1
|
Chen CW, Ranganathan P, Mutharani B, Shiu JW, Rwei SP, Chang YH, Chiu FC. Synthesis of High-Value Bio-Based Polyamide 12,36 Microcellular Foams with Excellent Dimensional Stability and Shape Recovery Properties. Polymers (Basel) 2024; 16:159. [PMID: 38201824 PMCID: PMC10780462 DOI: 10.3390/polym16010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The search for alternatives to petroleum-based thermoplastic polyamide elastomers (TPAEs) has recently drawn great interest. In this study, a bio-massed TPAE, PA12,36, was synthesized using 1,12-dodecanediamine (DDA) and fatty dimer acid (FDA, PripolTM1009) precursors via catalyst and solvent-free melt polycondensation. The molecular structure and molecular weight of the PA12,36 were characterized by 1H NMR, FTIR, and GPC. PA12,36 displayed a low melting temperature of 85.8 °C, an initial degradation temperature of 425 °C, and a glass-transition temperature of 30.4 °C, whereas it sustained satisfactory tensile strength (10.0 MPa) and superior strain at break (1378%). Furthermore, PA12,36 was foamed by supercritical CO2, and the cell size, cell density, and porosity were determined. The entangled long-chained FDA component generated a physically crosslinked network, which promoted the melt viscosity of PA12,36 against elongations of foam cell growth and increased foamability significantly. As a result, uniform structured cellular foams with a cell diameter of 15-24 µm and high cell density (1011 cells/cm3-1012 cells/cm3) were successfully achieved. The foaming window was widened from 76 to 81 °C, and the expansion ratio was increased from 4.8 to 9.6. Additionally, PA12,36 foam with a physically crosslinked structure presented a better creep shape recovery percentage (92-97.9%) and sturdier dimensional stability. This bio-based PA12,36 foam is a promising candidate to replace petroleum-based thermoplastic elastomer foams for engineering applications, particularly shoe soles.
Collapse
Affiliation(s)
- Chin-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (C.-W.C.); (P.R.); (J.-W.S.)
| | - Palraj Ranganathan
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (C.-W.C.); (P.R.); (J.-W.S.)
| | | | - Jia-Wei Shiu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (C.-W.C.); (P.R.); (J.-W.S.)
| | - Syang-Peng Rwei
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (C.-W.C.); (P.R.); (J.-W.S.)
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan;
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|
2
|
Scheelje FCM, Meier MAR. Non-isocyanate polyurethanes synthesized from terpenes using thiourea organocatalysis and thiol-ene-chemistry. Commun Chem 2023; 6:239. [PMID: 37925584 PMCID: PMC10625552 DOI: 10.1038/s42004-023-01041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The depletion of fossil resources as well as environmental concerns contribute to an increasing focus on finding more sustainable approaches for the synthesis of polymeric materials. In this work, a synthesis route towards non-isocyanate polyurethanes (NIPUs) using renewable starting materials is presented. Based on the terpenes limonene and carvone as renewable resources, five-membered cyclic carbonates are synthesized and ring-opened with allylamine, using thiourea compounds as benign and efficient organocatalysts. Thus, five renewable AA monomers are obtained, bearing one or two urethane units. Taking advantage of the terminal double bonds of these AA monomers, step-growth thiol-ene polymerization is performed using different dithiols, to yield NIPUs with molecular weights of above 10 kDa under mild conditions. Variation of the dithiol and amine leads to polymers with different properties, with Mn of up to 31 kDa and Tg's ranging from 1 to 29 °C.
