1
|
Colombo S, Oble J, Poli G, Lo Presti L, Macetti G, Contini A, Broggini G, Papis M, Loro C. Doubly Metathetic NiCl 2-Catalyzed Coupling Between Bis(2-oxazolines) and Aldehydes: A Novel Access to Bis(ester-imine) Derivatives. Molecules 2024; 29:5756. [PMID: 39683917 DOI: 10.3390/molecules29235756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The coupling between bis(2-oxazolines) and two equivalents of aromatic aldehydes in the presence of catalytic amounts of NiCl2 affords an ester-imine product in synthetically useful yields. This virtually unknown, 100% atom-economic transformation involves the formal metathesis between the C=N double bond of the bis(2-oxazoline) moiety, which undergoes ring-opening, and the C=O double bond of the aldehyde. The scope of this transformation is studied, and a mechanism is proposed based on DFT calculations.
Collapse
Affiliation(s)
- Sara Colombo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Julie Oble
- IPCM, Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et Ingénierie, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Giovanni Poli
- IPCM, Institut Parisien de Chimie Moléculaire, CNRS, Faculté des Sciences et Ingénierie, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Giovanni Macetti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, DISFARM, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Marta Papis
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Camilla Loro
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100 Como, Italy
| |
Collapse
|
2
|
Simon L, Reichel LS, Benkhaled BT, Devoisselle JM, Catrouillet S, Eberhardt J, Hoeppener S, Schubert US, Brendel JC, Morille M, Lapinte V, Traeger A. Polyoxazolines with Cholesterol Lipid Anchor for Fast Intracellular Delivery. Macromol Biosci 2024; 24:e2400148. [PMID: 39374348 DOI: 10.1002/mabi.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Indexed: 10/09/2024]
Abstract
Due to the increasing challenges posed by the growing immunity to poly(ethylene glycol) (PEG), there is growing interest in innovative polymer-based materials as viable alternatives. In this study, the advantages of lipids and polymers are combined to allow efficient and rapid cytoplasmic drug delivery. Specifically, poly(2-methyl-2-oxazoline) is modified with a cholesteryl hemisuccinate group as a lipid anchor (CHEMSPOx). The CHEMSPOx is additionally functionalized with a coumarin group (CHEMSPOx-coumarin). Both polymers self-assembled in water into vesicles of ≈100 nm and are successfully loaded with a hydrophobic model drug. The loaded vesicles reveal high cellular internalization across variant cell lines within 1 h at 37 °C as well as 4 °C, albeit to a lesser extent. A kinetic study confirms the fast internalization within 5 min after the sample's addition. Therefore, different internalization pathways are involved, e.g., active uptake but also nonenergy dependent mechanisms. CHEMSPOx and CHEMSPOx-coumarin further demonstrate excellent cyto-, hemo-, and membrane compatibility, as well as a membrane-protecting effect, which underlines their good safety profile for potential biological intravenous application. Overall, CHEMSPOx, as a lipopolyoxazoline, holds great potential for versatile biological applications such as fast and direct intracellular delivery or cellular lysis protection.
Collapse
Affiliation(s)
| | - Liên Sabrina Reichel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | | | | | | | - Juliane Eberhardt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes Christopher Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Marie Morille
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
- Institut universitaire de France (IUF), Paris, France
| | | | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
3
|
Kopka B, Kost B, Pawlak A, Bąk-Sypień I, Brzeziński M, Tomaszewska A, Krupa A, Jóźwiak P, Basko M. Biocompatible, porous hydrogels composed of aliphatic polyesters and poly(2-isopropenyl-2-oxazoline). Their application as scaffolds for bone tissue regeneration. SOFT MATTER 2024; 20:6655-6667. [PMID: 39109674 DOI: 10.1039/d4sm00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this study, porous networks were efficiently prepared by crosslinking hydrophilic poly(2-isopropenyl-2-oxazoline) (PiPOx) with dicarboxylic polyesters (HOOC-PLA-COOH or HOOC-PCL-COOH) in the presence of sodium chloride as a water-soluble porogen. Importantly, by using a relatively simple synthetic protocol, the resulting spongy materials were freely formed to the desired size and shape while maintaining stable dimensions. According to the SEM data, the porous 3D structure can be altered by the pore dimensions, which are dependent on the porogen crystal size. After porosity characterization, the mechanical properties were also evaluated via uniaxial compression and tensile tests. The porous networks formed hydrogels with a high water absorption capacity. Finally, after showing cytocompatibility by the MTT assay, we also demonstrated the applicability of the porous hydrogels as scaffolds for cell cultivation. The presented results suggest that this type of hydrogels is a promising material for tissue engineering.
