1
|
Vaneeckhaute E, Bocquelet C, Bellier L, Le HN, Rougier N, Jegadeesan SA, Vinod-Kumar S, Mathies G, Veyre L, Thieuleux C, Melzi R, Banks D, Kempf J, Stern Q, Jannin S. Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids. Phys Chem Chem Phys 2024; 26:22049-22061. [PMID: 39114945 PMCID: PMC11307143 DOI: 10.1039/d4cp02022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe (<1 s) compatible with future recyclable DNP applications. To do so, the solid-state DNP enhancement factors, build-up rates and DNP spectra of different hyperpolarizing solids containing various nitroxide radical loadings (20-74 μmol cm-3) are compared against the DNP performance of varying nitroxide concentrations (10-100 mM) solvated in a glassy frozen solution. We demonstrate that in <1 s, polarization enhancement goes up to 56 and 102 with surface-bound and solvated radicals, respectively, under the optimized conditions. For the range of nitroxide concentrations used cross effect DNP seems to be the dominant mechanism under benchtop conditions. This was deduced from the electron paramagnetic resonance (EPR) lineshape of TEMPOL investigated using Q-band EPR measurements.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Charlotte Bocquelet
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Léa Bellier
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Huu-Nghia Le
- Université Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Nathan Rougier
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | | | - Sanjay Vinod-Kumar
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Laurent Veyre
- Université Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Chloe Thieuleux
- Université Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Roberto Melzi
- Bruker Italia S.r.l., Viale V. Lancetti 43, 20158 Milano, Italy
| | - Daniel Banks
- Bruker Biospin, Billerica, Massachusetts 01821, USA
| | - James Kempf
- Bruker Biospin, Billerica, Massachusetts 01821, USA
| | - Quentin Stern
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| |
Collapse
|
2
|
Římal V, Bunyatova EI, Štěpánková H. Efficient Scavenging of TEMPOL Radical by Ascorbic Acid in Solution and Related Prolongation of 13C and 1H Nuclear Spin Relaxation Times of the Solute. Molecules 2024; 29:738. [PMID: 38338481 PMCID: PMC10856727 DOI: 10.3390/molecules29030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Dynamic nuclear polarization for nuclear magnetic resonance (NMR) spectroscopy and imaging uses free radicals to strongly enhance the NMR signal of a compound under investigation. At the same time, the radicals shorten significantly its nuclear spin relaxation times which reduces the time window available for the experiments. Radical scavenging can overcome this drawback. Our work presents a detailed study of the reduction of the TEMPOL radical by ascorbic acid in solution by high-resolution NMR. Carbon-13 and hydrogen-1 nuclear spin relaxations are confirmed to be restored to their values without TEMPOL. Reaction mechanism, kinetics, and the influence of pD and viscosity are thoroughly discussed. The detailed investigation conducted in this work should help with choosing suitable concentrations in the samples for dynamic nuclear polarization and optimizing the measurement protocols.
Collapse
Affiliation(s)
- Václav Římal
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| | | | - Helena Štěpánková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| |
Collapse
|
3
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
4
|
Negroni M, Turhan E, Kress T, Ceillier M, Jannin S, Kurzbach D. Frémy's Salt as a Low-Persistence Hyperpolarization Agent: Efficient Dynamic Nuclear Polarization Plus Rapid Radical Scavenging. J Am Chem Soc 2022; 144:20680-20686. [PMID: 36322908 PMCID: PMC9673139 DOI: 10.1021/jacs.2c07960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key technique for molecular structure determination in solution. However, due to its low sensitivity, many efforts have been made to improve signal strengths and reduce the required substrate amounts. In this regard, dissolution dynamic nuclear polarization (DDNP) is a versatile approach as signal enhancements of over 10 000-fold are achievable. Samples are signal-enhanced ex situ by transferring electronic polarization from radicals to nuclear spins before dissolving and shuttling the boosted sample to an NMR spectrometer for detection. However, the applicability of DDNP suffers from one major drawback, namely, paramagnetic relaxation enhancements (PREs) that critically reduce relaxation times due to the codissolved radicals. PREs are