Collapse
Affiliation(s)
- Frieda Clara M Scheelje
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
3
|
Rist M, Löcken H, Ortega M, Greiner A. Toughening of Bio-Based PA 6.19 by Copolymerization with PA 6.6 - Synthesis and Production of Melt-Spun Monofilaments and Knitted Fabrics. Macromol Rapid Commun 2023; 44:e2300256. [PMID: 37220654 DOI: 10.1002/marc.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/09/2023] [Indexed: 05/25/2023]
Abstract
This work reports on the synthesis of statistical copolymers of bio-based PA 6.19 and PA 6.6 together with the production of melt-spun monofilaments for the production of sustainable textile fibers. The plant oil-based 1.19-nonadecanedioic acid is synthesized from bio-derived oleic acid via isomerizing methoxycarbonylation. The homopolymer PA 6.19 with a carbon-based bio-content of 72% shows a good elongation at break of 166%, but lower tensile strength than commercial PA 6 (43 MPa versus 82 MPa). Addition of adipic acid to form statistical PA 6.6/6.19 copolymers improves toughness while maintaining the high elongation at break. Two PA 6.6/6.19 copolymers with a carbon-based bio-content of 26% and 33% are successfully synthesized and exhibited comparable toughness (94 ± 6 MPa and 92 ± 2 MPa) to the commercial PA 6 (92 ± 15 MPa). The bio-based copolymers also exhibit a much lower water uptake than PA 6 and PA 6.6, resulting in a higher dimensional stability. Melt spinning of the oleic acid-based polyamides is successfully carried out to produce monofilaments with sufficient properties for further processing in a knitting process, demonstrating the capabilities of the bio-based PA 6.6/6.19 copolymers for use in the textile industry.
Collapse
Affiliation(s)
- Maximilian Rist
- University of Bayreuth, Macromolecular Chemistry and Bavarian Polymer Institute, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Henning Löcken
- RWTH Aachen University, Institut fuer Textiltechnik, Otto-Blumenthal-Strasse 1, 52074, Aachen, Germany
| | - Mathias Ortega
- RWTH Aachen University, Institut fuer Textiltechnik, Otto-Blumenthal-Strasse 1, 52074, Aachen, Germany
| | - Andreas Greiner
- University of Bayreuth, Macromolecular Chemistry and Bavarian Polymer Institute, Universitätsstrasse 30, 95440, Bayreuth, Germany
| |
Collapse
|
4
|
Mouren A, Avérous L. Sustainable cycloaliphatic polyurethanes: from synthesis to applications. Chem Soc Rev 2023; 52:277-317. [PMID: 36520183 DOI: 10.1039/d2cs00509c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyurethanes (PUs) are a versatile and major polymer family, mainly produced via polyaddition between polyols and polyisocyanates. A large variety of fossil-based building blocks is commonly used to develop a wide range of macromolecular architectures with specific properties. Due to environmental concerns, legislation, rarefaction of some petrol fractions and price fluctuation, sustainable feedstocks are attracting significant attention, e.g., plastic waste and biobased resources from biomass. Consequently, various sustainable building blocks are available to develop new renewable macromolecular architectures such as aromatics, linear aliphatics and cycloaliphatics. Meanwhile, the relationship between the chemical structures of these building blocks and properties of the final PUs can be determined. For instance, aromatic building blocks are remarkable to endow materials with rigidity, hydrophobicity, fire resistance, chemical and thermal stability, whereas acyclic aliphatics endow them with oxidation and UV light resistance, flexibility and transparency. Cycloaliphatics are very interesting as they combine most of the advantages of linear aliphatic and aromatic compounds. This original and unique review presents a comprehensive overview of the synthesis of sustainable cycloaliphatic PUs using various renewable products such as biobased terpenes, carbohydrates, fatty acids and cholesterol and/or plastic waste. Herein, we summarize the chemical modification of the main sustainable cycloaliphatic feedstocks, synthesis of PUs using these building blocks and their corresponding properties and subsequently present their major applications in hot-topic fields, including building, transportation, packaging and biomedicine.
