1
|
Dolatkhah A, Dewani C, Kazem-Rostami M, Wilson LD. Magnetic Silver Nanoparticles Stabilized by Superhydrophilic Polymer Brushes with Exceptional Kinetics and Catalysis. Polymers (Basel) 2024; 16:2500. [PMID: 39274133 PMCID: PMC11398182 DOI: 10.3390/polym16172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.%) of high and low (PAAgCHI/Fe3O4/Ag (H, L)) were prepared. The catalytic activity was evaluated by monitoring the reduction of organic dye compounds, 4-nitrophenol and methyl orange in the presence of NaBH4. The high dispersity and hydrophilic nature of the catalyst provided exceptional kinetics for dye reduction that surpassed previously reported nanocatalysts for organic dye reduction. Dynamic light scattering (DLS) measurements were carried out to study the colloidal stability of the nanocatalysts. The hybrid materials not only showed enhanced colloidal stability due to electrostatic repulsion among adjacent polymer brushes but also offered more rapid kinetics when compared with as-prepared Ag nanoparticles (AgNPs), which results from super-hydrophilicity and easy accumulation/diffusion of dye species within polymer brushes. Such remarkable kinetics, biodegradability, biocompatibility, low cost and facile magnetic recoverability of the Ag nanocatalysts reported here contribute to their ranking among the top catalyst systems reported in the literature. It was observed that the apparent catalytic rate constant for the reduction of methyl orange dye was enhanced, PAAgCHI/Fe3O4/Ag (H) ca. 35-fold and PAAgCHI/Fe3O4/Ag (L) ca. 23-fold, when compared against the as prepared AgNPs. Finally, the regeneration and recyclability of the nanocatalyst systems were studied over 15 consecutive cycles. It was demonstrated that the nanomaterials display excellent recyclability without a notable loss in catalytic activity.
Collapse
Affiliation(s)
- Asghar Dolatkhah
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Chandni Dewani
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur 302017, Rajasthan, India
| | - Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Aliakseyeu A, Shah PP, Ankner JF, Sukhishvili SA. Salt-Induced Diffusion of Star and Linear Polyelectrolytes within Multilayer Films. Macromolecules 2023; 56:5434-5445. [PMID: 38357536 PMCID: PMC10863069 DOI: 10.1021/acs.macromol.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Indexed: 02/16/2024]
Abstract
This study explores the effect of salt on the diffusivity of polyelectrolytes of varied molecular architecture in layer-by-layer (LbL) films in directions parallel and perpendicular to the substrate using fluorescence recovery after photobleaching (FRAP) and neutron reflectivity (NR) techniques, respectively. A family of linear, 4-arm, 6-arm, and 8-arm poly(methacrylic acids) (LPMAA, 4PMAA, 6PMAA, and 8PMAA, respectively) of matched molecular weights were synthesized using atom transfer radical polymerization and assembled with a linear polycation, poly[2-(trimethylammonium)ethyl methacrylate chloride] (QPC). NR studies involving deuterated QPC revealed ∼10-fold higher polycation mobility for the 8PMAA/QPC system compared to all-linear LbL films upon exposure to 0.25 M NaCl solutions at pH 6. FRAP experiments showed, however, that lateral diffusion of star PMAAs was lower than LPMAA at NaCl concentrations below ∼0.22 M NaCl, with a crossover to higher mobility of star polymers in more concentrated salt solutions. The stronger response of diffusion of star PMAA to salt is discussed in the context of several theories previously suggested for diffusivity of polyelectrolyte chains in multilayer films and coacervates.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Parin Purvin Shah
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - John F. Ankner
- Spallation
Neutron Source Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Svetlana A. Sukhishvili
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Fus-Kujawa A, Mendrek B, Bajdak-Rusinek K, Diak N, Strzelec K, Gutmajster E, Janelt K, Kowalczuk A, Trybus A, Rozwadowska P, Wojakowski W, Gawron K, Sieroń AL. Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front Bioeng Biotechnol 2023; 11:1205122. [PMID: 37456734 PMCID: PMC10348904 DOI: 10.3389/fbioe.2023.1205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: The benefits of patient's specific cell/gene therapy have been reported in relation to numerous genetic related disorders including osteogenesis imperfecta (OI). In osteogenesis imperfecta particularly also a drug therapy based on the administration of bisphosphonates partially helped to ease the symptoms. Methods: In this controlled trial, fibroblasts derived from patient diagnosed with OI type II have been successfully reprogrammed into induced Pluripotent Stem cells (iPSCs) using Yamanaka factors. Those cells were subjected to repair mutations found in the COL1A1 gene using homologous recombination (HR) approach facilitated with star polymer (STAR) as a carrier of the genetic material. Results: Delivery of the correct linear DNA fragment to the osteogenesis imperfecta patient's cells resulted in the repair of the DNA mutation with an 84% success rate. IPSCs showed 87% viability after STAR treatment and 82% with its polyplex. Discussion: The use of novel polymer Poly[N,N-Dimethylaminoethyl Methacrylate-co-Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate] Arms (P(DMAEMA-co-OEGMA-OH) with star-like structure has been shown as an efficient tool for nucleic acids delivery into cells (Funded by National Science Centre, Contract No. UMO-2020/37/N/NZ2/01125).