the primary source of polarization losses canceling the signal improvements obtained by DNP. We solve this problem by using potassium nitrosodisulfonate (Frémy's salt) as polarization agent (PA), which provides high nuclear spin polarization and allows for rapid scavenging under mild reducing conditions. We demonstrate the potential of Frémy's salt, (i) showing that both 1H and 13C polarization of ∼30% can be achieved and (ii) describing a hybrid sample shuttling system (HySSS) that can be used with any DDNP/NMR combination to remove the PA before NMR detection. This gadget mixes the hyperpolarized solution with a radical scavenger and injects it into an NMR tube, providing, within a few seconds, quantitatively radical-free, highly polarized solutions. The cost efficiency and broad availability of Frémy's salt might facilitate the use of DDNP in many fields of research.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Thomas Kress
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Morgan Ceillier
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
5
|
Kircher R, Mross S, Hasse H, Münnemann K. Functionalized Controlled Porous Glasses for Producing Radical-Free Hyperpolarized Liquids by Overhauser DNP. Molecules 2022; 27:molecules27196402. [PMID: 36234939 PMCID: PMC9572983 DOI: 10.3390/molecules27196402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
Overhauser dynamic nuclear polarization (ODNP) can be used as a tool for NMR signal enhancement and happens on very short time scales. Therefore, ODNP is well suited for the measurement of fast-flowing samples, even in compact magnets, which is beneficial for the real-time monitoring of chemical reactions or processes. ODNP requires the presence of unpaired electrons in the sample, which is usually accomplished by the addition of stable radicals. However, radicals affect the nuclear relaxation times and can hamper the NMR detection. This is circumvented by immobilizing radicals in a packed bed allowing for the measurement of radical-free samples when using ex situ DNP techniques (DNP build-up and NMR detection happen at different places) and flow-induced separation of the hyperpolarized liquid from the radicals. Therefore, the synthesis of robust and chemically inert immobilized radical matrices is mandatory. In the present work, this is accomplished by immobilizing the radical glycidyloxy-tetramethylpiperidinyloxyl with a polyethyleneimine (PEI) linker on the surface of controlled porous glasses (CPG). Both the porosity of the CPGs and also the size of the PEI-linker were varied, resulting in a set of distinct radical matrices for continuous-flow ODNP. The study shows that CPGs with PEI-linkers provide robust, inert and efficient ODNP matrices.
Collapse
|
6
|
Elliott SJ, Stern Q, Ceillier M, El Daraï T, Cousin SF, Cala O, Jannin S. Practical dissolution dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:59-100. [PMID: 34852925 DOI: 10.1016/j.pnmrs.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.
Collapse
Affiliation(s)
- Stuart J Elliott
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Quentin Stern
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Morgan Ceillier
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Théo El Daraï
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Samuel F Cousin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Olivier Cala
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
7
|
El Daraï T, Cousin SF, Stern Q, Ceillier M, Kempf J, Eshchenko D, Melzi R, Schnell M, Gremillard L, Bornet A, Milani J, Vuichoud B, Cala O, Montarnal D, Jannin S. Porous functionalized polymers enable generating and transporting hyperpolarized mixtures of metabolites. Nat Commun 2021; 12:4695. [PMID: 34349114 PMCID: PMC8338986 DOI: 10.1038/s41467-021-24279-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show the synthesis of hyperpolarizing polymers (HYPOPs) that can generate radical- and contaminant-free hyperpolarized samples within minutes with lifetimes exceeding hours in the solid state. HYPOPs feature tunable macroporous porosity, with porous volumes up to 80% and concentration of nitroxide radicals grafted in the bulk matrix up to 285 μmol g-1. Analytes can be efficiently impregnated as aqueous/alcoholic solutions and hyperpolarized up to P(13C) = 25% within 8 min, through the combination of 1H spin diffusion and 1H → 13C cross polarization. Solutions of 13C-analytes of biological interest hyperpolarized in HYPOPs display a very long solid-state 13C relaxation times of 5.7 h at 3.8 K, thus prefiguring transportation over long distances.