Collapse
Affiliation(s)
- Agathe Mouren
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
5
|
Fluorescence Behavior and Emission Mechanisms of Poly(ethylene succinamide) and Its Applications in Fe3+ Detection and Data Encryption. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Ma GQ, Sun ZB, Ren JY, Zeng Y, Jia DZ, Li Y, Guan B, Zhong GJ, Li ZM. Reorganization of Hydrogen Bonding in Biobased Polyamide 5,13 under the Thermo-Mechanical Field: Hierarchical Microstructure Evolution and Achieving Excellent Mechanical Performance. Biomacromolecules 2022; 23:3990-4003. [PMID: 35960547 DOI: 10.1021/acs.biomac.2c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hierarchical microstructure evolution of an emerging biobased odd-odd polyamide 5,13 (PA5,13) films under the thermo-mechanical field, stepping from hydrogen bond (H-bond) arrangement to the crystalline morphology, has been investigated systematically. It is found that the reorganization of H-bonds under the thermo-mechanical field plays a crucial role in the crystallization of PA5,13. Especially, it is revealed that the crystallization process under the thermo-mechanical field develops along the chain axis direction, while lamellar fragmentation occurs perpendicular to the chain axis. Consequently, a stable and well-organized H-bond arrangement and lengthened lamellae with significant orientation have been constructed. Laudably, an impressive tensile strength of about 500 MPa and modulus of about 4.7 GPa are thus achieved. The present study could provide important guidance for the industrial-scale manufacture of high-performance biobased odd-odd PAs with long polymethylene segment in the dicarboxylic unit combined with a large difference between the polymethylene segments in the dicarboxylic and diamine units.
Collapse
Affiliation(s)
- Guo-Qi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhao-Bo Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jia-Yi Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ying Zeng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - De-Zhuang Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Bing Guan
- Cathay Biotech Inc., Shanghai 201203, People's Republic of China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
7
|
Dobrosielska M, Dobrucka R, Kozera P, Kozera R, Kołodziejczak M, Gabriel E, Głowacka J, Jałbrzykowski M, Kurzydłowski KJ, Przekop RE. Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules. Polymers (Basel) 2022; 14:polym14153153. [PMID: 35956665 PMCID: PMC9371175 DOI: 10.3390/polym14153153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Amorphous diatomite was used as a filler for a thermoplastic polymer of polyamide 11 obtained from natural sources. The diatomite particles of different sizes were previously fractionated by sedimentation to obtain powders with varying particle size distribution, including powders with or without frustule particles, crushed, uncrushed or agglomerated. Biocomposites containing 2.5, 5, 10 and 20% filler were tested for their mechanical properties, including tensile strength, flexural strength and impact strength. In addition, a particle size analysis (by Dynamic Light Scattering, DLS) was performed and the dispersion of the filler in the polymer matrix (Scanning Electron Microscopy, SEM), thermal parameters (Differential Scanning Calorimetry, DSC, and Dynamic Mechanical Analysis, DMA) were determined. Testing showed that biocomposites modified with diatomaceous earth have a higher mechanical strength than the reference system, especially with larger amounts of the filler (10 and 20%), e.g., the tensile strength of pure PA11 is about 46 MPa, while 20OB and 20OF 47.5 and 47 MPa, respectively, while an increase in max. flexural strength and flexural modulus is also observed compared to pure PA11 by a maximum of 63 and 54%, respectively Diatomaceous earth can be obtained in various ways—it is commercially available or it is possible to breed diatoms in laboratory conditions, while the use of commercially available diatomite, which contains diatoms of different sizes, eliminates the possibility of controlling mechanical parameters by filling biocomposites with a filler with the desired particle size distribution, and diatom breeding is not possible on an industrial scale. Our proposed biocomposite based on fractionated diatomaceous earth using a sedimentation process addresses the current need to produce biocomposite materials from natural sources, and moreover, the nature of the process, due to its simplicity, can be successfully used on an industrial scale.
Collapse
Affiliation(s)
- Marta Dobrosielska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland; (M.D.); (P.K.); (R.K.)
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland; (M.D.); (P.K.); (R.K.)
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
- Correspondence: or (R.D.); or (R.E.P.)
| | - Paulina Kozera
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland; (M.D.); (P.K.); (R.K.)
| | - Rafał Kozera
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland; (M.D.); (P.K.); (R.K.)
| | - Marta Kołodziejczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (M.K.); (J.G.)
| | - Ewa Gabriel
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (E.G.); (M.J.)
| | - Julia Głowacka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (M.K.); (J.G.)
| | - Marek Jałbrzykowski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (E.G.); (M.J.)