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Diak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Strzelec
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ewa Gutmajster
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Anna Trybus
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Rozwadowska
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L. Sieroń
- Formerly Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Quaternized Poly( N, N'-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface. Polymers (Basel) 2023; 15:polym15051260. [PMID: 36904499 PMCID: PMC10007306 DOI: 10.3390/polym15051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Antibacterial polymeric materials are promising in the fight against resistant bacteria strains. Amongst them, cationic macromolecules with quaternary ammonium groups are one of intensively studied, as they interact with the bacterial membranes causing cell death. In this work, we propose to use nanostructures composed of polycations with star topology for the preparation of antibacterial materials. First, star polymers of N,N'-dimethylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate P(DMAEMA-co-OEGMA-OH) were quaternized with various bromoalkanes and their solution behavior was studied. It was shown that in water two modes of star nanoparticles were observed, of diameters about 30 nm and up to 125 nm, independently of the quaternizing agent. Separately layers of P(DMAEMA-co-OEGMA-OH) stars were obtained. In this case, the chemical grafting of polymers to the silicon wafers modified with imidazole derivatives was applied, followed by the quaternization of the amino groups of polycations. A comparison of the quaternary reaction in solution and on the surface showed that in the solution it is influenced by the alkyl chain length of the quaternary agent, while on the surface such relationship is not observed. After physico-chemical characterization of the obtained nanolayers, their biocidal activity was tested against two strains of bacteria E. coli and B. subtilis. The best antibacterial properties exhibited layers quaternized with shorter alkyl bromide, where 100% growth inhibition of E. coli and B. subtilis after 24 h of contact was observed.
Collapse
|
6
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Aliakseyeu A, Ankner JF, Sukhishvili SA. Impact of Star Polyacid Branching on Polymer Diffusion within Multilayer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - John F. Ankner
- Spallation Neutron Source Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Synthesis of tetraarm stars with polyetherimide-polyether block copolymer arms. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Bertuzzi DL, Morris MA, Braga CB, Olsen BD, Ornelas C. Synthesis of a Series of Folate-Terminated Dendrimer- b-PNIPAM Diblock Copolymers: Soft Nanoelements That Self-Assemble into Thermo- and pH-Responsive Spherical Nanocompounds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diego L. Bertuzzi
- Institute of Chemistry, University of Campinas - Unicamp, Campinas, 13083-861 São Paulo, Brazil
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Melody A. Morris
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carolyne B. Braga
- Institute of Chemistry, University of Campinas - Unicamp, Campinas, 13083-861 São Paulo, Brazil
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Catia Ornelas
- Institute of Chemistry, University of Campinas - Unicamp, Campinas, 13083-861 São Paulo, Brazil
| |
Collapse
|
10
|
Xiang L, Zhong Z, Shang M, Su Y. Microflow synthesis of stimuli-responsive star polymers and its application on catalytic reduction. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Ma K, Jin X, Gan W, Fan C, Gao H. Chain-growth click copolymerization for the synthesis of branched copolymers with tunable branching densities. Polym Chem 2022. [DOI: 10.1039/d1py01635k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of branched polymers with regulated molecular weights, low dispersity and freely tuned branching densities is reported.
Collapse
Affiliation(s)
- Kangling Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | - Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | - Weiping Gan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | - Chengkai Fan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| |
Collapse
|
12
|
Aliakseyeu A, Hlushko R, Sukhishvili SA. Nonionic star polymers with upper critical solution temperature in aqueous solutions. Polym Chem 2022. [DOI: 10.1039/d2py00216g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Novel UCST star poly(2-ureido methacrylates) synthesized via the ARGET ATRP technique showed enhanced trapping abilities of model drug molecules.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
13
|
Yang H, Wang N, Yang R, Zhang L, Jiang X. Folic Acid-Decorated β-Cyclodextrin-Based Poly(ε-caprolactone)-dextran Star Polymer with Disulfide Bond-Linker as Theranostic Nanoparticle for Tumor-Targeted MRI and Chemotherapy. Pharmaceutics 2021; 14:pharmaceutics14010052. [PMID: 35056948 PMCID: PMC8778171 DOI: 10.3390/pharmaceutics14010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
β-cyclodextrin(βCD)-based star polymers have attracted much interest because of their unique structures and potential biomedical and biological applications. Herein, a well-defined folic acid (FA)-conjugated and disulfide bond-linked star polymer ((FA-Dex-SS)-βCD-(PCL)14) was synthesized via a couple reaction between βCD-based 14 arms poly(ε-caprolactone) (βCD-(PCL)14) and disulfide-containing α-alkyne dextran (alkyne-SS-Dex), and acted as theranostic nanoparticles for tumor-targeted MRI and chemotherapy. Theranostic nanoparticles were obtained by loading doxorubicin (DOX), and superparamagnetic iron oxide (SPIO) particles were loaded into the star polymer nanoparticles to obtain ((FA-Dex-SS)-βCD-(PCL)14@DOX-SPIO) theranostic nanoparticles. In vitro drug release studies showed that approximately 100% of the DOX was released from disulfide bond-linked theranostic nanoparticles within 24 h under a reducing environment in the presence of 10.0 mM GSH. DOX and SPIO could be delivered into HepG2 cells efficiently, owing to the folate receptor-mediated endocytosis process of the nanoparticles and glutathione (GSH), which triggered disulfide-bonds cleaving. Moreover, (FA-Dex-SS)-βCD-(PCL)14@DOX-SPIO showed strong MRI contrast enhancement properties. In conclusion, folic acid-decorated reduction-sensitive star polymeric nanoparticles are a potential theranostic nanoparticle candidate for tumor-targeted MRI and chemotherapy.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
| | - Nianhua Wang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
| | - Liming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Haizhu District, Guangzhou 510275, China
- Correspondence: (L.Z.); (X.J.); Tel./Fax: +86-13802961338 (L.Z.); +86-13726760788 (X.J.)
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Yuexiu District, Guangzhou 510640, China; (H.Y.); (N.W.); (R.Y.)
- Correspondence: (L.Z.); (X.J.); Tel./Fax: +86-13802961338 (L.Z.); +86-13726760788 (X.J.)
| |
Collapse
|
14
|
Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications. World J Microbiol Biotechnol 2021; 37:139. [PMID: 34278535 PMCID: PMC8286942 DOI: 10.1007/s11274-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 11/02/2022]
Abstract
Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs.
