, these results suggest that pH-dependent microencapsulation is a viable platform to achieve targeted intestinal delivery of polyanhydride nanoparticles and their payload(s).
Collapse
Affiliation(s)
| | | | | | - Kathleen A Ross
- Department of Chemical and Biological Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | | |
Collapse
|
15
|
Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm 2017; 537:223-244. [PMID: 29288095 DOI: 10.1016/j.ijpharm.2017.12.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/17/2017] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic metabolic health disease affecting the homeostasis of blood sugar levels. However, subcutaneous injection of insulin can lead to patient non-compliance, discomfort, pain and local infection. Sub-micron sized drug delivery systems have gained attention in oral delivery of insulin for diabetes treatment. In most of the recent literature, the terms "microparticles" and "nanoparticle" refer to particles where the dimensions of the particle are measured in micrometers and nanometers respectively. For instance, insulin-loaded particles are defined as microparticles with size larger than 1 μm by most of the research groups. The size difference between nanoparticles and microparticles proffers numerous effects on the drug loading efficiency, aggregation, permeability across the biological membranes, cell entry and tissue retention. For instance, microparticulate drug delivery systems have demonstrated a number of advantages including protective effect against enzymatic degradation, enhancement of peptide stability, site-specific and controlled drug release. Compared to nanoparticulate drug delivery systems, microparticulate formulations can facilitate oral absorption of insulin by paracellular, transcellular and lymphatic routes. In this article, we review the current status of microparticles, microcapsules and microspheres for oral administration of insulin. A number of novel techniques including layer-by-layer coating, self-polymerisation of shell, nanocomposite microparticulate drug delivery system seem to be promising for enhancing the oral bioavailability of insulin. This review draws several conclusions for future directions and challenges to be addressed for optimising the properties of microparticulate drug formulations and enhancing their hypoglycaemic effects.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|