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45c, 15-351 Bialystok, Poland;
| | - Krzysztof J. Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45c, 15-351 Bialystok, Poland;
| | - Robert E. Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (E.G.); (M.J.)
- Correspondence: or (R.D.); or (R.E.P.)
| |
Collapse
|
8
|
Cao Y, Olsen BD. Strengthening and Toughening of Protein-Based Thermosets via Intermolecular Self-Assembly. Biomacromolecules 2022; 23:3286-3295. [PMID: 35834611 DOI: 10.1021/acs.biomac.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As proteins are abundant polymers in biomass sources such as agricultural feedstocks and byproducts, leveraging them to develop alternatives to synthetic polymers is of great interest. However, the mechanical performance of protein materials is not suitable for most target applications. Constructing copolymers with proteins as hard domains and rubbery polymers as soft domains has been shown to be a promising strategy for improving mechanical properties. Herein, it is demonstrated that toughening and strengthening of protein copolymers can be advanced further by thermal treatment, leading to mechanical enhancements that generalize across a variety of different protein feedstocks, including whey, serum, soy, and pea proteins. The thermal treatment induces a rearrangement of protein structure, leading to the formation of intermolecular β-sheets. The ordered intermolecular structures in the hard domains of thermosets greatly improve their mechanical properties, providing simultaneous increases in strength, toughness, and modulus, with little sacrifice in fracture strain. Analogous to crystalline structures, the formation of intermolecular β-sheet structures also leads to reduced hygroscopicity. This is a valuable contribution, as practical applications of natural polymer-based plastics are frequently hindered by the materials' humidity sensitivity. Therefore, this work demonstrates a simple yet versatile strategy to improve the materials' performance from a wide range of protein feedstocks, as well as signifies the implications of protein structural assembly in materials design.
Collapse
Affiliation(s)
- Yiping Cao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Chen L, Dai Z, Lou W, Jiang P, Zhang P, Bao Y, Gao X, Xia J. Synthesis of self‐healing soybean oil‐based waterborne polyurethane based on
Diels–Alder
reaction. J Appl Polym Sci 2022. [DOI: 10.1002/app.52694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liang Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Zhuding Dai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wenxue Lou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Pingping Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Pingbo Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Yanmin Bao
- Research and Development Center Jiangsu Caihua Packaging Group Company Kunshan China
| | - Xuewen Gao
- Research and Development Center Jiangsu Caihua Packaging Group Company Kunshan China
| | - Jialiang Xia
- Research and Development Center Jiangsu Caihua Packaging Group Company Kunshan China
| |
Collapse
|
10
|
Wang C, Zhang J, Chen J, Shi J, Zhao Y, He M, Ding L. Bio-polyols based waterborne polyurethane coatings reinforced with chitosan-modified ZnO nanoparticles. Int J Biol Macromol 2022; 208:97-104. [PMID: 35304198 DOI: 10.1016/j.ijbiomac.2022.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/05/2022]
Abstract
The development of environmentally friendly waterborne polyurethane (WPU) coatings from bio-based polyols has received much attention due to increasing environmental concern and the depletion of petroleum resources. In this study, the WPU coatings derived from castor oil and soy polyol were modified by chain extender [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester. The effect of chitosan-modified ZnO (CS-ZnO) nanoparticles content on the properties of WPU/CS-ZnO coatings and their films were systematically investigated. The results indicated that WPU/CS-ZnO coatings displayed excellent storage stability and the particle sizes firstly decreased and then increased with CS-ZnO loading. CS-ZnO could improve tensile strength and Young's modulus but reduce the optical transparency of WPU/CS-ZnO films. CS-ZnO has a prominent reinforcement effect on the WPU/CS-ZnO matrix. With the addition of 2 wt% CS-ZnO, the tensile strength and Young's modulus of the WPU/CS-ZnO2 film reached 13.4 and 112.1 MPa, 1.68 and 2.6 times over neat WPU film, respectively. TGA results showed that the thermal stability of WPU/CS-ZnO films improved with increased CS-ZnO content. Furthermore, the WPU/CS-ZnO films' wettability decreased with the introduction of CS-ZnO. This work provides a simple and efficient strategy for preparing environmentally friendly bio-based WPU coatings, which are promising for application in the surface coating industry.