Collapse
|
15
|
Babutan I, Lucaci AD, Botiz I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers (Basel) 2021; 13:1552. [PMID: 34066135 PMCID: PMC8150949 DOI: 10.3390/polym13101552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microbes are the main cause of various undesired infections in living organisms, including humans. Most of these infections are favored in hospital environments where humans are being treated with antibiotics and where some microbes succeed in developing resistance to such drugs. As a consequence, our society is currently researching for alternative, yet more efficient antimicrobial solutions. Certain natural and synthetic polymers are versatile materials that have already proved themselves to be highly suitable for the development of the next-generation of antimicrobial systems that can efficiently prevent and kill microbes in various environments. Here, we discuss the latest developments of polymeric structures, exhibiting (reinforced) antimicrobial attributes that can be assembled on surfaces and coatings either from synthetic polymers displaying antiadhesive and/or antimicrobial properties or from blends and nanocomposites based on such polymers.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
| | - Alexandra-Delia Lucaci
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 38 Gheorghe Marinescu Str., 540142 Târgu Mureș, Romania;
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
| |
Collapse
|
16
|
Aliakseyeu A, Dormidontova EE, Sukhishvili SA. Hydrogen-Bonded Complexes of Star Polymers. Macromol Rapid Commun 2021; 42:e2100097. [PMID: 33864317 DOI: 10.1002/marc.202100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Indexed: 01/12/2023]
Abstract
The effect of molecular architecture, star versus linear, poly(ethylene oxide) (PEO) on the formation of hydrogen-bonded complexes with linear poly(methacrylic acid) (PMAA) is investigated experimentally and rationalized theoretically. Isothermal titration calorimetry reveals that at pH 2.5 interpolymer complexes (IPCs) of PMMA with a 6-arm star PEO (sPEO) contains ≈50% more polyacid than IPCs formed with linear PEO (lPEO). While the enthalpy of IPC formation is positive in both cases, its magnitude is ≈50% larger for sPEO/PMAA complexes that exhibit a lower dissociation constant than lPEO/polyacid complexes. These results are rationalized based on a higher localized density of hydrogen bonds formed between sPEO and the polyacid which prevents penetration of star molecules into PMAA coils. Accordingly, Fourier transform infrared results indicate approximately twofold excess of self-associated >COOH units over intermolecularly bonded >COOH units in sPEO-containing complexes. The excess of PMAA chains in IPCs and the percentage of self-associated carboxylic groups in sPEO/PMAA complexes both increase with polyacid molecular weight. Other findings, including a positive entropy, hysteresis in composition at strongly acidic pH, and progressive equilibration of IPCs at increased pH are consistent with the critical role of charge and release of water molecules in the formation of sPEO/PMAA and lPEO/PMAA complexes.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science and Department of Physics, University of Connecticut, Storrs, CT, 06269, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
17
|
Würbser MA, Schwarz PS, Heckel J, Bergmann AM, Walther A, Boekhoven J. Chemically Fueled Block Copolymer Self‐Assembly into Transient Nanoreactors**. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Michaela A. Würbser
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Patrick S. Schwarz
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Jonas Heckel
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Alexander M. Bergmann
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Duesbergweg 10–14 55128 Mainz Germany
| | - Job Boekhoven
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Studies Technical University Munich Lichtenbergstraße 2a 85748 Garching Germany
| |
Collapse
|
18
|
Kuznetsov AA, Soldatova AE, Tsegel’skaya AY, Semenova GK. Synthesis of Branched Polyimides of Different Topological Structure. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s1811238220020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Centomo P, Zecca M, Biffis A. Cross-Linked Polymers as Scaffolds for the Low-Temperature Preparation of Nanostructured Metal Oxides. Chemistry 2020; 26:9243-9260. [PMID: 32357276 DOI: 10.1002/chem.202000815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 12/22/2022]
Abstract
The current state of the art of the use of cross-linked organic polymers, both insoluble (resins or gels) and soluble (micro- and nanogels), as aids for the low-temperature preparation of stable metal oxide nanoparticles or nanostructured metal oxides is reviewed herein. Synthetic strategies for inorganic oxide nanomaterials of this kind can greatly benefit from the use of cross-linked polymers, which may act as scaffolds/exotemplates during inorganic nanoparticle synthesis, or as stabilizers following post-synthetic modification of the nanoparticles. Furthermore, the peculiar properties of the organic cross-linked polymers add to those of the inorganic oxide nanoparticles, producing materials with combined properties. The potential applications of such highly promising composite nanomaterials will be also briefly sketched.
Collapse
Affiliation(s)
- Paolo Centomo
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marco Zecca
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Andrea Biffis
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
20
|
Yin X, Wang L, Zhang X, Zhao H, Cui Z, Fu P, Liu M, Pang X, Qiao X. Synthesis of amphiphilic star-shaped block copolymers through photo-induced metal free atom transfer radical polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Ito D, Kimura Y, Takenaka M, Ouchi M, Terashima T. Single-chain crosslinked polymers via the transesterification of folded polymers: from efficient synthesis to crystallinity control. Polym Chem 2020. [DOI: 10.1039/d0py00758g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report efficient synthetic systems of single-chain crosslinked polymers via the intramolecular transesterification of folded random copolymers in organic media and the unique crystallization behavior of their crosslinked polymers.
Collapse
Affiliation(s)
- Daiki Ito
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshihiko Kimura
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Mikihito Takenaka
- Institute for Chemical Research
- Kyoto University
- Uji
- Japan
- RIKEN Spring-8 Center
| | - Makoto Ouchi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Takaya Terashima
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
22
|
Abstract
Highly efficient synthesis of multifunctional initiators based on cyclodextrin (CD) cores was achieved by a thiol–ene photoclick strategy. They were successfully employed in a “core-first” approach to prepare multiarm star polymers via ATRP.