Collapse
Affiliation(s)
- Bartosz Kopka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Matejki 21/23, 90-237 Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Andrzej Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Irena Bąk-Sypień
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Matejki 21/23, 90-237 Lodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Piotr Jóźwiak
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
4
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
5
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
6
|
Kadokawa JI. Hydrogelation from Self-Assembled and Scaled-Down Chitin Nanofibers by the Modification of Highly Polar Substituents. Gels 2023; 9:432. [PMID: 37367103 DOI: 10.3390/gels9060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Chitin nanofibers (ChNFs) with a bundle structure were fabricated via regenerative self-assembly at the nanoscale from a chitin ion gel with an ionic liquid using methanol. Furthermore, the bundles were disentangled by partial deacetylation under alkaline conditions, followed by cationization and electrostatic repulsion in aqueous acetic acid to obtain thinner nanofibers called scaled-down ChNFs. This review presents a method for hydrogelation from self-assembled and scaled-down ChNFs by modifying the highly polar substituents on ChNFs. The modification was carried out by the reaction of amino groups on ChNFs, which were generated by partial deacetylation, with reactive substituent candidates such as poly(2-oxazoline)s with electrophilic living propagating ends and mono- and oligosaccharides with hemiacetallic reducing ends. The substituents contributed to the formation of network structures from ChNFs in highly polar dispersed media, such as water, to produce hydrogels. Moreover, after the modification of the maltooligosaccharide primers on ChNFs, glucan phosphorylase-catalyzed enzymatic polymerization was performed from the primer chain ends to elongate the amylosic graft chains on ChNFs. The amylosic graft chains formed double helices between ChNFs, which acted as physical crosslinking points to construct network structures, giving rise to hydrogels.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
Deng H, Wang J, He W, Ye Y, Bai R, Zhang X, Ye XY, Xie T, Hui Z. Microwave-assisted rapid synthesis of chiral oxazolines. Org Biomol Chem 2023; 21:2312-2319. [PMID: 36637123 DOI: 10.1039/d2ob02192g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral oxazoline compounds play an extremely important role in asymmetric synthesis and drug discovery. Herein a simpler, greener and more efficient microwave-assisted protocol to rapidly access chiral oxazolines is developed using aryl nitriles or cyano-containing compounds and chiral β-amino alcohols as starting materials. The reaction proceeds smoothly in the presence of a recoverable heterogeneous catalyst in either concentrated solution or under solvent-free conditions. The advantages of this method include rapidness, convenience, environmental protection, high atom economy, and excellent yields. The protocol should find wider application in the community in the future.
Collapse
Affiliation(s)
- Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Jianshe Wang
- Drug Discovery, Hangzhou PurpleCrystal Pharma Co. Ltd, Hangzhou, Zhejiang 311121, China
| | - Wei He
- Chemical Manufacturing and Control, Adlai Nortye Ltd, Hangzhou, Zhejiang 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Xuelei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| |
Collapse
|
8
|
Borova S, Luxenhofer R. Investigation of cationic ring-opening polymerization of 2-oxazolines in the "green" solvent dihydrolevoglucosenone. Beilstein J Org Chem 2023; 19:217-230. [PMID: 36895428 PMCID: PMC9989667 DOI: 10.3762/bjoc.19.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 03/06/2023] Open
Abstract
For about the last ten years, poly(2-oxazoline)s have attracted significant attention as potential material for biomedical applications in, e.g., drug delivery systems, tissue engineering and more. Commonly, the synthesis of poly(2-oxazoline)s involves problematic organic solvents that are not ideal from a safety and sustainability point of view. In this study, we investigated the cationic ring-opening polymerization of 2-ethyl-2-oxazoline and 2-butyl-2-oxazoline using a variety of initiators in the recently commercialized "green" solvent dihydrolevoglucosenone (DLG). Detailed 1H NMR spectroscopic analysis was performed to understand the influence of the temperature and concentration on the polymerization process. Size exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were performed to determine the molar mass of the resulting polymers. Our work shows clearly that the solvent is not inert under the conditions typically used for the cationic ring-opening polymerization, as evidenced by side products and limited control over the polymerization. However, we could establish that the use of the 2-ethyl-3-methyl-2-oxazolinium triflate salt as an initiator at 60 °C results in polymers with a relatively narrow molar mass distribution and a reasonable control over the polymerization process. Further work will be necessary to establish whether a living polymerization can be achieved by additional adjustments.
Collapse
Affiliation(s)
- Solomiia Borova
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilans-University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilans-University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PO Box 55, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Vergaelen M, Monnery BD, Jerca VV, Hoogenboom R. Detailed Understanding of Solvent Effects for the Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Maarten Vergaelen
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Bryn D. Monnery
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Targeted Drug Delivery with Nanomedicine Group, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Valentin Victor Jerca
- Smart Organic Materials Group, “Costin D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, 202B Spl. Independentei CP 35-108, Bucharest 060023, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Yang L, Wang F, Ren P, Zhang T, Zhang Q. Poly(2-oxazoline)s: synthesis and biomedical applications. Macromol Res 2023. [DOI: 10.1007/s13233-023-00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Verjans J, Sedlačík T, Jerca VV, Bernhard Y, Van Guyse JFR, Hoogenboom R. Poly( N-allyl acrylamide) as a Reactive Platform toward Functional Hydrogels. ACS Macro Lett 2023; 12:79-85. [PMID: 36595222 DOI: 10.1021/acsmacrolett.2c00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis of poly(N-allyl acrylamide) (PNAllAm) as a platform for the preparation of functional hydrogels is described. The PNAllAm was synthesized via organocatalyzed amidation of poly(methyl acrylate) (PMA) with allylamine and characterized by 1H NMR spectroscopy, size exclusion chromatography (SEC), and turbidimetry, which allowed an estimation of the lower critical solution temperature of ∼26 °C in water. The PNAllAm was then used to make functional hydrogels via photoinitiated thiol-ene chemistry, where dithiothreitol (DTT) was used to cross-link the polymer chains. In addition, mercaptoethanol (ME) was added as a functional thiol to modulate the hydrogel properties. A decrease of the volume-phase transition temperature of the resulting hydrogels was observed with increasing ME content. Altogether this work introduces a straightforward way for the preparation of PNAllAm from PMA and demonstrates its value as a reactive polymer platform for the generation of functional hydrogels.
