1
|
Rehhagen C, Rather SR, Schwarz KN, Scholes GD, Lochbrunner S. Comparison of Frenkel and Excimer Exciton Diffusion in Perylene Bisimide Nanoparticles. J Phys Chem Lett 2023; 14:4490-4496. [PMID: 37155571 DOI: 10.1021/acs.jpclett.3c00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Exciton migration is an important process for light harvesting with organic systems and often the bottleneck. Especially the formation of trap states hinders the mobility considerably. Although excimer excitons are often referred to as traps, their mobility has been demonstrated while their nature is still unclear. Here, we compare the mobility of singlet and excimer excitons in nanoparticles consisting of the same type of perylene bisimide molecules. By changing the preparation conditions, nanoparticles with different intermolecular coupling strengths are prepared. Femtosecond transient absorption spectroscopy reveals the formation of excimer excitons from Frenkel excitons. The mobility of both exciton types is determined by evaluating exciton-exciton annihilation processes. In the lower coupling regime, singlet mobility is observed, whereas for stronger coupling the dynamics is dominated by a 10-fold increased excimer mobility. The excimer mobility can thus even be higher than the singlet mobility and is affected by the intermolecular electronic coupling.
Collapse
Affiliation(s)
- Chris Rehhagen
- Institute for Physics and Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Shahnawaz R. Rather
- Frick Laboratory, Princeton University, Princeton, New Jersey 08540, United States
| | - Kyra N Schwarz
- Frick Laboratory, Princeton University, Princeton, New Jersey 08540, United States
| | - Gregory D Scholes
- Frick Laboratory, Princeton University, Princeton, New Jersey 08540, United States
| | - Stefan Lochbrunner
- Institute for Physics and Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
2
|
Sapra R, Gupta M, Khare K, Chowdhury PK, Haridas V. Fluorescence by self-assembly: autofluorescent peptide vesicles and fibers. Analyst 2023; 148:973-984. [PMID: 36756978 DOI: 10.1039/d3an00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of oxidized cysteinyl peptides ([P-Cys-X-OMe]2; P = Boc or H; X = Trp or Glu) showed vesicular and fibrillar assemblies. The anatomy of the self-assembled vesicles from the water-soluble cystine peptide [Cys-Trp-OMe]2 (1a) has been investigated by using various fluorescent probes such as ammonium 8-anilinonaphthalene-1-sulfonate, Nile Red and pyrene. The morphological characterization was carried out by fluorescence lifetime imaging microscopy (FLIM) and super resolution-structured illumination microscopy (SR-SIM) utilizing the autofluorescence of the vesicles stemming from the self-assembly. The self-assembled structures are also observed in solution as evident from the quantitative phase images obtained using a dual-mode digital holographic microscope (DHM) system. Present investigations show that the self-assembly is enthalpy- and entropy-driven in the aqueous medium. Based on the CD spectral studies, we proposed that 1a organizes into vesicles through the sequestration of indole units. We observed that the solutions of dipeptides 1a-b exhibit autofluorescence in the blue region upon excitation at a wavelength >350 nm. Detailed spectroscopic studies on the peptides lacking tryptophan 2a-b unequivocally showed that the autofluorescence stems exclusively from peptide aggregation. Our experimental results with appropriate controls revealed that the clustering of carbonyl chromophores is central to autofluorescence. Autofluorescence was also used to probe the vesicle formation without using any external fluorescent probe. To the best of our knowledge, this is the first report on autofluorescent vesicles formed by the spontaneous association of dipeptides. We also found that the vesicles formed by 1a can act as a host for guests like C60. The biocompatibility and biodegradability of these peptides along with the autofluorescent nature and guest binding ability of peptide-based vesicles offer numerous applications in the biomedical area.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Kedar Khare
- Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
3
|
Bao L, Liu S. A dual-emission polymer carbon nanoparticles for ratiometric and visual detection of pH value and bilirubin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120513. [PMID: 34695677 DOI: 10.1016/j.saa.2021.120513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Herein, we prepared a novel fluorescent polymer carbon nanoparticles by polymerizing dopamine (DA) and o-phenylenediamine (OPD) through oxidation of hydrogen peroxide. In a neutral environment, the synthesized fluorescent polymer carbon nanoparticles (PDA-OPD) exhibited two emission peaks at 460 nm and 540 nm with 400 nm excitation wavelength. In an acidic environment, the fluorescence emission peaks of PDA-OPD at 540 nm showed an obvious fluorescence quenching, and there existed a good linear relationship between the fluorescence ratio F540/F460 and environment pH value. In an alkaline environment, the fluorescence emission peak at 460 nm showed obvious fluorescence quenching after the addition of bilirubin, while a novel fluorescence emission peak at 560 nm emerged gradually. The PDA-OPD could be also used to detect bilirubin in the range of 0-400 μmol·L-1.
Collapse
Affiliation(s)
- Lijun Bao
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China.
| |
Collapse
|
4
|
Cheng Y, Luo Y, Peng R, Cao Q, Wu Q, Cui Q. Organic fluorescent nanoparticles using fluorophores synthesized from low-temperature calcination process. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Hoang S, Olivier S, Cuenot S, Montillet A, Bellettre J, Ishow E. Microfluidic Assisted Flash Precipitation of Photocrosslinkable Fluorescent Organic Nanoparticles for Fine Size Tuning and Enhanced Photoinduced Processes. Chemphyschem 2020; 21:2502-2515. [PMID: 33073929 DOI: 10.1002/cphc.202000633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/27/2020] [Indexed: 01/05/2023]
Abstract
Highly concentrated dispersions of fluorescent organic nanoparticles (FONs), broadly used for optical tracking, bioimaging and drug delivery monitoring, are obtained using a newly designed micromixer chamber involving high impacting flows. Fine size tuning and narrow size distributions are easily obtained by varying independently the flow rates of the injected fluids and the concentration of the dye stock solution. The flash nanoprecipitation process employed herein is successfully applied to the fabrication of bicomposite FONs designed to allow energy transfer. Considerable enhancement of the emission signal of the energy acceptors is promoted and its origin is found to result from polarity rather than steric effects. Finally, we exploit the high spatial confinement encountered in FONs and their ability to encapsulate hydrophobic photosensitizers to induce photocrosslinking. An increase in the photocrosslinked FON stiffness is evidenced by measuring the elastic modulus at the nanoscale using atomic force microscopy. These results pave the way toward the straightforward fabrication of multifunctional and mechanically photoswitchable FONs, opening novel opportunities in sensing, multimodal imaging, and theranostics.