Collapse
Affiliation(s)
- Yi Yi
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| |
Collapse
|
23
|
Li R, Li X, Zhang Y, Delawder AO, Colley ND, Whiting EA, Barnes JC. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: a modular platform for drug delivery. Polym Chem 2020. [DOI: 10.1039/c9py01146c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water-soluble diblock brush-arm star copolymers using γ-CD-based core-first ring-opening metathesis polymerization, allowing for anticancer drug delivery via host–guest interaction.
Collapse
Affiliation(s)
- Ruihan Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Xuesong Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Yipei Zhang
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | | | - Nathan D. Colley
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Emma A. Whiting
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Jonathan C. Barnes
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| |
Collapse
|
24
|
Tsegelskaya AY, Soldatova AE, Semenova GK, Dutov MD, Abramov IG, Kuznetsov AA. One-Stage High Temperature Catalytic Synthesis of Star-Shaped Oligoimides by (В4+АВ) Scheme. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419010123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Hadar J, Skidmore S, Garner J, Park H, Park K, Wang Y, Qin B, Jiang X. Characterization of branched poly(lactide-co-glycolide) polymers used in injectable, long-acting formulations. J Control Release 2019; 304:75-89. [DOI: 10.1016/j.jconrel.2019.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 10/26/2022]
|
26
|
Xu J, Zhang J, Xiong D, Lin W, Wen L, Zhang L. Enhanced stability of crosslinked and charged unimolecular micelles from multigeometry triblock copolymers with short hydrophilic segments: dissipative particle dynamics simulation. SOFT MATTER 2019; 15:546-558. [PMID: 30644512 DOI: 10.1039/c8sm01941j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High micellar stability and well-performed drug loading and release are two conflicting factors for unimolecular micelles as an ideal drug delivery system. Achieving the formation of unimolecular micelles with short hydrophilic blocks is a challenging and promising approach to solve this bottleneck and limitation of current unimolecular micelle systems. In this work, dissipative particle dynamics (DPD) simulation is used to study the synergetic effect of crosslinking and electrostatic repulsion on stability of unimolecular micelles and to analyze the micro-mechanism and factors influencing this synergetic stabilization strategy. The strategy can generate unimolecular micelles with extremely high stability for various supramolecular polymers with short hydrophilic chains. Protonation of DEAEMA blocks leads to a large improvement in micellar hydrophilicity. The protonated middle layer further shrinks through crosslinking to produce the largest charge density, enlarging the electrostatic repulsion between colloidal particles. Additionally, the crosslinking and protonation treatment maximizes the extension degree of hydrophilic EO segments due to the increasing steric hindrance and poor compatibility between DEAHEMA and EO blocks. In this study, the relation between shrinkage degree of hydrophobic cores and stability of unimolecular micelles is first reported. The above-mentioned transition of micellar structures and properties results in the maximum degree of core shrinkage (Rg of MMA blocks) corresponding to the high stability of unimolecular micelles. Further study shows that the increasing cyclization degree, the mode of end cyclization, and the crosslinking and electrostatic repulsion of the middle layer all exert favorable effects on the stability of unimolecular micelles due to controlled shrinkage of hydrophobic cores.
Collapse
Affiliation(s)
- Jianchang Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jing Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Di Xiong
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyang Wen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
27
|
Jin H, Jian T, Ding YH, Chen Y, Mu P, Wang L, Chen CL. Solid-phase synthesis of three-armed star-shaped peptoids and their hierarchical self-assembly. Biopolymers 2019; 110:e23258. [PMID: 30676654 DOI: 10.1002/bip.23258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022]
Abstract
Due to the branched structure feature and unique properties, a variety of star-shaped polymers have been designed and synthesized. Despite those advances, solid-phase synthesis of star-shaped sequence-defined synthetic polymers that exhibit hierarchical self-assembly remains a significant challenge. Hence, we present an effective strategy for the solid-phase synthesis of three-armed star-shaped peptoids, in which ethylenediamine was used as the centric star pivot. Based on the sequence of monomer addition, a series of AA'A''-type and ABB'-type peptoids were synthesized and characterized by UPLC-MS (ultrahigh performance liquid chromatography-mass spectrometry). By taking advantage of the easy-synthesis and large side-chain diversity, we synthesized star-shaped peptoids with tunable functions. We further demonstrated the aqueous self-assembly of some representative peptoids into biomimetic nanomaterials with well-defined hierarchical structures, such as nanofibers and nanotubes. These results indicate that star-shaped peptoids offer the potential in self-assembly of biomimetic nanomaterials with tunable chemistries and functions.
Collapse
Affiliation(s)
- Haibao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| | - Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| | - Yan-Huai Ding
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
- Institute of Rheological Mechanics, Xiangtan University, Xiangtan, Hunan, China
| | - Yulin Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| | - Peng Mu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
- Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, New York
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| |
Collapse
|
28
|
Rathee VS, Sidky H, Sikora BJ, Whitmer JK. Explicit Ion Effects on the Charge and Conformation of Weak Polyelectrolytes. Polymers (Basel) 2019; 11:E183. [PMID: 30960167 PMCID: PMC6401944 DOI: 10.3390/polym11010183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/28/2022] Open
Abstract
The titration behavior of weak polyelectrolytes is of high importance, due to their uses in new technologies including nanofiltration and drug delivery applications. A comprehensive picture of polyelectrolyte titration under relevant conditions is currently lacking, due to the complexity of systems involved in the process. One must contend with the inherent structural and solvation properties of the polymer, the presence of counterions, and local chemical equilibria enforced by background salt concentration and solution acidity. Moreover, for these cases, the systems of interest have locally high concentrations of monomers, induced by polymer connectivity or confinement, and thus deviate from ideal titration behavior. This work furthers knowledge in this limit utilizing hybrid Monte Carlo⁻Molecular Dynamics simulations to investigate the influence of salt concentration, pK a , pH, and counterion valence in determining the coil-to-globule transition of poorly solvated weak polyelectrolytes. We characterize this transition at a range of experimentally relevant salt concentrations and explicitly examine the role multivalent salts play in determining polyelectrolyte ionization behavior and conformations. These simulations serve as an essential starting point in understanding the complexation between weak polyelectrolytes and ion rejection of self-assembled copolymer membranes.