Collapse
Affiliation(s)
- Jente Verjans
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Tomáš Sedlačík
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
12
|
Belkhir K, Cerlati O, Heaugwane D, Tosi A, Benkhaled BT, Brient PL, Chatard C, Graillot A, Catrouillet S, Balor S, Goudounèche D, Payré B, Laborie P, Lim JH, Putaux JL, Vicendo P, Gibot L, Lonetti B, Mingotaud AF, Lapinte V. Synthesis and Self-Assembly of UV-Cross-Linkable Amphiphilic Polyoxazoline Block Copolymers: Importance of Multitechnique Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16144-16155. [PMID: 36516233 DOI: 10.1021/acs.langmuir.2c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the nanomedicine field, there is a need to widen the availability of nanovectors to compensate for the increasingly reported side effects of poly(ethene glycol). Nanovectors enabling cross-linking can further optimize drug delivery. Cross-linkable polyoxazolines are therefore relevant candidates to address these two points. Here we present the synthesis of coumarin-functionalized poly(2-alkyl-2-oxazoline) block copolymers, namely, poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) and poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline). The hydrophilic ratio and molecular weights were varied in order to obtain a range of possible behaviors. Their self-assembly after nanoprecipitation or film rehydration was examined. The resulting nano-objects were fully characterized by transmission electron microscopy (TEM), cryo-TEM, multiple-angle dynamic and static light scattering. In most cases, the formation of polymer micelles was observed, as well as, in some cases, aggregates, which made characterization more difficult. Cross-linking was performed under UV illumination in the presence of a coumarin-bearing cross-linker based on polymethacrylate derivatives. Addition of the photo-cross-linker and cross-linking resulted in better-defined objects with improved stability in most cases.
Collapse
Affiliation(s)
- Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Orélia Cerlati
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Diana Heaugwane
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Alice Tosi
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | | | | | - Camille Chatard
- Specific Polymers, 150 Avenue des Cocardières, 34160Castries, France
| | - Alain Graillot
- Specific Polymers, 150 Avenue des Cocardières, 34160Castries, France
| | - Sylvain Catrouillet
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Stéphanie Balor
- METi Platform, Université Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex, France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062Toulouse cedex, France
| | - Pascale Laborie
- Technopolym, Institut de Chimie de Toulouse ICT-UAR 2599, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Jia-Hui Lim
- Université Grenoble Alpes, CNRS, CERMAV, F-38000Grenoble, France
| | - Jean-Luc Putaux
- Université Grenoble Alpes, CNRS, CERMAV, F-38000Grenoble, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, 34090Montpellier, France
| |
Collapse
|
13
|
Haslinger C, Zahoranová A, Baudis S. Synthesis of coumarin-containing poly(2-oxazoline)s and light-induced crosslinking for hydrogel formation. MONATSHEFTE FUR CHEMIE 2022; 154:459-471. [PMID: 37091355 PMCID: PMC10113345 DOI: 10.1007/s00706-022-03013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
AbstractHerein, we present a new route to synthesize poly(2-oxazoline)s (POx) with coumarin moieties as pendant groups that can be crosslinked by irradiation to form hydrogels. The synthesis of a novel coumarin-containing 2-oxazoline monomer, 2-[(4-methyl-7-coumarinyloxy)methyl]oxazoline is described in four steps and further its subsequent homo- and copolymerization with 2-ethyl-2-oxazoline (EtOx) via cationic ring-opening polymerization (CROP). The received polymers with different coumarin content (8, 4 and 2 mol%) were compared with a known copolymer synthesized via postpolymerization modification of partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx) with a coumarin derivative. The thermoresponsive behavior of the POx in aqueous solutions was investigated, showing a clear difference in the cloud point temperature (Tcp) between the polymers synthesized via different strategies. The hydrogel formation was achieved by irradiation with UV light by the following two methods: on the one hand with the pure coumarin-containing POx and on the other hand mixed with poly(ethylene glycol) diacrylate (PEGDA). The obtained hydrogels were compared regarding their swelling degree and their gel content, whereas the swelling degree in water of prepared hydrogels can be tuned by using POx by varying the coumarin content.