Collapse
Affiliation(s)
- Chengshuang Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China.
| | - Jie Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China; You Pei College, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Jiahao Chen
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China; School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Jingwen Shi
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Yanteng Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China.
| | - Meng He
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Liang Ding
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| |
Collapse
|
11
|
Phung Hai T, Samoylov AA, Rajput BS, Burkart MD. Laboratory Ozonolysis Using an Integrated Batch-DIY Flow System for Renewable Material Production. ACS OMEGA 2022; 7:15350-15358. [PMID: 35571824 PMCID: PMC9096922 DOI: 10.1021/acsomega.1c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Flow chemistry offers a solution for replacing batch methods in chemical preparation where intermediates or products may pose toxicity or instability hazards. Ozonolysis offers an ideal opportunity for flow chemistry solutions, but multiple barriers to entry exist for use of these methods, including equipment cost and performance optimization. To address these challenges, we developed a programmable DIY syringe pump system to use for a continuous flow multireactor process using 3D-printed parts, off-the-shelf stepper motors, and an Arduino microcontroller. Reaction kinetics of ozonide formation informed the use of an integrated batch-flow approach, where ozone addition to an olefin was timed to coincide with fluid movement of a single-syringe pump, followed by downstream Pinnick oxidation and reductive quench in flow. The system was demonstrated by continuous preparation of azelaic acid from ozonolysis of palmitoleic acid, a process limited to low production volumes via batch chemistry. High total production of azelaic acid with 80% yield was obtained from an algae oil sourced unsaturated fatty acid: a product with important applications in medicine, cosmetics, and polymers. This low-cost, scalable approach offers the potential for rapid prototyping and distributed chemical production.
Collapse
|
12
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
13
|
Lou W, Dai Z, Jiang P, Zhang P, Bao Y, Gao X, Xia J, Haryono A. Development of soybean oil‐based aqueous polyurethanes and the effect of hydroxyl value on its properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenxue Lou
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Zhuding Dai
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Pingping Jiang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Pingbo Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Yanmin Bao
- Research and development department Jiangsu Caihua Packaging Group Company Kunshan China
| | - Xuewen Gao
- Research and development department Jiangsu Caihua Packaging Group Company Kunshan China
| | - Jialiang Xia
- Research and development department Jiangsu Caihua Packaging Group Company Kunshan China
| | - Agus Haryono
- Research Center for Chemistry Indonesian Institute of Sciences (LIPI) Serpong Indonesia
| |
Collapse
|
14
|
Ribeiro AR, Silva SS, Reis RL. Challenges and opportunities on vegetable oils derived systems for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112720. [DOI: 10.1016/j.msec.2022.112720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/11/2023]
|
15
|
Molina-Besch K, Olsson A. Innovations in food packaging—Sustainability challenges and future scenarios. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Younes GR, Marić M. Bio-based Thermoplastic Polyhydroxyurethanes Synthesized from the Terpolymerization of a Dicarbonate and Two Diamines: Design, Rheology, and Application in Melt Blending. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Georges R. Younes
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Milan Marić
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
17
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angew Chem Int Ed Engl 2021; 60:20144-20165. [PMID: 33617111 PMCID: PMC8453566 DOI: 10.1002/anie.202100778] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C-C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarbonylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering.