Collapse
Affiliation(s)
- Vikramjit S Rathee
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hythem Sidky
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Benjamin J Sikora
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
29
|
Synthesis of tetrafunctional aromatic amines and star-shaped oligoimides using the B4+AB scheme. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Ordanini S, Cellesi F. Complex Polymeric Architectures Self-Assembling in Unimolecular Micelles: Preparation, Characterization and Drug Nanoencapsulation. Pharmaceutics 2018; 10:E209. [PMID: 30388744 PMCID: PMC6321574 DOI: 10.3390/pharmaceutics10040209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023] Open
Abstract
Unimolecular polymeric micelles are a class of single-molecule amphiphilic core-shell polymeric architectures, where the hydrophobic core is well stabilized by the hydrophilic shell, avoiding intermolecular core-core interactions. Multi-arm copolymers with a dendritic core, as well as hyperbranched and comb-like polymers, can form unimolecular micelles easily. In this review, examples of polymers able to form detectable unimolecular micelles will be presented, summarizing the analytical techniques used to characterize the unimolecular micelles and discriminate them from other supramolecular aggregates, such as multi-micelle aggregates. Unimolecular micelles are suitable for the nanoencapsulation of guest molecules. Compared to traditional supramolecular micelles, unimolecular micelles do not disassemble under dilution and are stable to environmental modifications. Recent examples of their application as drug delivery systems, endowed with increased stability and transport properties, will be discussed.
Collapse
Affiliation(s)
- Stefania Ordanini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
31
|
Controlled construction of gold nanoparticles in situ from β-cyclodextrin based unimolecular micelles for in vitro computed tomography imaging. J Colloid Interface Sci 2018; 528:135-144. [DOI: 10.1016/j.jcis.2018.05.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
|
32
|
Liu X, Fan X, Jiang L, Loh XJ, Wu YL, Li Z. Biodegradable polyester unimolecular systems as emerging materials for therapeutic applications. J Mater Chem B 2018; 6:5488-5498. [PMID: 32254961 DOI: 10.1039/c8tb01883a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unimolecular micelles, as a class of single-molecular micelles, are structurally stable regardless of their concentrations or alterations of the outer environment such as pH, temperature, ion strength etc. in comparison with conventional polymeric micelles. Polyester unimolecular micelles are extensively applied in bio-medical fields because of their stability, biocompatibility, biodegradability, structural-controllabilty etc. In this review, the most recent developments in polyester unimolecular micelle designs in terms of Boltorn polymer H40 core, cyclodextrin, dendrimer or dendrimer-like polymer, or polyhedral oligomeric silsesquioxane (POSS) based polyester unimolecular micelles are presented. The significance and application in biomedical fields including drug delivery, bio-imaging and theranostics are also classified in this review. Finally, the remaining challenges and future perspectives for further development of unimolecular micelles as therapeutic materials are also discussed.
Collapse
Affiliation(s)
- Xuan Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Gu D, Tan S, O’Connor AJ, Qiao GG. On-Demand Cascade Release of Hydrophobic Chemotherapeutics from a Multicomponent Hydrogel System. ACS Biomater Sci Eng 2018; 4:1696-1707. [DOI: 10.1021/acsbiomaterials.8b00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dunyin Gu
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shereen Tan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrea J. O’Connor
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G. Qiao
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Learsch R, Miyake GM. Arm-First Synthesis of Star Polymers with Polywedge Arms Using Ring-Opening Metathesis Polymerization and Bifunctional Crosslinkers. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2018; 56:732-740. [PMID: 30319173 PMCID: PMC6181444 DOI: 10.1002/pola.28946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work presents a two-step, one-pot process to make star polymers with polywedge arms. In a one-pot reaction, after the polywedge arms are synthesized, crosslinker species are added to the reaction, rapidly forming star polymers. Crosslinker species with different degrees of conformational freedom were designed and synthesized and their capacity to generate star polymers was evaluated. Mass conversions up to 92% and stars with up to 17 arms were synthesized with the most rigid crosslinker. The effects of arm molecular weight and molar ratio of crosslinker to arm on mass conversion and arms per star were explored further. Finally, the size-molecular weight scaling relationship for polywedges with linear and star architectures was compared, corroborating theoretical results regarding star polymers with arms much larger than their core.
Collapse
Affiliation(s)
- Robert Learsch
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309
| | - Garret M Miyake
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
35
|
Zhang X, Lin W, Wen L, Yao N, Nie S, Zhang L. Systematic design and application of unimolecular star-like block copolymer micelles: a coarse-grained simulation study. Phys Chem Chem Phys 2018; 18:26519-26529. [PMID: 27711540 DOI: 10.1039/c6cp05039e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unimolecular polymeric micelles have several features, such as thermodynamic stability, small particle size, biocompatibility, and the ability to internalize hydrophobic molecules. These micelles have recently attracted significant attention in various applications, such as nano-reactors, catalysis, and drug delivery. However, few attempts have explored the formation mechanisms and conditions of unimolecular micelles due to limited experimental techniques. In this study, a unimolecular micelle system formed from β-cyclodextrin-graft-{poly(lactide)-block-poly(2-(dimethylamino) ethyl multimethacrylate)-block-poly[oligo (2-ethyl-2-oxazoline) methacrylate]} β-CD-g-(PLA-b-PDMAEMA-b-PEtOxMA) star-like block copolymers in aqueous media was investigated by dissipative particle dynamics (DPD) to explore the formation process of unimolecular micelles. The simulation results showed that using longer hydrophobic or pH-sensitive chains, shorter hydrophilic backbones, smaller hydrophilic side chain grafting density, and fewer polymer arms resulted in micellar aggregation. Furthermore, this unimolecular polymeric micelle could be used for encapsulating gold nanoparticles, whose mesoscopic structure was also explored. The gold nanoparticles tended to distribute in the middle layer formed by PDMAEMA, and the unimolecular micelles were capable of impeding gold nanoparticle aggregation. This study could help understand the formation mechanism of unimolecular micelles formed from star-like block copolymers in dilute solutions and offer a theoretical guide to the design and preparation of promising unimolecular polymeric micelles with targeting properties.