Graphical abstract
Collapse
|
14
|
Son S, Park H, Jang WD, Ju SY. Larger diameter selection of carbon nanotubes by two phase extraction using amphiphilic polymeric surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Bardoula V, Leclercq L, Hoogenboom R, Nardello-Rataj V. Amphiphilic nonionic block and gradient copoly(2-oxazoline)s based on 2-methyl-2-oxazoline and 2-phenyl-2-oxazoline as efficient stabilizers for the formulation of tailor-made emulsions. J Colloid Interface Sci 2022; 632:223-236. [DOI: 10.1016/j.jcis.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
16
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
17
|
|
18
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Jana S, Hoogenboom R. Poly(2‐oxazoline)s: A comprehensive overview of polymer structures and their physical properties – An update. POLYM INT 2022. [DOI: 10.1002/pi.6426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry Ghent University, Krijgslaan 281‐S4 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry Ghent University, Krijgslaan 281‐S4 9000 Ghent Belgium
| |
Collapse
|
20
|
Luo C, Xie S, Deng X, Sun Y, Shen Y, Li M, Fu W. From Micelle-like Aggregates to Extremely-stretchable, Fatigue-resistant, Highly-resilient and Self-healable Hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives. Gels 2022; 8:gels8020064. [PMID: 35200446 PMCID: PMC8870900 DOI: 10.3390/gels8020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
The combination of natural and synthetic polymers to form hybrid hydrogels offers the potential of fabricating new materials that possess a combination of properties resulting from both types of polymer classes. Within this work, two alkene-functionalized poly(2-alkyl/aryl–2-oxazoline) (PAOx) copolymers and one gelatin derivative, thiolated gelatin (gel-SH), are synthesized as precursors for hybrid hydrogels through a photo-induced radical thiol-ene crosslinking process. In-situ photo-rheology revealed an increased mechanical stability for hydrogels that possess an excess amount of PAOx precursor. A final qualitative investigation of the thermo-responsive properties of a P(EtOx270–norbornenOx30):gel-SH (2:1) hydrogel film revealed a cloud point temperature (Tcp) in the same range as the Tcp of the P(EtOx270–norbornenOx30) polymer precursor, which is around 30 °C. This promising result demonstrates that thermo-responsive hybrid poly(2-oxazoline)-gelatin hydrogels could be prepared with predictable Tcps and that further investigation into this appealing feature might be of interest. Ultimately, this work shows a proof-of-concept of using PAOx as potential hybrid hydrogel precursor in combination with cell-interactive gelatin derivatives to potentially improve the mechanical stability of the final scaffolds and introduce additional features such as thermo-responsiveness for the purpose of drug delivery.
Collapse
|
22
|
Brossier T, Benkhaled BT, Colpaert M, Volpi G, Guillaume O, Blanquer S, Lapinte V. Polyoxazoline Hydrogels fabricated by Stereolithography. Biomater Sci 2022; 10:2681-2691. [DOI: 10.1039/d2bm00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hydrogel materials in additive manufacturing displaying stiff and strong mechanical properties while maintaining high water uptake, remains a great challenge. Taking advantage of the versatility of poly(oxazoline)...
Collapse
|
23
|
Hu C, Ahmad T, Haider MS, Hahn L, Stahlhut P, Groll J, Luxenhofer R. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Biofabrication 2021; 14. [PMID: 34875631 DOI: 10.1088/1758-5090/ac40ee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022]
Abstract
Alginates are the most commonly used bioink in biofabrication, but their rheological profiles makes it very challenging to perform real 3D printing. In this study, an advanced hybrid hydrogel ink was developed, a mixture of thermogelling diblock copolymer, alginate and clay i.e. Laponite XLG. The reversible thermogelling and shear thinning properties of the diblock copolymer in the ink system improves handling and 3D printability significantly. Various three-dimensional constructs, including suspended filaments, were printed successfully with high shape fidelity and excellent stackability. Subsequent ionic crosslinking of alginate fixates the printed scaffolds, while the diblock copolymer is washed out of the structure, acting as a fugitive material on the (macro)molecular level. Finally, cell-laden printing and culture over 21 days demonstrated good cytocompatibility and feasibility of the novel hybrid hydrogels for 3D bioprinting. We believe that the developed material could be interesting for a wide range of bioprinting applications including tissue engineering and drug screening, potentially enabling also other biological bioinks such as collagen, hyaluronic acid, decellularized extracellular matrix or cellulose based bioinks.