Collapse
Affiliation(s)
- Stéphane Hoang
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Simon Olivier
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France.,Current address: Air Liquide, Air Liquide Facility, 28 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Stéphane Cuenot
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000, Nantes, France
| | - Agnès Montillet
- GEPEA UMR CNRS 6144, IUT Saint Nazaire, Université de Nantes, 58 rue Michel Ange, 44600, Saint Nazaire, France
| | - Jérôme Bellettre
- LTeN UMR CNRS 6607, Polytech Nantes, Université de Nantes, rue Christian Pauc, 44306, Nantes, France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| |
Collapse
|
6
|
Sharma M, Tiwari V, Shukla S, Panda JJ. Fluorescent Dopamine-Tryptophan Nanocomposites as Dual-Imaging and Antiaggregation Agents: New Generation of Amyloid Theranostics with Trimeric Effects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44180-44194. [PMID: 32870652 DOI: 10.1021/acsami.0c13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of neurotoxic amyloid-β (Aβ) polypeptides into aberrant extracellular senile plaques is the major neuropathological hallmark of Alzheimer's disease (AD). Inhibiting aggregation of these peptides to control the progression of this deadly disease can serve as a viable therapeutic option. In the current work, inherently fluorescent theranostic dopamine-tryptophan nanocomposites (DTNPs) were developed and investigated for their amyloid inhibition propensity along with their ability to act as a cellular bioimaging agent in neuronal cells. The antiaggregation potency of the nanocomposites was further investigated against an in vitro established reductionist amyloid aggregation model consisting of a mere dipeptide, phenylalanine-phenylalanine (FF). As opposed to large peptide/protein-derived robust and high-molecular-weight amyloid aggregation models of Alzheimer's disease, our dipeptide-based amyloid model provides an edge over others in terms of the ease of handling, synthesis, and cost-effectiveness. Results demonstrated positive antiaggregation behavior of the DTNPs toward both FF-derived amyloid fibrils and preformed Aβ-peptide fibers by means of electron microscopic and circular dichroism-based studies. Our results further pointed toward the neuroprotective effects of the DTNPs in neuroblastoma cells against FF amyloid fibril-induced toxicity and also that they significantly suppressed the accumulation of Aβ42 oligomers in both cortex and hippocampus regions and improved cognitive impairment in an intracerebroventricular streptozotocin (ICV-STZ)-induced animal model of dementia. Besides, DTNPs also exhibited excellent fluorescent properties and light up the cytoplasm of neuroblastoma cells when being coincubated with cells, confirming their ability to serve as an intracellular bioimaging agent. Overall, these results signify the potency of the DTNPs as promising multifunctional theranostic agents for treating AD.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Virendra Tiwari
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shubha Shukla
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| |
Collapse
|
7
|
Khazaal AS, Springborg M, Fan C, Huwig K. Optimizing small conjugated molecules for solar-cell applications using an inverse-design method. J Mol Graph Model 2020; 100:107654. [PMID: 32682307 DOI: 10.1016/j.jmgm.2020.107654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 10/23/2022]
Abstract
Small organic conjugated molecules are key elements for low-cost photovoltaic devices. One example is cyanopyridone molecules. By modifying these molecules, for instance through optimally chosen functional groups attached to the backbone, their properties can be improved. However, the very large number of possible modifications makes it difficult to identify the best performing molecules. In the present work, we have used a computational inverse-design approach (PooMa) to identify the positions and types of functional groups attached to a modified cyanopyridone that lead to the best performance in solar-energy harvesting. A QSPR model based on five electronic descriptors has been used to determine the properties of solar cells. Our approach uses a genetic algorithm to search the chemical space containing 184 (104,976) substituted cyanopyridone systems and predicts out of those the best 20 molecules with optimal performance efficiencies (PCE). PooMa uses the Density-Functional Tight-Binding (DFTB) method for calculating the electronic properties. DFTB is a fast method with acceptable accuracy and, therefore, can be used on a normal desktop without expensive hard- or software. In order to get further information about our suggested systems, a DFT method and its derivative TD-DFT are applied.
Collapse
Affiliation(s)
- Abdullah S Khazaal
- Chemistry Department, College of Science, Tikrit University, 34001, Salahuddin, Iraq.
| | - Michael Springborg
- Physical and Theoretical Chemistry, University of Saarland, 66123, Saarbrücken, Germany; Materials Science, Tianjin University, 300350, Tianjin, China
| | - Chencheng Fan
- Physical and Theoretical Chemistry, University of Saarland, 66123, Saarbrücken, Germany
| | - Kai Huwig
- Physical and Theoretical Chemistry, University of Saarland, 66123, Saarbrücken, Germany
| |
Collapse
|
8
|
Han Y, Gao Z, Wang C, Zhong R, Wang F. Recent progress on supramolecular assembly of organoplatinum(II) complexes into long-range ordered nanostructures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213300] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Chen Z, Xue Y, Gui M, Wang C, Wang F. Structural Isomerism Effect in Platinum(II) Acetylide-Based Supramolecular Polymers. Inorg Chem 2020; 59:6481-6488. [PMID: 32275403 DOI: 10.1021/acs.inorgchem.0c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The self-assembly of π-aromatic organic and organometallic molecules into long-range-ordered supramolecular polymers is dictated by a variety of molecular parameters and external conditions. In this work, structural isomerism, representing one of the potent molecular parameters, has been investigated to modulate the self-assembly behaviors. Two platinum(II) acetylide-based structural isomers, with different N-hexyl substitution positions on the inner benzotriazole core, have been designed. Thanks to the synergistic participation of hydrogen-bonding and π-π-stacking interactions, both platinum(II) acetylide-based compounds are prone to forming supramolecular polymers via a nucleation-elongation cooperative mechanism in apolar media. Thermal hysteresis phenomena are observed for both compounds, suggesting the different supramolecular polymerization pathways upon cooling and heating. Remarkably, in addition to the spectroscopic difference, these two supramolecular polymers display distinct thermostability and rheological moduli, ascribing to different binding enthalpies of the neighboring monomers. Overall, it is evident that a minor variation at the molecular level brings huge differences to the properties of long-range-ordered supramolecular polymers. The current study illustrates the importance of the structural isomerism effect for the rational design of π-functional supramolecular materials.