Collapse
Affiliation(s)
- Xiaofang Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wenjing Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liyang Wen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Na Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Shuyu Nie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
36
|
Douah S, Sabeur SA. Phase Behavior of a Flexible Star Polymer Chain in Good Solvent near an Attractive Surface. MACROMOL THEOR SIMUL 2018. [DOI: 10.1002/mats.201700074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sarra Douah
- Laboratoire d'Etude Physique des Matériaux; Faculté de Physique (USTOMB); BP 1505 El M' naouer Oran 31000 Algeria
| | - Sid Ahmed Sabeur
- Laboratoire d'Etude Physique des Matériaux; Faculté de Physique (USTOMB); BP 1505 El M' naouer Oran 31000 Algeria
| |
Collapse
|
37
|
Lin W, Zhang X, Qian L, Yao N, Pan Y, Zhang L. Doxorubicin-Loaded Unimolecular Micelle-Stabilized Gold Nanoparticles as a Theranostic Nanoplatform for Tumor-Targeted Chemotherapy and Computed Tomography Imaging. Biomacromolecules 2017; 18:3869-3880. [PMID: 29032674 DOI: 10.1021/acs.biomac.7b00810] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current research is mainly trending toward addressing the development of multifunctional nanocarriers that could precisely reach disease sites, release drugs in a controlled-manner, and act as an imaging agent for both diagnosis and targeted therapy. In this study, a pH-sensitive theranostic nanoplatform as a promising dual-functional nanovector for tumor therapy and computed tomography (CT) imaging was developed. The 21-arm star-like triblock polymer of β-cyclodextrin-{poly(ε-caprolactone)-poly(2-aminoethyl methacrylate)-poly[poly(ethylene glycol) methyl ether methacrylate]}21 [β-CD-(PCL-PAEMA-PPEGMA)21] with stable unimolecular micelles formed in aqueous solution was first synthesized by combined ROP with ARGET ATRP techniques and then was used as a template for fabricating gold nanoparticles (AuNPs) with uniform sizes and excellent colloidal stability in situ followed by the encapsulation of doxorubicin (DOX) with maximum entrapment efficiency up to 60% to generate the final product β-CD-(PCL-PAEMA-PPEGMA)21/AuNPs/DOX. Furthermore, dissipative particle dynamics (DPD) simulations revealed further details of the formation process of unimolecular micelles and the morphologies and distributions of AuNPs and DOX. Almost 80% of DOX was released in 120 h in an acidic tumoral environment in an in vitro drug release experiment, and the experiments both in vitro and in vivo demonstrated the fact that β-CD-(PCL-PAEMA-PPEGMA)21/AuNPs/DOX exhibited similar antitumor efficacy to free DOX and effective CT imaging performance. Therefore, we believe this structurally stable unimolecular micelle-based nanoplatform synergistically integrated with anticancer drug delivery and CT imaging capabilities hold great promise for future cancer theranostics.
Collapse
Affiliation(s)
- Wenjing Lin
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China.,School of Chemical Engineering and Light Industry, Guangdong University of Technology , Guangzhou 510006, P. R. China
| | - Xiaofang Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Long Qian
- Department of Biology and Center for Genomics and Systems Biology, New York University , New York, New York 10003, United States
| | - Na Yao
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Ya Pan
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| |
Collapse
|
38
|
Sun P, Wang N, Jin X, Zhu X. "Bottom-Up" Construction of Hyperbranched Poly(prodrug-co-photosensitizer) Amphiphiles Unimolecular Micelles for Chemo-Photodynamic Dual Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36675-36687. [PMID: 28968057 DOI: 10.1021/acsami.7b13055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the great advantages of chemo-photodynamic combination therapy, tedious synthesis steps and laborious purification procedures make the fabrication of chemo-photodynamic combined therapeutic platforms rather difficult. In this study, we develop a facile "bottom-up" strategy to fabricate hyperbranched poly(prodrug-co-photosensitizer) amphiphiles, h-P(CPTMA-co-BYMAI)-b-POEGMA (hPCBE), for chemo-photodynamic dual therapy. The easily prepared hPCBE possess a bottom-up-constructed hydrophobic core h-P(CPTMA-co-BYMAI) (hPCB) direct copolymerized from reduction-responsive CPT prodrug monomer (CPTMA) and boron dipyrromethene-based photosensitizer monomer (BYMAI), as well as a biocompatible shell polymerized from hydrophilic monomers. Because of the covalently interconnected core-shell structure, hPCBE exists as unimolecular micelles in aqueous solution and exhibits excellent structural stability under dilution condition. The hPCBE micelles can be effectively internalized by MCF-7 cells and release CPT triggered by the reductive milieu. In addition, photosensitizer moieties embedded in the hPCB core could generate singlet oxygen (1O2) effectively under irradiation, endowing hPCBE with the boosting of chemotherapeutic efficacy. As compared to the single chemotherapy of hyperbranched polyprodrug amphiphiles h-PCPTMA-b-POEGMA (hPCE) and photodynamic therapy of hyperbranched polyphotosensitizer amphiphiles h-PBYMAI-b-POEGMA (hPBE), hPCBE shows higher in vitro cytotoxicity. We expect that our approach will further boost research on the design of multifunctional drug delivery systems via the facile "bottom-up" strategy.