Collapse
Affiliation(s)
- Chen Hu
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Taufiq Ahmad
- Department for Functional Materials in Medicine and Dentistry , University of Würzburg, Pleicherwall 2, Würzburg, Würzburg, D-97070, GERMANY
| | - Malik Salman Haider
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Lukas Hahn
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Julius Maximilians University Würzburg, Pleicherwall 2, Wurzburg, 97070, GERMANY
| | - Juergen Groll
- Department for Functional Materials in Medicine and Dentistry, Julius-Maximilians-Universitat Wurzburg, Pleicherwall 2, D17, D-97070 Wurzburg, Wurzburg, 97070, GERMANY
| | - Robert Luxenhofer
- Chemistry and Pharmacy, Julius-Maximilians-Universitat Wurzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| |
Collapse
|
24
|
Hahn L, Karakaya E, Zorn T, Sochor B, Maier M, Stahlhut P, Forster S, Fischer K, Seiffert S, Pöppler AC, Detsch R, Luxenhofer R. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile. Biomacromolecules 2021; 22:3017-3027. [PMID: 34100282 DOI: 10.1021/acs.biomac.1c00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels are key components in several biomedical research areas such as drug delivery, tissue engineering, and biofabrication. Here, a novel ABA-type triblock copolymer comprising poly(2-methyl-2-oxazoline) as the hydrophilic A blocks and poly(2-phenethyl-2-oxazoline) as the aromatic and hydrophobic B block is introduced. Above the critical micelle concentration, the polymer self-assembles into small spherical polymer micelles with a hydrodynamic radius of approx 8-8.5 nm. Interestingly, this specific combination of hydrophilic and hydrophobic aromatic moieties leads to rapid thermoresponsive inverse gelation at polymer concentrations above a critical gelation concentration (20 wt %) into a macroporous hydrogel of densely packed micelles. This hydrogel exhibited pronounced viscoelastic solid-like properties, as well as extensive shear-thinning, rapid structure recovery, and good strain resistance properties. Excellent 3D-printability of the hydrogel at lower temperature opens a wide range of different applications, for example, in the field of biofabrication. In preliminary bioprinting experiments using NIH 3T3 cells, excellent cell viabilities of more than 95% were achieved. The particularly interesting feature of this novel material is that it can be used as a printing support in hybrid bioink systems and sacrificial bioink due to rapid dissolution at physiological conditions.
Collapse
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Friedrich Alexander University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Theresa Zorn
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Benedikt Sochor
- Chair for X-Ray Microscopy, Julius-Maximilians-University Würzburg, Josef-Martin-Weg 63, Würzburg 97074, Germany
| | - Matthias Maier
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Julius-Maximilians-University Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Stefan Forster
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Karl Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich Alexander University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany.,Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
25
|
Hu C, Haider MS, Hahn L, Yang M, Luxenhofer R. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel. J Mater Chem B 2021; 9:4535-4545. [PMID: 34037651 DOI: 10.1039/d1tb00484k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high intrinsic 3D printing performance has been proven to be a major challenge. Herein, a novel 3D printable organic-inorganic hybrid hydrogel is developed from three components, and characterized in detail in terms of rheological property, swelling behavior and composition. The nanocomposite hydrogel combines a thermoresponsive hydrogel with clay LAPONITE® XLG and in situ polymerized poly(N,N-dimethylacrylamide). Before in situ polymerization, the thermogelling and shear thinning properties of the thermoresponsive hydrogel provides a system well-suited for extrusion-based 3D printing. After chemical curing of the 3D-printed constructs by free radical polymerization, the resulting interpenetrating polymer network hydrogel shows excellent mechanical strength with a high stretchability to a tensile strain at break exceeding 550%. Integrating with the advanced 3D-printing technique, the introduced material could be interesting for a wide range of applications including tissue engineering, drug delivery, soft robotics and additive manufacturing in general.
Collapse
Affiliation(s)
- Chen Hu
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Malik Salman Haider
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Mengshi Yang
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany. and Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
26
|
Kitasono S, Yamamoto K, Kadokawa JI. Preparation and gelation behaviors of poly(2-oxazoline)-grafted chitin nanofibers. Carbohydr Polym 2021; 259:117709. [PMID: 33673988 DOI: 10.1016/j.carbpol.2021.117709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Based on our previous work on successful gelation of poly(2-methyl-2-oxazoline)-grafted chitin nanofibers (ChNFs) with high polar media, in this study, we investigated the preparation and gelation behaviors of the ChNFs having different poly(2-alkyl-2-oxazoline) graft chains, that is, poly(2-methyl-2-oxazoline), poly(2-isopropyl-2-oxazoline), and poly(2-butyl-2-oxazoline), with various disperse media. The grafting was carried out by reactions of living propagating ends of poly(2-alkyl-2-oxazoline)s with amino groups present on the self-assembled ChNFs, which were obtained from a chitin ion gel. The products formed gels in the reaction mixtures, which could be converted into hydrogels. All the products with the three poly(2-alkyl-2-oxazoline) graft chains formed gels with high polar media. Besides, gelation of the product with poly(2-butyl-2-oxazoline) was observed by immersing it in relatively non-polar media such as benzyl alcohol, ethyl acetate, and toluene. The formation process of network structures by the grafting of poly(2-alkyl-2-oxazoline)s on ChNFs is proposed to induce gelation of the products.