Collapse
Affiliation(s)
- Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuncong Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingliang Gui
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cong Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
van Onzen AAM, Rossin R, Schenning APH, Nicolay K, Milroy LG, Robillard MS, Brunsveld L. Tetrazine- trans-Cyclooctene Chemistry Applied to Fabricate Self-Assembled Fluorescent and Radioactive Nanoparticles for in Vivo Dual Mode Imaging. Bioconjug Chem 2019; 30:547-551. [PMID: 30731039 PMCID: PMC6429424 DOI: 10.1021/acs.bioconjchem.9b00038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Indexed: 01/05/2023]
Abstract
Multimodal imaging agents combine two or more imaging modalities into one probe. Self-assembling fluorescent nanoparticles are a promising class of modular multimodal imaging probes as they can allow easy blending of imaging and targeting modalities. Our group recently developed a class of self-assembling and intrinsically fluorescent small molecule-based nanoparticles (SMNPs) with excellent optical properties. In this article, we describe the efficient radiolabeling of these SMNPs via a two-step bioconjugation strategy involving the inverse-electron-demand Diels-Alder ligation between a tetrazine (Tz)-tagged radiolabel and a trans-cyclooctene (TCO)-tagged fluorescent small molecule building block of the SMNPs. Studies in mice revealed that the SMNPs are well tolerated and could be monitored by both radioactivity and fluorescence, thereby demonstrating the potential of SMNPs in optical and dual-mode imaging in vivo. The work also testifies to the utility of the Tz-TCO conjugation chemistry for the labeling of self-assembled nanoparticles.
Collapse
Affiliation(s)
- Arthur
H. A. M. van Onzen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Raffaella Rossin
- Tagworks
Pharmaceuticals, c/o Radboud University Medical Center, Department of Nuclear Medicine and Radiology, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Albertus P. H.
J. Schenning
- Stimuli-responsive
Functional Materials and Devices and Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical
NMR, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marc S. Robillard
- Tagworks
Pharmaceuticals, c/o Radboud University Medical Center, Department of Nuclear Medicine and Radiology, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Boucard J, Linot C, Blondy T, Nedellec S, Hulin P, Blanquart C, Lartigue L, Ishow E. Small Molecule-Based Fluorescent Organic Nanoassemblies with Strong Hydrogen Bonding Networks for Fine Tuning and Monitoring Drug Delivery in Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802307. [PMID: 30146711 DOI: 10.1002/smll.201802307] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Bright supramolecular fluorescent organic nanoassemblies (FONs), based on strongly polar red-emissive benzothiadiazole fluorophores containing acidic units, are fabricated to serve as theranostic tools with large colloidal stability in the absence of a polymer or surfactant. High architectural cohesion is ensured by the multiple hydrogen-bonding networks, reinforced by the dipolar and hydrophobic interactions developed between the dyes. Such interactions are harnessed to ensure high payload encapsulation and efficient trapping of hydrophobic and hydrogen-bonding drugs like doxorubicin, as shown by steady state and time-resolved measurements. Fine tuning of the drug release in cancer cells is achieved by adjusting the structure and combination of the fluorophore acidic units. Notably delayed drug delivery is observed by confocal microscopy compared to the entrance of hydrosoluble doxorubicin, demonstrating the absence of undesirable burst release outside the cells by using FONs. Since FON-constituting fluorophores exhibit a large emission shift from red to green when dissociating in contact with the lipid cellular content, drug delivery could advantageously be followed by dual-color spectral detection, independently of the drug staining potentiality.
Collapse
Affiliation(s)
- Joanna Boucard
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Camille Linot
- CRCINA INSERM, INSERM U1232, Université de Nantes, Université d'Angers, 8 quai Moncousu, 44007, Nantes, France
| | - Thibaut Blondy
- CRCINA INSERM, INSERM U1232, Université de Nantes, Université d'Angers, 8 quai Moncousu, 44007, Nantes, France
| | - Steven Nedellec
- INSERM Nantes UMS 016-UMS CNRS 3556, 8 quai Moncousu, 44007, Nantes, France
| | - Philippe Hulin
- INSERM Nantes UMS 016-UMS CNRS 3556, 8 quai Moncousu, 44007, Nantes, France
| | - Christophe Blanquart
- CRCINA INSERM, INSERM U1232, Université de Nantes, Université d'Angers, 8 quai Moncousu, 44007, Nantes, France
| | - Lénaïc Lartigue
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| |
Collapse
|
12
|
Grande V, Soberats B, Herbst S, Stepanenko V, Würthner F. Hydrogen-bonded perylene bisimide J-aggregate aqua material. Chem Sci 2018; 9:6904-6911. [PMID: 30210765 PMCID: PMC6124903 DOI: 10.1039/c8sc02409j] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
A water-soluble perylene bisimide dye self-assembles in aqueous media into thermoresponsive aqua materials with photoluminescence within the biological transparency window.
A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60–95 wt% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30–50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.
Collapse
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Bartolome Soberats
- Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Stefanie Herbst
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Vladimir Stepanenko
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
13
|
Schill J, van Dun S, Pouderoijen MJ, Janssen HM, Milroy L, Schenning APHJ, Brunsveld L. Synthesis and Self-Assembly of Bay-Substituted Perylene Diimide Gemini-Type Surfactants as Off-On Fluorescent Probes for Lipid Bilayers. Chemistry 2018; 24:7734-7741. [PMID: 29569314 PMCID: PMC6001554 DOI: 10.1002/chem.201801022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Indexed: 11/07/2022]
Abstract
Interest in bay-substituted perylene-3,4:9,10-tetracarboxylic diimides (PDIs) for solution-based applications is growing due to their improved solubility and altered optical and electronic properties compared to unsubstituted PDIs. Synthetic routes to 1,12-bay-substituted PDIs have been very demanding due to issues with steric hindrance and poor regioselectivity. Here we report a simple one-step regioselective and high yielding synthesis of a 1,12-dihydroxylated PDI derivative that can subsequently be alkylated in a straightforward fashion to produce nonplanar 1,12-dialkoxy PDIs. These PDIs show a large Stokes shift, which is specifically useful for bioimaging applications. A particular cationic PDI gemini-type surfactant has been developed that forms nonfluorescent self-assembled particles in water ("off state"), which exerts a high fluorescence upon incorporation into lipophilic bilayers ("on state"). Therefore, this probe is appealing as a highly sensitive fluorescent labelling marker with a low background signal for imaging artificial and cellular membranes.