Collapse
Affiliation(s)
- Ursula Biermann
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Ivo Feussner
- University of GoettingenAlbrecht-von-Haller Institute for Plant SciencesInternational Center for Advanced Studies of Energy Conversion (ICASEC) and Goettingen Center of Molecular Biosciences (GZMB)Dept. of Plant BiochemistryJustus-von-Liebig-Weg 1137077GoettingenGermany
| | - Michael A. R. Meier
- Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Straße am Forum 776131KarlsruheGermany
- Laboratory of Applied ChemistryInstitute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jürgen O. Metzger
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| |
Collapse
|
18
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fettsäuren und Fettsäurederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ursula Biermann
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Ivo Feussner
- Universität Göttingen Albrecht-von-Haller Institut für Pflanzenwissenschaften International Center for Advanced Studies of Energy Conversion (ICASEC) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) Abt. für die Biochemie der Pflanze Justus-von-Liebig-Weg 11 37077 Göttingen Deutschland
| | - Michael A. R. Meier
- Labor für Angewandte Chemie Institut für Organische Chemie (IOC) Karlsruher Institut für Technology (KIT) Straße am Forum 7 76131 Karlsruhe Deutschland
- Labor für Angewandte Chemie Institut für biologische und chemische Systeme –, Funktionale Molekülsysteme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Jürgen O. Metzger
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| |
Collapse
|
19
|
Younes GR, Maric M. Increasing the Hydrophobicity of Hybrid Poly(propylene glycol)-Based Polyhydroxyurethanes by Capping with Hydrophobic Diamine. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georges R. Younes
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Milan Maric
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
20
|
Plant oil-based polymers. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymer materials derived from natural resources have gained increasing attention in recent years because of the uncertainties concerning petroleum supply and prices in the future as well as their environmental pollution problems. As one of the most abundant renewable resources, plant oils are suitable starting materials for polymers because of their low cost, the rich chemistry that their triglyceride structure provides, and their potential biodegradability. This chapter covers the structure, modification of triglycerides and their derivatives as well as synthesis of polymers therefrom. The remarkable advances during the last two decades in organic synthesis using plant oils and the basic oleochemicals derived from them are selectively reported and updated. Various methods, such as condensation, radical/cationic polymerization, metathesis procedure, and living polymerization, have also been applied in constructing oil-based polymers. Based on the advance of these changes, traditional polymers such as polyamides, polyesters, and epoxy resins have been renewed. Partial oil-based polymers have already been applied in some industrial areas and recent developments in this field offer promising new opportunities.
Collapse
|
21
|
Phung Hai TA, Tessman M, Neelakantan N, Samoylov AA, Ito Y, Rajput BS, Pourahmady N, Burkart MD. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021; 22:1770-1794. [PMID: 33822601 DOI: 10.1021/acs.biomac.0c01610] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the depletion of fossil fuels, higher oil prices, and greenhouse gas emissions, the scientific community has been conducting an ongoing search for viable renewable alternatives to petroleum-based products, with the anticipation of increased adaptation in the coming years. New academic and industrial developments have encouraged the utilization of renewable resources for the development of ecofriendly and sustainable materials, and here, we focus on those advances that impact polyurethane (PU) materials. Vegetable oils, algae oils, and polysaccharides are included among the major renewable resources that have supported the development of sustainable PU precursors to date. Renewable feedstocks such as algae have the benefit of requiring only sunshine, carbon dioxide, and trace minerals to generate a sustainable biomass source, offering an improved carbon footprint to lessen environmental impacts. Incorporation of renewable content into commercially viable polymer materials, particularly PUs, has increasing and realistic potential. Biobased polyols can currently be purchased, and the potential to expand into new monomers offers exciting possibilities for new product development. This Review highlights the latest developments in PU chemistry from renewable raw materials, as well as the various biological precursors being employed in the synthesis of thermoset and thermoplastic PUs. We also provide an overview of literature reports that focus on biobased polyols and isocyanates, the two major precursors to PUs.
Collapse
Affiliation(s)
- Thien An Phung Hai
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Marissa Tessman
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Nitin Neelakantan
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Anton A Samoylov
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yuri Ito
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Bhausaheb S Rajput
- Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| | - Naser Pourahmady
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States.,Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| |
Collapse
|
22
|
Ragno D, Brandolese A, Di Carmine G, Buoso S, Belletti G, Leonardi C, Bortolini O, Bertoldo M, Massi A. Exploring Oxidative NHC-Catalysis as Organocatalytic Polymerization Strategy towards Polyamide Oligomers. Chemistry 2021; 27:1839-1848. [PMID: 32986909 DOI: 10.1002/chem.202004296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 01/06/2023]
Abstract
The polycondensation of diamines and dialdehydes promoted by an N-heterocyclic carbene (NHC) catalyst in the presence of a quinone oxidant and hexafluoro-2-propanol (HFIP) is herein presented for the synthesis of oligomeric polyamides (PAs), which are obtained with a number-average molecular weight (Mn ) in the range of 1.7-3.6 kg mol-1 as determined by NMR analysis. In particular, the utilization of furanic dialdehyde monomers (2,5-diformylfuran, DFF; 5,5'-[oxybis(methylene)]bis[2-furaldehyde], OBFA) to access known and previously unreported biobased PAs is illustrated. The synthesis of higher molecular weight PAs (poly(decamethylene terephthalamide, PA10T, Mn = 62.8 kg mol-1 ; poly(decamethylene 2,5-furandicarboxylamide, PA10F, Mn = 6.5 kg mol-1 ) by a two-step polycondensation approach is also described. The thermal properties (TGA and DSC analyses) of the synthesized PAs are reported.