Collapse
Affiliation(s)
- Pei Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
39
|
Scharfenberg M, Seiwert J, Scherger M, Preis J, Susewind M, Frey H. Multiarm Polycarbonate Star Polymers with a Hyperbranched Polyether Core from CO2 and Common Epoxides. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Markus Scharfenberg
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jan Seiwert
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maximilian Scherger
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jasmin Preis
- PSS Polymer Standards Service GmbH, In der Dalheimer Wiese 5, 55120 Mainz, Germany
| | - Moritz Susewind
- PSS Polymer Standards Service GmbH, In der Dalheimer Wiese 5, 55120 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
40
|
Lin W, Yao N, Qian L, Zhang X, Chen Q, Wang J, Zhang L. pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics. Acta Biomater 2017; 58:455-465. [PMID: 28583900 DOI: 10.1016/j.actbio.2017.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
The development of an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging was reported. β-cyclodextrin-{poly(lactide)-poly(2-(dimethylamino) ethyl methacrylate)-poly[oligo(2-ethyl-2-oxazoline)methacrylate]}21 [β-CD-(PLA-PDMAEMA-PEtOxMA)21] unimolecular micelles served as a template for the in situ formation of gold nanoparticles (GNPs) and the subsequent encapsulation of doxorubicin (DOX). The formation of unimolecular micelles, microstructures and the distributions of GNPs and DOX were investigated through the combination of experiments and dissipative particle dynamics (DPD) simulations. β-CD-(PLA-PDMAEMA-PEtOxMA)21 formed spherical unimolecular micelles in aqueous solution within a certain range of polymer concentrations. GNPs preferentially distributed in the PDMAEMA area. The maximum wavelength (λmax) and the size of GNPs increased with increasing concentration of HAuCl4. DOX preferentially distributed in the PDMAEMA mesosphere, but penetrated the inner PLA core with increasing DOX concentration. DOX-loaded micelles with 41-61% entrapment efficiency showed fast release (88% after 102h) under acidic tumor conditions. Both in vitro and in vivo experiments revealed superior anticancer efficacy and effective CT imaging properties for β-CD-(PLA-PDMAEMA-PEtOxMA)21/Au/DOX. We conclude that the reported unimolecular micelles represent a class of versatile smart nanocarriers for theranostic application. STATEMENT OF SIGNIFICANCE Developing polymeric nanoplatforms as integrated theranostic vehicles for improving cancer diagnostics and therapy is an emerging field of much importance. This article aims to develop an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging. Specific emphases is on structure-properties relationship. There is a sea of literature on polymeric drug nanocarriers, and a couple of polymer-stabilized gold nanoparticles (GNPs) systems for cancer diagnosis are also known. However, to our knowledge, there has been no report on polymeric unimolecular micelles capable of dual loading of GNPs without external reducing agents and anticancer drugs for cancer diagnosis and treatment. To this end, the target of the current work was to develop an in situ formed nanocarrier, which actively dual wrapped CT contrast agent GNPs and hydrophobic anticancer drug doxorubicin (DOX), achieving high CT imaging and antitumor efficacy under in vitro and in vivo acid tumor condition. Meanwhile, by taking advantage of dissipative particle dynamics (DPD) simulation, we further obtained the formation process and mechanism of unimolecular micelles, and detailed distributions and microstructures of GNPs and DOX on unimolecular micelles. Taken together, our results here provide insight and guidance for the design of more effective nanocarriers for cancer theranostic application.
Collapse
Affiliation(s)
- Wenjing Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Na Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Long Qian
- Department of Biology and Center for Genomics and Systems Biology, New York University, NY 10003, USA
| | - Xiaofang Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Quan Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jufang Wang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
41
|
Zhang ZH, Qiao CY, Zhang J, Zhang WM, Yin J, Wu ZQ. Synthesis of Unimolecular Micelles with Incorporated Hyperbranched Boltorn H30 Polyester modified with Hyperbranched Helical Poly(phenyl isocyanide) Chains and their Enantioselective Crystallization Performance. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi-Huang Zhang
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Chen-Yang Qiao
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Jian Zhang
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Wen-Ming Zhang
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Jun Yin
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering; School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei 230009 China
| |
Collapse
|
42
|
Zhang X, Wang H, Dai Y. Interlayer-crosslinked micelles prepared from star-shaped copolymers via click chemistry for sustained drug release. NANOTECHNOLOGY 2017; 28:205601. [PMID: 28429685 DOI: 10.1088/1361-6528/aa6907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To balance the stability and the particle size of polymeric micelles, star-shaped copolymers Hx-yne-N3-PEG containing both alkynyl and azido groups were synthesized from hyperbranched 2,2-bismethylolpropionic acid polyester (H20 with 16 hydroxyl, H30 with 32 hydroxyl, H40 with 64 hydroxyl) to develop interlayer-crosslinked micelles by click chemistry. The results of dynamic light scattering indicate that the crosslinking could enhance the stability of polymeric micelles. The crosslinked micelles are regular nanosized (approximately 20 nm) spheres observed by a transmission electron microscope. The crosslinked micelles have better drug loading capacity and more sustained drug release behavior than the un-crosslinked micelles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | | | | |
Collapse
|
43
|
Hou Y, Liu Y, Sun S, Liang J. Dual pH-Sensitive DOX-Conjugated Cyclodextrin-Core Star Nano-Copolymer Prodrugs. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yu Hou
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Yuyang Liu
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Shuangshuang Sun
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Jianghu Liang
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| |
Collapse
|
44
|
Hu D, Jin S, Shi Y, Wang X, Graff RW, Liu W, Zhu M, Gao H. Preparation of hyperstar polymers with encapsulated Au 25(SR) 18 clusters as recyclable catalysts for nitrophenol reduction. NANOSCALE 2017; 9:3629-3636. [PMID: 28247888 DOI: 10.1039/c6nr09727h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A robust approach is developed to prepare hyperstar polymer-Au25(SR)18 nanocomposites for catalysis. The synthesis started with atom transfer radical copolymerization of an inimer with a cyclic disulfide-containing methacrylate monomer in a microemulsion to produce hyperbranched copolymers with high molar mass, low polydispersity, and a vital fraction of dangling disulfide groups. The core-shell structured hyperstar polymers were then prepared using hyperbranched copolymers as macroinitiators to polymerize oligo(ethylene glycol) methyl ether methacrylate (Mn = 500) and grow the radiating arms. The hyperstar polymers with disulfide groups were proved to efficiently encapsulate Au25(SR)18 nanoclusters through ligand exchange without destroying the fine structure of the Au25(SR)18 clusters. The obtained hyperstar-Au25(SR)18 nanocomposites showed great stability with no size change after a three-month shelf storage. They were used as efficient catalysts for the catalytic reduction of 4-nitrophenol by NaBH4, showing convenient recovery and reuse without losing catalytic efficiency.