Collapse
Affiliation(s)
- Seiya Kitasono
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Kazuya Yamamoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
27
|
Drozdov AD. Equilibrium Swelling of Biocompatible Thermo-Responsive Copolymer Gels. Gels 2021; 7:40. [PMID: 33916014 PMCID: PMC8167660 DOI: 10.3390/gels7020040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
Biomedical applications of thermo-responsive (TR) hydrogels require these materials to be biocompatible, non-cytotoxic, and non-immunogenic. Due to serious concerns regarding potential toxicity of poly(N-isopropylacrylamide) (PNIPAm), design of alternative homo- and copolymer gels with controllable swelling properties has recently become a hot topic. This study focuses on equilibrium swelling of five potential candidates to replace PNIPAm in biomedical and biotechnological applications: poly(N-vinylcaprolactam), poly(vinyl methyl ether), poly(N,N-dimethyl amino ethyl methacrylate), and two families of poly(2-oxazoline)s, and poly(oligo(ethylene glycol) methacrylates). To evaluate their water uptake properties and to compare them with those of substituted acrylamide gels, a unified model is developed for equilibrium swelling of TR copolymer gels with various types of swelling diagrams. Depending on the strength of hydrophobic interactions (high, intermediate, and low), the (co)polymers under consideration are split into three groups that reveal different responses at and above the volume phase transition temperature.
Collapse
Affiliation(s)
- Aleksey D Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark
| |
Collapse
|
28
|
Dargaville TR, Harkin DG, Park JR, Cavalcanti A, Bolle ECL, Savi FM, Farrugia BL, Monnery BD, Bernhard Y, Van Guyse JFR, Podevyn A, Hoogenboom R. Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules 2021; 22:1590-1599. [PMID: 33764748 DOI: 10.1021/acs.biomac.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rapid photo-curing system based on poly(2-ethyl-2-oxazoline-co-2-allylamidopropyl-2-oxazoline) and its in vivo compatibility are presented. The base polymer was synthesized from the copolymerization of 2-ethyl-2-oxazoline (EtOx) and the methyl ester containing 2-methoxycarboxypropyl-2-oxazoline (C3MestOx) followed by amidation with allylamine to yield a highly water-soluble macromer. We showed that spherical hydrogels can be obtained by a simple water-in-oil gelation method using thiol-ene coupling and investigated the in vivo biocompatibility of these hydrogel spheres in a 28-day murine subdermal model. For comparison, hydrogel spheres prepared from poly(ethylene glycol) were also implanted. Both materials displayed mild, yet typical foreign body responses with little signs of fibrosis. This is the first report on the foreign body response of a poly(2-oxazoline) hydrogel, which paves the way for future investigations into how this highly tailorable class of materials can be used for implantable hydrogel devices.
Collapse
Affiliation(s)
- Tim R Dargaville
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Damien G Harkin
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Jong-Ryul Park
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Amanda Cavalcanti
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Eleonore C L Bolle
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Flavia Medeiros Savi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bryn D Monnery
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
29
|
Park JR, Bolle ECL, Santos Cavalcanti AD, Podevyn A, Van Guyse JFR, Forget A, Hoogenboom R, Dargaville TR. Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne-azide cycloaddition. Biointerphases 2021; 16:011001. [PMID: 33401918 DOI: 10.1116/6.0000630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poly(2-alkyl-2-oxazoline) (PAOx) hydrogels are tailorable synthetic materials with demonstrated biomedical applications, thanks to their excellent biocompatibility and tunable properties. However, their use as injectable hydrogels is challenging as it requires invasive surgical procedures to insert the formed hydrogel into the body due to their nonsoluble 3D network structures. Herein, we introduce cyclooctyne and azide functional side chains to poly(2-oxazoline) copolymers to induce in situ gelation using strain promoted alkyne-azide cycloaddition. The gelation occurs rapidly, within 5 min, under physiological conditions when two polymer solutions are simply mixed. The influence of several parameters, such as temperature and different aqueous solutions, and stoichiometric ratios between the two polymers on the structural properties of the resultant hydrogels have been investigated. The gel formation within tissue samples was verified by subcutaneous injection of the polymer solution into an ex vivo model. The degradation study of the hydrogels in vitro showed that the degradation rate was highly dependent on the type of media, ranging from days to a month. This result opens up the potential uses of PAOx hydrogels in attempts to achieve optimal, injectable drug delivery systems and tissue engineering.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Eleonore C L Bolle
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Amanda Dos Santos Cavalcanti
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-St. 31, Freiburg, 79104, Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
30
|
Halupczok S, Pfister M, Ringhand A, Fetsch C, Cubukova A, Appelt-Menzel A, Luxenhofer R. Poly(2-ethyl-2-oxazoline- co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicity. Polym Chem 2021. [DOI: 10.1039/d0py01258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers obtained via partial reduction of poly(2-ethy-2-oxazoline)s were studied on their cytocompatibility and their buffer capacity in acidic environment.