Collapse
Affiliation(s)
- Théo El Daraï
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
- Université de Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, Lyon, France
| | - Samuel F Cousin
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France.
| | - Quentin Stern
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Morgan Ceillier
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | | | | | | | | | - Laurent Gremillard
- Université de Lyon, INSA Lyon, MATEIS UMR CNRS 5510, Bât. Blaise Pascal, Villeurbanne, France
| | - Aurélien Bornet
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Jonas Milani
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Basile Vuichoud
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Olivier Cala
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Damien Montarnal
- Université de Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, Lyon, France.
| | - Sami Jannin
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| |
Collapse
|
8
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
9
|
Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Fangli Gang
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Yi Xiao
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Jiwen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi 712100 China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
10
|
Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:5-23. [PMID: 33185800 DOI: 10.1007/s10334-020-00894-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique's shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.
Collapse
|
11
|
|
12
|
Cao W, Wang WD, Xu HS, Sergeyev IV, Struppe J, Wang X, Mentink-Vigier F, Gan Z, Xiao MX, Wang LY, Chen GP, Ding SY, Bai S, Wang W. Exploring Applications of Covalent Organic Frameworks: Homogeneous Reticulation of Radicals for Dynamic Nuclear Polarization. J Am Chem Soc 2018; 140:6969-6977. [PMID: 29799739 PMCID: PMC6045815 DOI: 10.1021/jacs.8b02839] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid progress has been witnessed in the past decade in the fields of covalent organic frameworks (COFs) and dynamic nuclear polarization (DNP). In this contribution, we bridge these two fields by constructing radical-embedded COFs as promising DNP agents. Via polarization transfer from unpaired electrons to nuclei, DNP realizes significant enhancement of NMR signal intensities. One of the crucial issues in DNP is to screen for suitable radicals to act as efficient polarizing agents, the basic criteria for which are homogeneous distribution and fixed orientation of unpaired electrons. We therefore envisioned that the crystalline and porous structures of COFs, if evenly embedded with radicals, may work as a new "crystalline sponge" for DNP experiments. As a proof of concept, we constructed a series of proxyl-radical-embedded COFs (denoted as PR( x)-COFs) and successfully applied them to achieve substantial DNP enhancement. Benefiting from the bottom-up and multivariate synthetic strategies, proxyl radicals have been covalently reticulated, homogeneously distributed, and rigidly embedded into the crystalline and mesoporous frameworks with adjustable concentration ( x%). Excellent performance of PR( x)-COFs has been observed for DNP 1H, 13C, and 15N solid-state NMR enhancements. This contribution not only realizes the direct construction of radical COFs from radical monomers, but also explores the new application of COFs as DNP polarizing agents. Given that many radical COFs can therefore be rationally designed and facilely constructed with well-defined composition, distribution, and pore size, we expect that our effort will pave the way for utilizing radical COFs as standard polarizing agents in DNP NMR experiments.
Collapse
Affiliation(s)
- Wei Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Hai-Sen Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Ivan V Sergeyev
- Bruker BioSpin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Jochem Struppe
- Bruker BioSpin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Xiaoling Wang
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Ming-Xing Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Lu-Yao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Guo-Peng Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| |
Collapse
|
13
|
Imakura Y, Nonaka H, Takakusagi Y, Ichikawa K, Maptue NR, Funk AM, Khemtong C, Sando S. Rational Design of [ 13 C,D 14 ]Tert-butylbenzene as a Scaffold Structure for Designing Long-lived Hyperpolarized 13 C Probes. Chem Asian J 2018; 13:280-283. [PMID: 29291256 PMCID: PMC6820848 DOI: 10.1002/asia.201701652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/24/2022]
Abstract
Dynamic nuclear polarization (DNP) is a technique to polarize the nuclear spin population. As a result of the hyperpolarization, the NMR sensitivity of the nuclei in molecules can be dramatically enhanced. Recent application of the hyperpolarization technique has led to advances in biochemical and molecular studies. A major problem is the short lifetime of the polarized nuclear spin state. Generally, in solution, the polarized nuclear spin state decays to a thermal spin equilibrium, resulting in loss of the enhanced NMR signal. This decay is correlated directly with the spin-lattice relaxation time T1 . Here we report [13 C,D14 ]tert-butylbenzene as a new scaffold structure for designing hyperpolarized 13 C probes. Thanks to the minimized spin-lattice relaxation (T1 ) pathways, its water-soluble derivative showed a remarkably long 13 C T1 value and long retention of the hyperpolarized spin state.