Collapse
Affiliation(s)
- Daqiao Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA. and School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230039, China.
| | - Shan Jin
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230039, China.
| | - Yi Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA.
| | - Xiaofeng Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA.
| | - Robert W Graff
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA.
| | - Wenqi Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA.
| | - Manzhou Zhu
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230039, China.
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA.
| |
Collapse
|
45
|
Holm R, Weber B, Heller P, Klinker K, Westmeier D, Docter D, Stauber RH, Barz M. Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/13/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Benjamin Weber
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Philipp Heller
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudinger Weg 9 55128 Mainz Germany
| | - Kristina Klinker
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudinger Weg 9 55128 Mainz Germany
| | - Dana Westmeier
- Department of Nanobiomedicine/ENT; University Medical Center of Mainz; Langenbeckstr. 1 55101 Mainz Germany
| | - Dominic Docter
- Department of Nanobiomedicine/ENT; University Medical Center of Mainz; Langenbeckstr. 1 55101 Mainz Germany
| | - Roland H. Stauber
- Department of Nanobiomedicine/ENT; University Medical Center of Mainz; Langenbeckstr. 1 55101 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
46
|
Henke H, Brüggemann O, Teasdale I. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| |
Collapse
|
47
|
Huo M, Du H, Zeng M, Pan L, Fang T, Xie X, Wei Y, Yuan J. CO2-Stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polym Chem 2017. [DOI: 10.1039/c7py00214a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CO2-Regulated self-assembly of star terpolymers star-[poly(ethylene glycol)-polystyrene-poly[2-(N,N-diethylamino)ethyl methacrylate]] (μ-PEG-PS-PDEA) was studied and an unusual vesicle/microsphere-to-lamella transition upon CO2 stimulation was observed.
Collapse
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Haotian Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Long Pan
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Tommy Fang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xuming Xie
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
48
|
Wang Y, Liu Y, Liang J, Zou M. A cyclodextrin-core star copolymer with Y-shaped ABC miktoarms and its unimolecular micelles. RSC Adv 2017. [DOI: 10.1039/c6ra28456f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A β-cyclodextrin-core star copolymer with Y-shaped ABC miktoarms was designed which exhibits unimolecular micelles in aqueous solution. It is a good platform for unimolecular container encapsulating hydrophobic molecules with release of the payload exhibiting pH-sensitivity.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Yuyang Liu
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Jianghu Liang
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Minhao Zou
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
49
|
Qu F, Yang B, He Q, Bu W. Synthesis of platinum(ii) complex end functionalized star polymers: luminescence enhancements and unimolecular micelles in solvents of weakened quality. Polym Chem 2017. [DOI: 10.1039/c7py00993c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum(ii) complex end functionalized star polymers have been synthesized by reacting K2PtCl4 with star ligands ended with 2,6-bis(benzimidazol-2′-yl)pyridine. They show luminescence enhancements and form unimolecular micelles in solvents of weakened quality.
Collapse
Affiliation(s)
- Fang Qu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Beihong Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| |
Collapse
|
50
|
Hu J, Qiao R, Whittaker MR, Quinn JF, Davis TP. Synthesis of Star Polymers by RAFT Polymerization as Versatile Nanoparticles for Biomedical Applications. Aust J Chem 2017. [DOI: 10.1071/ch17391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The precise control of polymer chain architecture has been made possible by developments in polymer synthesis and conjugation chemistry. In particular, the synthesis of polymers in which at least three linear polymeric chains (or arms) are tethered to a central core has yielded a useful category of branched architecture, so-called star polymers. Fabrication of star polymers has traditionally been achieved using either a core-first technique or an arm-first approach. Recently, the ability to couple polymeric chain precursors onto a functionalized core via highly efficient coupling chemistry has provided a powerful new methodology for star synthesis. Star syntheses can be implemented using any of the living polymerization techniques using ionic or living radical intermediates. Consequently, there are innumerable routes to fabricate star polymers with varying chemical composition and arm numbers. In comparison with their linear counterparts, star polymers have unique characteristics such as low viscosity in solution, prolonged blood circulation, and high accumulation in tumour regions. These advantages mean that, far beyond their traditional application as rheology control agents, star polymers may also be useful in the medical and pharmaceutical sciences. In this account, we discuss recent advances made in our laboratory focused on star polymer research ranging from improvements in synthesis through to novel applications of the product materials. Specifically, we examine the core-first and arm-first preparation of stars using reversible addition–fragmentation chain transfer (RAFT) polymerization. Further, we also discuss several biomedical applications of the resulting star polymers, particularly those made by the arm-first protocol. Emphasis is given to applications in the emerging area of nanomedicine, in particular to the use of star polymers for controlled delivery of chemotherapeutic agents, protein inhibitors, signalling molecules, and siRNA. Finally, we examine possible future developments for the technology and suggest the further work required to enable clinical applications of these interesting materials.
Collapse
|