Collapse
Affiliation(s)
- Sebastian Halupczok
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Maria Pfister
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Annemarie Ringhand
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Corinna Fetsch
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Alevtina Cubukova
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
- University Hospital Würzburg
| | - Robert Luxenhofer
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| |
Collapse
|
31
|
Mokhtarinia K, Masaeli E. Transiently thermally responsive surfaces: Concepts for cell sheet engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Zhou M, Jiang W, Xie J, Zhang W, Ji Z, Zou J, Cong Z, Xiao X, Gu J, Liu R. Peptide-Mimicking Poly(2-oxazoline)s Displaying Potent Antimicrobial Properties. ChemMedChem 2020; 16:309-315. [PMID: 32926562 DOI: 10.1002/cmdc.202000530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Poly(2-oxazoline)s have excellent biocompatibility and have been used as FDA-approved indirect food additives. The inert property of the hydrophilic poly(2-oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti-biofouling agents. It was recently reported that poly(2-oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2-oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin-resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2-oxazoline)s as a class of novel antimicrobial agents in dealing with drug-resistant microbial infections and antimicrobial resistance.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weinan Jiang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Xie
- Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihao Cong
- Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ximian Xiao
- Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiawei Gu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry K, ey Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
33
|
Borova S, Tokarev V, Stahlhut P, Luxenhofer R. Crosslinking of hydrophilic polymers using polyperoxides. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04738-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractHydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration, and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications.
Collapse
|
34
|
Apte G, Börke J, Rothe H, Liefeith K, Nguyen TH. Modulation of Platelet-Surface Activation: Current State and Future Perspectives. ACS APPLIED BIO MATERIALS 2020; 3:5574-5589. [PMID: 35021790 DOI: 10.1021/acsabm.0c00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modulation of platelet-surface activation is important for many biomedical applications such as in vivo performance, platelet storage, and acceptance of an implant. Reducing platelet-surface activation is challenging because they become activated immediately after short contact with nonphysiological surfaces. To date, controversies and open questions in the field of platelet-surface activation still remain. Here, we review state-of-the-art approaches in inhibiting platelet-surface activation, mainly focusing on modification, patterning, and methodologies for characterization of the surfaces. As a future perspective, we discuss how the combination of biochemical and physiochemical strategies together with the topographical modulations would assist in the search for an ideal nonthrombogenic surface.
Collapse
|
35
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
36
|
Santillán F, Rueda JC. Removal of Methylene Blue by Hydrogels based on N, N-Dimethylacrylamide and 2-Oxazoline macromonomer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02239-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Schoolaert E, Merckx R, Becelaere J, Everaerts M, Van Guyse JFR, Sedlacek O, De Geest BG, Van den Mooter G, D’hooge DR, De Clerck K, Hoogenboom R. Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- n-propyl-2-oxazoline). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ella Schoolaert
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
| | - Ronald Merckx
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Jana Becelaere
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
| | - Melissa Everaerts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Joachim F. R. Van Guyse
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Bruno G. De Geest
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Dagmar R. D’hooge
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium
| | - Karen De Clerck
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Science Park 70A, 9052 Ghent, Belgium
| | - Richard Hoogenboom
- Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Lu W, Xu X, Imbernon L, Zhu J, Hoogenboom R, Du Prez FE, Pan X. On-Demand Dissoluble Diselenide-Containing Hydrogel. Biomacromolecules 2020; 21:3308-3317. [PMID: 32658477 DOI: 10.1021/acs.biomac.0c00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
On-demand dissolution of hydrogels is being increasingly studied for their potential use in burn wound dressing applications. Herein, a dynamic diselenide-containing hydrogel is developed through a very simple one-pot and two-step process starting from the selenol functionalization of a partially hydrolyzed poly(2-ethyl-2-oxazoline) with γ-butyroselenolactone. The hydrogel spontaneously cross-links via an in situ oxidation of the selenol functionalities in air. The gelation process and the final viscoelastic properties of the gel are characterized by rheological experiments. The mechanical properties of those new diselenide-containing hydrogels are easily tuned by varying the concentration of γ-butyroselenolactone. The materials also show good skin adhesion and UV light responsiveness. A unique feature of the hydrogel is its capability to be fully and rapidly dissolved on-demand, via oxidation or reduction of the diselenide cross-links, making them particularly attractive for burn wound dressing applications.
Collapse
|
39
|
Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Van Den Broeck E, Verbraeken B, Dedecker K, Cnudde P, Vanduyfhuys L, Verstraelen T, Van Hecke K, Jerca VV, Catak S, Hoogenboom R, Van Speybroeck V. Cation−π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elias Van Den Broeck
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | - Karen Dedecker
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Toon Verstraelen
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
- Centre for Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, 202B Spl. Independentei CP 35-108, Bucharest 060023, Romania
| | - Saron Catak
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | | |
Collapse
|
41
|
Wang X, Hadjichristidis N. Organocatalytic Ring-Opening Polymerization of N-Acylated-1,4-oxazepan-7-ones Toward Well-Defined Poly(ester amide)s: Biodegradable Alternatives to Poly(2-oxazoline)s. ACS Macro Lett 2020; 9:464-470. [PMID: 35648503 DOI: 10.1021/acsmacrolett.0c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a series of poly(ester amide)s (PEAs) synthesized by organocatalytic ring-opening polymerization (ROP) of N-acylated-1,4-oxazepan-7-one (OxP) monomers, produced from N-acylated-4-piperidones using the Baeyer-Villiger oxidation reaction. The ROP of OxPs, conducted in CH2Cl2 at room temperature with benzyl alcohol as initiator and TBD/TU (1,5,7-triazabicyclo[4.4.0]dec-5-ene/thiourea) as a binary organocatalytic system, revealed a controlled/living character. The thermodynamics of the ROP highly depends on the N-acylated substituent of monomers, with the following reactivity order: OxPPh > OxPMe > OxPPr > OxPBn. Based on NMR results, it seems that our system follows the hydrogen bonding bifunctional activation mechanism. All intermediates and final products were characterized by NMR, MALDI-TOF MS, SEC, and DSC techniques. All poly(N-acylated-1,4-oxazepan-7-one) (POxP) polymers are amorphous with different glass transition temperatures (Tg), depending on the N-acylated substituent (Tg: -2.90 to 43.75 °C). Among the synthesized polymers, only POxPMe was water-soluble and it degraded much faster than polycaprolactone in an aqueous phosphate buffer saline solution (pH = 7.4). Therefore, poly(N-acylated-1,4-oxazepan-7-one)s are potential biodegradable alternatives to poly(2-oxazoline)s.