Collapse
Affiliation(s)
- Jurgen Schill
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of, TechnologyP.O. Box 5135600MBEindhovenThe Netherlands
| | - Sam van Dun
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of, TechnologyP.O. Box 5135600MBEindhovenThe Netherlands
| | | | | | - Lech‐Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of, TechnologyP.O. Box 5135600MBEindhovenThe Netherlands
| | - Albertus P. H. J. Schenning
- Stimuli-responsive Functional Materials and Devices and Institute for, Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600MBEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of, TechnologyP.O. Box 5135600MBEindhovenThe Netherlands
| |
Collapse
|
14
|
Ardizzone A, Kurhuzenkau S, Illa-Tuset S, Faraudo J, Bondar M, Hagan D, Van Stryland EW, Painelli A, Sissa C, Feiner N, Albertazzi L, Veciana J, Ventosa N. Nanostructuring Lipophilic Dyes in Water Using Stable Vesicles, Quatsomes, as Scaffolds and Their Use as Probes for Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703851. [PMID: 29573545 DOI: 10.1002/smll.201703851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/17/2018] [Indexed: 06/08/2023]
Abstract
A new kind of fluorescent organic nanoparticles (FONs) is obtained using quatsomes (QSs), a family of nanovesicles proposed as scaffolds for the nanostructuration of commercial lipophilic carbocyanines (1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI), 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indodicarbocyanine perchlorate (DiD), and 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indotricarbocyanine iodide (DiR)) in aqueous media. The obtained FONs, prepared by a CO2 -based technology, show excellent colloidal- and photostability, outperforming other nanoformulations of the dyes, and improve the optical properties of the fluorophores in water. Molecular dynamics simulations provide an atomistic picture of the disposition of the dyes within the membrane. The potential of QSs for biological imaging is demonstrated by performing superresolution microscopy of the DiI-loaded vesicles in vitro and in cells. Therefore, fluorescent QSs constitute an appealing nanomaterial for bioimaging applications.
Collapse
Affiliation(s)
- Antonio Ardizzone
- Institut Ciencia Materials Barcelona (ICMAB-CSIC)-CIBER-BBN, Campus Universitari de Bellaterra, 08193, Cerdanyola, Spain
| | - Siarhei Kurhuzenkau
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | | | - Jordi Faraudo
- Institut Ciencia Materials Barcelona (ICMAB-CSIC)-CIBER-BBN, Campus Universitari de Bellaterra, 08193, Cerdanyola, Spain
| | - Mykhailo Bondar
- Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauky 46, Kyiv, 03028, Ukraine
| | - David Hagan
- The College of Optics and Photonics (CREOL), University of Central Florida, P.O. Box 162700, Orlando, FL, 32816-2700, USA
| | - Eric W Van Stryland
- The College of Optics and Photonics (CREOL), University of Central Florida, P.O. Box 162700, Orlando, FL, 32816-2700, USA
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Cristina Sissa
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Natalia Feiner
- Institute for Bioengineering of Catalonia (IBEC), Parc Cientìfic de Barcelona (PCB), 08028, Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), Parc Cientìfic de Barcelona (PCB), 08028, Barcelona, Spain
| | - Jaume Veciana
- Institut Ciencia Materials Barcelona (ICMAB-CSIC)-CIBER-BBN, Campus Universitari de Bellaterra, 08193, Cerdanyola, Spain
| | - Nora Ventosa
- Institut Ciencia Materials Barcelona (ICMAB-CSIC)-CIBER-BBN, Campus Universitari de Bellaterra, 08193, Cerdanyola, Spain
| |
Collapse
|
15
|
Abstract
Fluorescent polydopamine nanoparticles (FPNPs) are prepared via the ethylenediamine (EDA)-induced degradation of as-prepared non-fluorescent polydopamine (PDA) and used for targeted bioimaging. The reductive treatment of PDA in the presence of EDA yields fluorescent precipitates, inspiring us to seek various biological approaches to preparing FPNPs with excellent optical and biocompatible properties. Moreover, we firstly found that FPNPs selectively label neuromast hair cells in the lateral line of zebrafish, their applications as a reliable fluorescent indicator to investigate the neuromast hair cells, to in turn determine the viability of hair cells, was demonstrated. FPNPs also provided a minimal toxicity enable to assay the number of functional hair cells per neuromast in live animals as development proceeds. Upon combined incubation with TO-PRO-3, a well-established hair cell marker, all hair cells that were rapidly labeled with FPNPs were observed to be also completely labeled with the TO-PRO-3, labeling hair cells in neuromasts positioned in the supraorbital, otic and occipital lateral line as well as in posterior lateral line of living zebrafish larvae. Their potential efficacy for biological applications was demonstrated by their excellent optical and biocompatible properties, offering new opportunities in cancer research, real-time monitoring of stem cell transplantation and other cell-based therapies.
Collapse
|
16
|
Ogi S, Grzeszkiewicz C, Würthner F. Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochlorophyll J-aggregates. Chem Sci 2018; 9:2768-2773. [PMID: 29732062 PMCID: PMC5914135 DOI: 10.1039/c7sc03725b] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Self-assembly studies of a model compound of bacteriochlorophyll revealed the formation of nanoparticles as off-pathway and nanofibers as on-pathway products.