Collapse
Affiliation(s)
- Yuki Imakura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoichi Takakusagi
- Incubation Center for Advanced Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiro Ichikawa
- Incubation Center for Advanced Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nesmine R Maptue
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA
| | - Alexander M Funk
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
14
|
Vuichoud B, Bornet A, de Nanteuil F, Milani J, Canet E, Ji X, Miéville P, Weber E, Kurzbach D, Flamm A, Konrat R, Gossert AD, Jannin S, Bodenhausen G. Filterable Agents for Hyperpolarization of Water, Metabolites, and Proteins. Chemistry 2016; 22:14696-700. [DOI: 10.1002/chem.201602506] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Basile Vuichoud
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Florian de Nanteuil
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Jonas Milani
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Estel Canet
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24 rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; Ecole Normale Supérieure, CNRS LBM; 75005 Paris France
| | - Xiao Ji
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24 rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; Ecole Normale Supérieure, CNRS LBM; 75005 Paris France
| | - Pascal Miéville
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Emmanuelle Weber
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24 rue Lhomond 75005 Paris France
| | - Dennis Kurzbach
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24 rue Lhomond 75005 Paris France
| | - Andrea Flamm
- Institute of Biomolecular Structural Chemistry; University of Vienna; 1030 Vienna Austria
| | - Robert Konrat
- Institute of Biomolecular Structural Chemistry; University of Vienna; 1030 Vienna Austria
| | - Alvar D. Gossert
- Institutes for BioMedical Research; Novartis; 4002 Basel Switzerland
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24 rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; Ecole Normale Supérieure, CNRS LBM; 75005 Paris France
| |
Collapse
|
15
|
Baudouin D, van Kalkeren HA, Bornet A, Vuichoud B, Veyre L, Cavaillès M, Schwarzwälder M, Liao WC, Gajan D, Bodenhausen G, Emsley L, Lesage A, Jannin S, Copéret C, Thieuleux C. Cubic three-dimensional hybrid silica solids for nuclear hyperpolarization. Chem Sci 2016; 7:6846-6850. [PMID: 28451127 PMCID: PMC5356032 DOI: 10.1039/c6sc02055k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/15/2016] [Indexed: 11/21/2022] Open
Abstract
Porous network architecture of hybrid silicas containing TEMPO radicals along their pores is key for increased hyperpolarization performances.
Hyperpolarization of metabolites by dissolution dynamic nuclear polarization (D-DNP) for MRI applications often requires fast and efficient removal of the radicals (polarizing agents). Ordered mesoporous SBA-15 silica materials containing homogeneously dispersed radicals, referred to as HYperPolarizing SOlids (HYPSOs), enable high polarization – P(1H) = 50% at 1.2 K – and straightforward separation of the polarizing HYPSO material from the hyperpolarized solution by filtration. However, the one-dimensional tubular pores of SBA-15 type materials are not ideal for nuclear spin diffusion, which may limit efficient polarization. Here, we develop a generation of hyperpolarizing solids based on a SBA-16 structure with a network of pores interconnected in three dimensions, which allows a significant increase of polarization, i.e. P(1H) = 63% at 1.2 K. This result illustrates how one can improve materials by combining a control of the incorporation of radicals with a better design of the porous network structures.
Collapse
Affiliation(s)
- D Baudouin
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - H A van Kalkeren
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - A Bornet
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - B Vuichoud
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - L Veyre
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - M Cavaillès
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - M Schwarzwälder
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland .
| | - W-C Liao
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland .
| | - D Gajan
- Université de Lyon , Institut des Sciences Analytiques , UMR 5280 , CNRS , Université Lyon 1 , ENS Lyon 5 rue de la Doua , F-69100 Villeurbanne , France
| | - G Bodenhausen
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.,Département de Chimie , Ecole Normale Supérieure, 24 Rue Lhomond , 75231 Paris Cedex 05 , France.,Université Pierre-et-Marie Curie , Paris , France.,UMR 7203 , CNRS/UPMC/ENS , Paris , France
| | - L Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - A Lesage
- Université de Lyon , Institut des Sciences Analytiques , UMR 5280 , CNRS , Université Lyon 1 , ENS Lyon 5 rue de la Doua , F-69100 Villeurbanne , France
| | - S Jannin
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - C Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland .
| | - C Thieuleux
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| |
Collapse
|