Collapse
Affiliation(s)
- Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Arianna Brandolese
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Graziano Di Carmine
- School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK
| | - Sara Buoso
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti, 101-40129, Bologna, Italy
| | - Giada Belletti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Costanza Leonardi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Monica Bertoldo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| |
Collapse
|
23
|
Pronoitis C, Hakkarainen M, Odelius K. Long-chain polyamide covalent adaptable networks based on renewable ethylene brassylate and disulfide exchange. Polym Chem 2021. [DOI: 10.1039/d1py00811k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-chain polyamide covalent adaptable networks with high strength and short relaxation times were prepared based on a renewable ethylene brassylate and disulfide exchange.
Collapse
Affiliation(s)
- Charalampos Pronoitis
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|
24
|
Younes G, Price G, Dandurand Y, Maric M. Study of Moisture-Curable Hybrid NIPUs Based on Glycerol with Various Diamines: Emergent Advantages of PDMS Diamines. ACS OMEGA 2020; 5:30657-30670. [PMID: 33283114 PMCID: PMC7711944 DOI: 10.1021/acsomega.0c04689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
A sol/gel curing method is used in this work to synthesize hybrid partially bio-based polyhydroxyurethanes (PHUs) from dicarbonates derived from glycerol and various diamines. The method consists of end-capping the PHU prepolymers with moisture-sensitive groups, so sealants and adhesives can be produced from partially sustainable hybrid PHUs (HPHUs), similar to their preparation from end-capped conventional polyurethanes. Diglycerol dicarbonate (DGC) is synthesized and polymerized with different diamines of various chain lengths, and the resulting structural and thermal properties of the PHUs are qualitatively and quantitively characterized. This characterization led to two potential candidates: PHU 4, made of DGC and a poly(propylene glycol) diamine, and PHU 10, prepared from DGC and a poly(dimethylsiloxane) diamine. These polymers, with respective relative number-average molecular weights of 3200 and 7400 g/mol, are end-capped and left to cure under ambient lab conditions (22 °C and 40-50% humidity), and the curing processes are monitored rheologically. Notably, moisture curing does not require any catalyst. The chemical stability of the resulting hybrid PHUs (HPHUs) 4 and 10 in pure water is investigated to check the viability of applying them under outdoor conditions. Only HPHU 10 is found to be resistant to water and shows hydrophobicity with a contact angle of 109°. Tensile tests are conducted on HPHU 10 samples cured under lab conditions for a week and others cured for another week while being immersed in water. The mechanical properties, tensile strength and elongation at break, improve with the samples cured in water, indicating the high-water repellency of HPHU 10.
Collapse
Affiliation(s)
- Georges
R. Younes
- Department
of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Gareth Price
- Department
of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | | | - Milan Maric
- Department
of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
25
|
Wang Z, Ganewatta MS, Tang C. Sustainable polymers from biomass: Bridging chemistry with materials and processing. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101197] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Stockmann PN, Van Opdenbosch D, Poethig A, Pastoetter DL, Hoehenberger M, Lessig S, Raab J, Woelbing M, Falcke C, Winnacker M, Zollfrank C, Strittmatter H, Sieber V. Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nat Commun 2020; 11:509. [PMID: 31980642 PMCID: PMC6981233 DOI: 10.1038/s41467-020-14361-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.