Whilst bacteriochlorophyll c, d, and e dyes self-assemble into the most efficient light harvesting J-aggregate systems found in nature, their supramolecular packing arrangements are still a matter of debate and a significant number of models have been suggested for their local and long-range ordering. Here we reveal for a synthetic model system based on a zinc chlorin (ZnChl) dye an intriguing interplay of two competing aggregation pathways by kinetic and thermodynamic studies in MeOH/water solvent mixtures: the formation of kinetically controlled off-pathway nanoparticles consisting of excitonically coupled J-dimers versus the formation of thermodynamically more stable one-dimensional helical fibers consisting of J-coupled extended aggregates. The higher order of the latter is evidenced by atomic force microscopy and a more narrow absorption spectrum of the J-aggregates. Based on a recently developed thermodynamic model that combines the cooperative K2–K growth model with a competing dimerization model, an energy landscape could be derived that describes the pathway complexity of this biomimetic system. Our studies reveal that the kinetic stability of the off-pathway nanoparticles increases with increasing concentration of ZnChl or water content in a MeOH/water solvent mixture. For a water content >90% deeply trapped off-pathway nanoparticle products are formed that do not transform anymore to the more ordered thermodynamic product within reasonable time scales. Based on these observations, we hypothesize that out-of-equilibrium aggregate structures of natural BChl dyes may also exist in the natural chlorosomes of green bacteria.
Collapse
Affiliation(s)
- Soichiro Ogi
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Universität Würzburg , Center for Nanosystems Chemistry (CNC) , Bavarian Polymer Institute (BPI) , Theodor-Boveri-Weg , 97074 Würzurg , Germany
| | - Charlotte Grzeszkiewicz
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Universität Würzburg , Center for Nanosystems Chemistry (CNC) , Bavarian Polymer Institute (BPI) , Theodor-Boveri-Weg , 97074 Würzurg , Germany
| |
Collapse
|
17
|
Zhang S, Liu R, Cui Q, Yang Y, Cao Q, Xu W, Li L. Ultrabright Fluorescent Silica Nanoparticles Embedded with Conjugated Oligomers and Their Application in Latent Fingerprint Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44134-44145. [PMID: 29185339 DOI: 10.1021/acsami.7b15612] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescent micro- and nanosized particles have a broad range of applications in biology, medicine, and engineering. For these uses, the materials should have high emission efficiency and good photostability. However, many organic fluorophores suffer from aggregation-induced quenching effects and photobleaching. Here, we used a simple method based on covalently blending a fluorescent conjugated oligomer with silica nanoparticles to achieve emission quantum yields as high as 97%. The resulting system also showed excellent stability under continuous light illumination, in a range of pH values and temperatures, and in common solvents. This fluorescent material showed outstanding properties, including highly efficient blue emission, low cost, low toxicity, and easy synthesis. Furthermore, its effectiveness for latent fingerprint detection was demonstrated as a proof of concept on various substrates. The obtained emissive fingerprint powder gave good optical/fluorescent images with high contrast and resolution between the ridges and spaces.
Collapse
Affiliation(s)
- Shijie Zhang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Ronghua Liu
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Qianling Cui
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Yu Yang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Qian Cao
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Wenqiang Xu
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Lidong Li
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
18
|
Faucon A, Benhelli-Mokrani H, Fleury F, Dutertre S, Tramier M, Boucard J, Lartigue L, Nedellec S, Hulin P, Ishow E. Bioconjugated fluorescent organic nanoparticles targeting EGFR-overexpressing cancer cells. NANOSCALE 2017; 9:18094-18106. [PMID: 29135000 DOI: 10.1039/c7nr06533g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The field of optical bioimaging has considerably flourished with the advent of sophisticated microscopy techniques and ultra-bright fluorescent tools. Fluorescent organic nanoparticles (FONs) have thus recently appeared as very attractive labels for their high payload, absence of cytotoxicity and eventual biodegradation. Nevertheless, their bioconjugation to target specific receptors with high imaging contrast is scarcely performed. Moreover, assessing the reality of bioconjugation represents high challenges given the sub-nanomolar concentrations resulting from the commonly adopted nanoprecipitation fabrication process. Here, we describe how the combination of a magnetic shell allows us to easily generate red-emitting FONs conjugated with the epidermal growth factor ligand (EGF), a small protein promoting cancer cell proliferation by activating the EGF receptor (EGFR) pathway. Dual color fluorescence correlation spectroscopy combined with immunofluorescence is originally harnessed in its time trace mode to unambiguously demonstrate covalent attachment between the FON and EGF at sub-nanomolar concentrations. Strong asymmetric clustering of EGF-conjugated FONs is observed at the membrane of MDA-MB-468 human breast cancer cells overexpressing EGF receptors using super-resolution fluorescence microscopy. Such high recruitment of EGF-conjugated FONs is attributed to their EGF multivalency (4.7 EGF per FON) which enables efficient EGFR activation and subsequent phosphorylation. The large hydrodynamic diameter (DH ∼ 301 nm) of EGF-conjugated FONs prevents immediate engulfment of the sequestered receptors, which provides very bright and localized spots in less than 30 minutes. The reported bioconjugated nanoassemblies could thus serve as ultra-bright probes of breast cancer cells with EGFR-overexpression that is often associated with poor prognosis.
Collapse
Affiliation(s)
- Adrien Faucon
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hao Y, Zheng C, Wang L, Hu Y, Guo H, Song Q, Zhang H, Zhang Z, Zhang Y. Covalent self-assembled nanoparticles with pH-dependent enhanced tumor retention and drug release for improving tumor therapeutic efficiency. J Mater Chem B 2017; 5:2133-2144. [PMID: 32263686 DOI: 10.1039/c6tb02833k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing a smart drug delivery system with enhanced tumor retention at the tumor site, and rapid intracellular drug release promises to improve the therapeutic index and mitigate side effects. To this end, covalent phenylboronic acid (PBA)-based self-assembly nanoparticles (BNPs) consisting of pH-responsive cores and detachable poloxamer 188 shells were constructed for loading doxorubicin (DOX) in a simple process. The poloxamer 188 coating could be easily detached when the breakage of the borate ester bonds in the external nanocores was initially triggered in the tumor extracellular weak acid environment. The concealed PBA was subsequently exposed and could react with sialic acids (SA), which are overexpressed on tumor cells, and this enhanced the tumor retention effect of the fresh nanoparticle as well as facilitating the cellular uptake after removing the protective layers. Furthermore, owing to the existence of pH-responsive esters, the uptaken fresh nanoparticles could rapidly release DOX in the acidic tumor environment, which resulted in an enhanced therapeutic efficiency in vitro and in vivo. In summary, this pH dependent behaviour of DOX/BNPs provided new insights for enhanced chemotherapeutic treatment in cancer.