Collapse
Affiliation(s)
- Xin Wang
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
42
|
Simon L, Lapinte V, Lionnard L, Marcotte N, Morille M, Aouacheria A, Kissa K, Devoisselle J, Bégu S. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. Int J Pharm 2020; 579:119126. [DOI: 10.1016/j.ijpharm.2020.119126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023]
|
43
|
Taipaleenmäki E, Städler B. Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration. Macromol Biosci 2020; 20:e1900342. [PMID: 32045102 DOI: 10.1002/mabi.201900342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Oral administration of actives is the most desired form of delivery, but the formulations need to overcome a variety of barriers including the intestinal mucus. This feature article summarizes the developments from the past 2-3 years in this context focusing on polymer-based formulations. The progress in assembling mucopenetrating nanoparticles is outlined considering coatings using noninteracting polymers as well as virus-like particles and charge-shifting particles. Next, polymers and their modification to enhance mucoadhesion are discussed, followed by providing examples of double-encapsulation systems that aim to combine mucopenetration with mucoadhesion in the same formulation. Finally, a short outlook is provided highlighting a few of the most pressing challenges to address.
Collapse
Affiliation(s)
- Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
44
|
Sun X, Luo C, Luo F. Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109465] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Pertici V, Trimaille T, Gigmes D. Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b00705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vincent Pertici
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Thomas Trimaille
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| |
Collapse
|
46
|
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
47
|
Microfabrication of 3D-hydrogels via two-photon polymerization of poly(2-ethyl-2-oxazoline) diacrylates. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Lezov A, Gubarev A, Mikhailova M, Lezova A, Mikusheva N, Kalganov V, Dudkina M, Ten’kovtsev A, Nekrasova T, Andreeva L, Saprykina N, Smyslov R, Gorshkova Y, Romanov D, Höppener S, Perevyazko I, Tsvetkov N. Star-Shaped Poly(2-ethyl-2-oxazoline) and Poly(2-isopropyl-2-oxazoline) with Central Thiacalix[4]Arene Fragments: Reduction and Stabilization of Silver Nanoparticles. Polymers (Basel) 2019; 11:E2006. [PMID: 31817077 PMCID: PMC6960741 DOI: 10.3390/polym11122006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/08/2023] Open
Abstract
The interaction of silver nitrate with star-shaped poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) containing central thiacalix[4]arene cores, which proceeds under visible light in aqueous solutions at ambient temperature, was studied. It was found that this process led to the formation of stable colloidal solutions of silver nanoparticles. The kinetics of the formation of the nanoparticles was investigated by the observation of a time-dependent increase in the intensity of the plasmon resonance peak that is related to the nanoparticles and appears in the range of 400 to 700 nm. According to the data of electron and X-ray spectroscopy, scanning and transmission electron microscopy, X-ray diffraction analysis, and dynamic light scattering, the radius of the obtained silver nanoparticles is equal to 30 nm. In addition, the flow birefringence experiments showed that solutions of nanoparticles have high optical shear coefficients.
Collapse
Affiliation(s)
- Alexey Lezov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Alexander Gubarev
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Maria Mikhailova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Alexandra Lezova
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Nina Mikusheva
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Vladimir Kalganov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Marina Dudkina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Andrey Ten’kovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Tatyana Nekrasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Larisa Andreeva
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Natalia Saprykina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
| | - Ruslan Smyslov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia; (M.D.); (A.T.); (T.N.); (L.A.); (N.S.); (R.S.)
- Institute of Biomedical Systems and Technologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Yulia Gorshkova
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region, Russia
| | - Dmitriy Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199034 St. Petersburg, Russia;
| | - Stephanie Höppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldt Straße 10, 07743 Jena, Germany;
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743 Jena, Germany
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| | - Nikolay Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, Universitetskaya emb., 7/9, 199034 St. Petersburg, Russia (A.G.); (M.M.); (A.L.); (N.M.); (V.K.); (I.P.)
| |
Collapse
|
49
|
|
50
|
|