Collapse
Affiliation(s)
- Paul N Stockmann
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Daniel Van Opdenbosch
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Alexander Poethig
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Dominik L Pastoetter
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Moritz Hoehenberger
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Sebastian Lessig
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Johannes Raab
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Marion Woelbing
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Claudia Falcke
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Malte Winnacker
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Cordt Zollfrank
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Harald Strittmatter
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Volker Sieber
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany.
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany.
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany.
| |
Collapse
|
27
|
Pronoitis C, Hua G, Hakkarainen M, Odelius K. Biobased Polyamide Thermosets: From a Facile One-Step Synthesis to Strong and Flexible Materials. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Charalampos Pronoitis
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Geng Hua
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
28
|
Ji Y, Chen S. Optimization of acoustic performances of a new tung oleic acid‐based composite polyurethane foam. J Appl Polym Sci 2019. [DOI: 10.1002/app.47861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yangjie Ji
- State Key Laboratory of Automotive Simulation and ControlJilin University Changchun, 130022 China
| | - Shuming Chen
- State Key Laboratory of Automotive Simulation and ControlJilin University Changchun, 130022 China
| |
Collapse
|
29
|
Hollande L, Do Marcolino I, Balaguer P, Domenek S, Gross RA, Allais F. Preparation of Renewable Epoxy-Amine Resins With Tunable Thermo-Mechanical Properties, Wettability and Degradation Abilities From Lignocellulose- and Plant Oils-Derived Components. Front Chem 2019; 7:159. [PMID: 30972325 PMCID: PMC6445855 DOI: 10.3389/fchem.2019.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2019] [Indexed: 11/30/2022] Open
Abstract
One-hundred percent renewable triphenol—GTF—(glycerol trihydroferulate) and novel bisphenols—GDFx–(glycerol dihydroferulate) were prepared from lignocellulose-derived ferulic acid and vegetal oil components (fatty acids and glycerol) using highly selective lipase-catalyzed transesterifications. Estrogenic activity tests revealed no endocrine disruption for GDFx bisphenols. Triethyl-benzyl-ammonium chloride (TEBAC) mediated glycidylation of all bis/triphenols, afforded innocuous bio-based epoxy precursors GDFxEPO and GTF-EPO. GDFxEPO were then cured with conventional and renewable diamines, and some of them in presence of GTF-EPO. Thermo-mechanical analyses (TGA, DSC, and DMA) and degradation studies in acidic aqueous solutions of the resulting epoxy-amine resins showed excellent thermal stabilities (Td5% = 282–310°C), glass transition temperatures (Tg) ranging from 3 to 62°C, tunable tan α, and tunable degradability, respectively. It has been shown that the thermo-mechanical properties, wettability, and degradability of these epoxy-amine resins, can be finely tailored by judiciously selecting the diamine nature, the GTF-EPO content, and the fatty acid chain length.
Collapse
Affiliation(s)
- Louis Hollande
- URD ABI, CEBB, AgroParisTech, Pomacle, France.,UMR GENIAL, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| | | | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Val d'Aurelle, Montpellier, France
| | - Sandra Domenek
- UMR GENIAL, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| | - Richard A Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | |
Collapse
|
30
|
Liu S, Zhang T, Zhu L, Zhong K, Gong J, Yang Z, Bai R, Lan Y. Retro-metal-ene versus retro-Aldol: mechanistic insight into Rh-catalysed formal [3+2] cycloaddition. Chem Commun (Camb) 2018; 54:13551-13554. [PMID: 30444245 DOI: 10.1039/c8cc08335e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Theoretical calculations have been performed to investigate the mechanism and stereoselectivity of rhodium-catalysed intramolecular [3+2] cycloaddition for construction of a substituted hexahydropentalene complex. A new C-C bond cleavage mechanism, retro-Aldol-type, is proposed and verified for this Rh-catalysed [3+2] cycloaddition reaction.
Collapse
Affiliation(s)
- Song Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Jianxian Gong
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. and State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and the Peking University, Beijing 100871, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. and State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and the Peking University, Beijing 100871, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China. and College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|