Collapse
Affiliation(s)
- Yongwei Hao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schill J, Milroy LG, Lugger JAM, Schenning APHJ, Brunsveld L. Relationship between Side-Chain Polarity and the Self-Assembly Characteristics of Perylene Diimide Derivatives in Aqueous Solution. ChemistryOpen 2017; 6:266-272. [PMID: 28413763 PMCID: PMC5390792 DOI: 10.1002/open.201600133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Perylene-3,4,9,10-tetracarboxylic acid diimides (PDIs) have recently gained considerable interest for water-based biosensing applications. PDIs have been studied intensively in the bulk state, but their physical properties in aqueous solution in interplay with side-chain polarity are, however, poorly understood. Therefore, three perylene diimide based derivatives were synthesized to study the relationship between side-chain polarity and their self-assembly characteristics in water. The polarity of the side chains was found to dictate the size and morphology of the formed aggregates. Side-chain polarity rendered the self-assembly and photophysical properties of the PDIs-both important for imminent water-based applications-and these were revealed to be especially responsive to changes in solvent composition.
Collapse
Affiliation(s)
- Jurgen Schill
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute of Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute of Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jody A M Lugger
- Macromolecular and Organic Chemistry and Institute of Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Albertus P H J Schenning
- Functional Organic Materials and Devices and Institute of Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute of Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
21
|
van Onzen AHAM, Albertazzi L, Schenning APHJ, Milroy LG, Brunsveld L. Hydrophobicity determines the fate of self-assembled fluorescent nanoparticles in cells. Chem Commun (Camb) 2017; 53:1626-1629. [PMID: 28097276 DOI: 10.1039/c6cc08793k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fate of small molecule nanoparticles (SMNPs) composed of self-assembling intrinsically fluorescent π-conjugated oligomers was studied in cells as a function of side-chain hydrophobicity. While the hydrophobic SMNPs remained intact upon cellular uptake, the more hydrophilic SMNPs disassembled and dispersed throughout the cytosol.
Collapse
Affiliation(s)
- Arthur H A M van Onzen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Lorenzo Albertazzi
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands. and Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| | - Albertus P H J Schenning
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.
| |
Collapse
|
22
|
Yun-fei Z, Maimaiti H, Bo Z. Preparation of cellulose-based fluorescent carbon nanoparticles and their application in trace detection of Pb(ii). RSC Adv 2017. [DOI: 10.1039/c6ra26684c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocrystalline cellulose (NCC) with a particle size of 23.80 ± 0.33 nm was prepared from microcrystalline cellulose by a mixed treatment with acids and ultrasound.
Collapse
Affiliation(s)
- Zhang Yun-fei
- Institute of Chemistry and Chemical Industry
- Xinjiang University
- Urumqi 830046
- China
| | - Halidan Maimaiti
- Institute of Chemistry and Chemical Industry
- Xinjiang University
- Urumqi 830046
- China
| | - Zhang Bo
- Institute of Chemistry and Chemical Industry
- Xinjiang University
- Urumqi 830046
- China
| |
Collapse
|
23
|
Kim D, Lee TS. Photoswitchable Emission Color Change in Nanodots Containing Conjugated Polymer and Photochrome. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34770-34776. [PMID: 27936536 DOI: 10.1021/acsami.6b12277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A simple approach for the preparation of conjugated polymer (CP)-based fluorescent nanodots containing photochrome (dithienylethene, DTE) is reported. The CP in the nanodots was designed to exhibit dual emissions of blue and green. The photochromic, fluorescent, composite nanodots (PNDs) were able to tune the emission color from green to blue using selective energy transfer from the CP to DTE under ultraviolet (UV) irradiation. The UV-irradiation-induced ring closure of the DTE within the PNDs provided a spectral overlap between the green emission of the CP and the absorption of DTE, leading to quenching of the green emission and, concomitantly, maintaining of the blue emission. The photoswitchable fluorescent PNDs with high on-off green fluorescence contrast were successfully applied in a living zebrafish imaging. Our design strategy provided a versatile tool for constructing a special photomodulated color-changeable nanostructure in bioimaging.
Collapse
Affiliation(s)
- Daigeun Kim
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University , Daejeon 34134, Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University , Daejeon 34134, Korea
| |
Collapse
|
24
|
Shulov I, Rodik RV, Arntz Y, Reisch A, Kalchenko VI, Klymchenko AS. Protein-Sized Bright Fluorogenic Nanoparticles Based on Cross-Linked Calixarene Micelles with Cyanine Corona. Angew Chem Int Ed Engl 2016; 55:15884-15888. [PMID: 27862803 PMCID: PMC5756471 DOI: 10.1002/anie.201609138] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Indexed: 01/08/2023]
Abstract
The key challenge in the field of fluorescent nanoparticles (NPs) for biological applications is to achieve superior brightness for sizes equivalent to single proteins (3-7 nm). We propose a concept of shell-cross-linked fluorescent micelles, in which PEGylated cyanine 3 and 5 bis-azides form a covalently attached corona on micelles of amphiphilic calixarene bearing four alkyne groups. The fluorescence quantum yield of the obtained monodisperse NPs, with a size of 7 nm, is a function of viscosity and reached up to 15 % in glycerol. In the on-state they are circa 2-fold brighter than quantum dots (QD-585), which makes them the smallest PEGylated organic NPs of this high brightness. FRET between cyanine 3 and 5 cross-linkers at the surface of NPs suggests their integrity in physiological media, organic solvents, and living cells, in which the NPs rapidly internalize, showing excellent imaging contrast. Calixarene micelles with a cyanine corona constitute a new platform for the development of protein-sized ultrabright fluorescent NPs.
Collapse
Affiliation(s)
- Ievgen Shulov
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France); Organic Chemistry Department, Chemistry Faculty, Taras Shevchenko National University of Kyiv, 01033 Kyiv (Ukraine)
| | - Roman V. Rodik
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv (Ukraine)
| | - Youri Arntz
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France)
| | - Andreas Reisch
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France)
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv (Ukraine)
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Route du Rhin, 74, ILLKIRCH Cedex (France)
| |
Collapse
|
25
|
Shulov I, Rodik RV, Arntz Y, Reisch A, Kalchenko VI, Klymchenko AS. Protein-Sized Bright Fluorogenic Nanoparticles Based on Cross-Linked Calixarene Micelles with Cyanine Corona. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ievgen Shulov
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
- Organic Chemistry Department; Chemistry Faculty; Taras Shevchenko National University of Kyiv; 01033 Kyiv Ukraine
| | - Roman V. Rodik
- Institute of Organic Chemistry; National Academy of Science of Ukraine; 02660 Kyiv Ukraine
| | - Youri Arntz
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
| | - Andreas Reisch
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry; National Academy of Science of Ukraine; 02660 Kyiv Ukraine
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS; Université de Strasbourg; Faculté de Pharmacie; Route du Rhin, 74 Illkirch 67401 Cedex France
| |
Collapse
|
26
|
Tian YK, Han YF, Yang ZS, Wang F. Donor–Acceptor-Type Supramolecular Polymers Derived from Robust yet Responsive Heterodimeric Tweezers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yu-Kui Tian
- CAS Key Laboratory of Soft
Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi-Fei Han
- CAS Key Laboratory of Soft
Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhi-Shuai Yang
- CAS Key Laboratory of Soft
Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft
Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
27
|
Görl D, Würthner F. Entropically Driven Self-Assembly of Bolaamphiphilic Perylene Dyes in Water. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606917] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Görl
- Universität Würzburg; Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
28
|
Görl D, Würthner F. Entropically Driven Self-Assembly of Bolaamphiphilic Perylene Dyes in Water. Angew Chem Int Ed Engl 2016; 55:12094-8. [DOI: 10.1002/anie.201606917] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Görl
- Universität Würzburg; Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
29
|
Xu J, Takai A, Takeuchi M. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions. Chemistry 2016; 22:13014-8. [DOI: 10.1002/chem.201602759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jinjia Xu
- Molecular Design & Function Group; National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Science; University of Tsukuba; 1-1-1, Tennoudai Tsukuba Ibaraki 305-8571 Japan
| | - Atsuro Takai
- Molecular Design & Function Group; National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Masayuki Takeuchi
- Molecular Design & Function Group; National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Science; University of Tsukuba; 1-1-1, Tennoudai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
30
|
Allampally NK, Mayoral MJ, Chansai S, Lagunas MC, Hardacre C, Stepanenko V, Albuquerque RQ, Fernández G. Control over the Self-Assembly Modes of Pt(II) Complexes by Alkyl Chain Variation: From Slipped to Parallel π-Stacks. Chemistry 2016; 22:7810-6. [PMID: 27113990 DOI: 10.1002/chem.201600176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 12/13/2022]
Abstract
We report the self-assembly of a new family of hydrophobic, bis(pyridyl) Pt(II) complexes featuring an extended oligophenyleneethynylene-derived π-surface appended with six long (dodecyloxy (2)) or short (methoxy (3)) side groups. Complex 2, containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt⋅⋅⋅Pt ≈14 Å) in both nonpolar solvents and the solid state. Dispersion-corrected PM6 calculations suggest that this organization is driven by cooperative π-π, C-H⋅⋅⋅Cl and π-Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π-stacks (dPt⋅⋅⋅Pt ≈4.4 Å) stabilized by multiple π-π and C-H⋅⋅⋅Cl contacts are obtained in the crystalline state for 3 lacking long side chains, as shown by X-ray analysis and PM6 calculations. Our results reveal not only the key role of alkyl chain length in controlling self-assembly modes but also show the relevance of Pt-bound chlorine ligands as new supramolecular synthons.
Collapse
Affiliation(s)
- Naveen Kumar Allampally
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - María José Mayoral
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Sarayute Chansai
- School of Chemistry and Chemical Engineering, Queen's Universtity Belfast, Stranmillis Road, Belfast, BT9 5AG, United Kingdom
| | - María Cristina Lagunas
- School of Chemistry and Chemical Engineering, Queen's Universtity Belfast, Stranmillis Road, Belfast, BT9 5AG, United Kingdom
| | - Christopher Hardacre
- School of Chemistry and Chemical Engineering, Queen's Universtity Belfast, Stranmillis Road, Belfast, BT9 5AG, United Kingdom
| | - Vladimir Stepanenko
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rodrigo Q Albuquerque
- São Carlos Institute of Chemistry, University of São Paulo, A, v. Trab. São-Carlense, 400, 13560-970, São Carlos-SP, Brazil
| | - Gustavo Fernández
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.
| |
Collapse
|
31
|
Reisch A, Klymchenko AS. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1968-92. [PMID: 26901678 PMCID: PMC5405874 DOI: 10.1002/smll.201503396] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/13/2015] [Indexed: 05/13/2023]
Abstract
Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation-caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10-fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed.
Collapse
Affiliation(s)
- Andreas Reisch
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| |
Collapse
|
32
|
Jana A, Bai L, Li X, Ågren H, Zhao Y. Morphology Tuning of Self-Assembled Perylene Monoimide from Nanoparticles to Colloidosomes with Enhanced Excimeric NIR Emission for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2336-2347. [PMID: 26728416 DOI: 10.1021/acsami.5b11411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organic near-infrared (NIR) fluorescent probes have been recognized as an emerging class of materials exhibiting a great potential in advanced bioanalytical applications. However, synthesizing such organic probes that could simultaneously work in the NIR spectral range and have large Stokes shift, high stability in biological systems, and high photostability have been proven challenging. In this work, aggregation induced excimeric NIR emission in aqueous media was observed from a suitably substituted perylene monoimide (PeIm) dye. Controlled entrapment of the dye into pluronic F127 micellar system to preserve its monomeric green emission in aqueous media was also established. The aggregation process of the PeIm dye to form organic nanoparticles (NPs) was evaluated experimentally by the means of transmission electron microscope imaging as well as theoretically by the molecular dynamics simulation studies. Tuning the morphology along with the formation of colloidosomes by the controlled self-aggregation of PeIm NPs in aqueous suspension was demonstrated successfully. Finally, both excimeric and monomeric emissive PeIm NPs as well as PeIm colloidosomes were employed for the bioimaging in vitro.
Collapse
Affiliation(s)
- Avijit Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371
- Biomaterials group, CSIR-Indian Institute of Chemical Technology , Hyderabad, India 500007
| | - Linyi Bai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , Stockholm, Sweden SE-10691
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , Stockholm, Sweden SE-10691
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| |
Collapse
|
33
|
Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular Polymers in Aqueous Media. Chem Rev 2016; 116:2414-77. [DOI: 10.1021/acs.chemrev.5b00369] [Citation(s) in RCA: 527] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Pol Besenius
- Institute
of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Boris Rybtchinski
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Guo Y, Niu B, Song Q, Zhao Y, Bao Y, Tan S, Si L, Zhang Z. RGD-decorated redox-responsived-α-tocopherol polyethylene glycol succinate–poly(lactide) nanoparticles for targeted drug delivery. J Mater Chem B 2016; 4:2338-2350. [DOI: 10.1039/c6tb00055j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel kind of copolymer, TPGS-SS-PLA, was successfully synthesized and applied in targeted drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy
- Liyuan Hospital
- Tongji Medical School
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Boning Niu
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Qingle Song
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yongdan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yuling Bao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Songwei Tan
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Luqin Si
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
- Hubei Engineering Research Center for NDDS
| |
Collapse
|
35
|
Soulié M, Carayon C, Saffon N, Blanc S, Fery-Forgues S. A comparative study of nine berberine salts in the solid state: optimization of the photoluminescence and self-association properties through the choice of the anion. Phys Chem Chem Phys 2016; 18:29999-30008. [DOI: 10.1039/c6cp05848e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Counter-ions regulate the photoluminescence and self-association properties of berberine salts.
Collapse
Affiliation(s)
| | - Chantal Carayon
- SPCMIB
- UMR5068
- CNRS-Université Paul Sabatier-Toulouse III
- F31062 Toulouse cedex 9
- France
| | - Nathalie Saffon
- Service commun RX
- Institut de Chimie de Toulouse
- ICT-FR2599
- Université de Toulouse
- F31062 Toulouse
| | - Sylvie Blanc
- Université de Pau et des Pays de l'Adour
- IPREM-UMR CNRS 5254
- F64053 Pau cedex 9
- France
| | - Suzanne Fery-Forgues
- SPCMIB
- UMR5068
- CNRS-Université Paul Sabatier-Toulouse III
- F31062 Toulouse cedex 9
- France
| |
Collapse
|
36
|
Shulov I, Oncul S, Reisch A, Arntz Y, Collot M, Mely Y, Klymchenko AS. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting. NANOSCALE 2015; 7:18198-18210. [PMID: 26482443 DOI: 10.1039/c5nr04955e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The key to ultrabright fluorescent nanomaterials is the control of dye emission in the aggregated state. Here, lipophilic rhodamine B derivatives are assembled into nanoparticles (NPs) using tetraphenylborate counterions with varied fluorination levels that should tune the short-range dye ordering. Counterion fluorination is found to drastically enhance the emission characteristics of these NPs. Highly fluorinated counterions produce 10-20 nm NPs containing >300 rhodamine dyes with a fluorescence quantum yield of 40-60% and a remarkably narrow emission band (34 nm), whereas, for other counterions, aggregation caused quenching with a weak broad-band emission is observed. NPs with the most fluorinated counterion (48 fluorines) are ∼40-fold brighter than quantum dots (QD585 at 532 nm excitation) in single-molecule microscopy, showing improved photostability and suppressed blinking. Due to exciton diffusion, revealed by fluorescence anisotropy, these NPs are efficient FRET donors to single cyanine-5 acceptors with a light-harvesting antenna effect reaching 200. Finally, NPs with the most fluorinated counterion are rather stable after entry into living cells, in contrast to their less fluorinated analogue. Thus, the present work shows the crucial role of counterion fluorination in achieving high fluorescence brightness and photostability, narrow-band emission, efficient energy transfer and high intracellular stability of nanomaterials for light harvesting and bioimaging applications.
Collapse
Affiliation(s)
- Ievgen Shulov
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France. and Organic Chemistry Department, Chemistry Faculty, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Sule Oncul
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France. and Department of Biophysics, School of Medicine, Istanbul Medeniyet University, 34700 Istanbul, Turkey
| | - Andreas Reisch
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| | - Youri Arntz
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| | - Mayeul Collot
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| |
Collapse
|
37
|
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 2015; 116:962-1052. [PMID: 26270260 DOI: 10.1021/acs.chemrev.5b00188] [Citation(s) in RCA: 1012] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Chantu R Saha-Möller
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Pawaret Leowanawat
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
38
|
Synthesis of Water-Soluble Iridium (III)-Containing Nanoparticles for Biological Applications. J CHEM-NY 2015. [DOI: 10.1155/2015/475602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Water-soluble nanoparticles (Ir/PGlc-NP, Ir/β-1,3-glucan-NP) based on water-soluble glycopolymers (PGlc),β-1,3-glucan polysaccharide, and conjugated phosphorescent Ir (III) complexes were successfully synthesized by self-assembly. The obtained nanoparticles have good spherical morphological characterization with a mean diameter of 50 nm measured by TEM. Ir/PGlc-NP and Ir/β-1,3-glucan-NP showed the same emission maxima at 565 nm in aqueous solution and both caused effective apoptosis and death of HepG2 and Hela cells after being irradiated at 445 nm for 30 min in vitro. Fluorescence cellular imaging was conducted by confocal laser scanning microscopy (CLSM) using HepG2 cells as the model cell in which the nanoparticles had successfully entered into the cytoplasm with high brightness. Furthermore, after injecting the nanoparticles into live mice in vivo, the real-time fluorescence imaging as well as the nanoparticles distribution in organs at 24 hours after administration indicated that these nanoparticles can serve as fluorescent imaging contrast for further biological applications.
Collapse
|