1
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Hu R, Yao W, Fu Y, Lu F, Chen X. Synthesis and Properties of Photocurable Polymers Derived from the Polyesters of Glycerol and Aliphatic Dicarboxylic Acids. Polymers (Basel) 2024; 16:1278. [PMID: 38732746 PMCID: PMC11085142 DOI: 10.3390/polym16091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The rapid development of 3D printing technology and the emerging applications of shape memory elastomer have greatly stimulated the research of photocurable polymers. In this work, glycerol (Gly) was polycondensed with sebacic, dodecanedioic, or tetradecanedioic acids to provide precursor polyesters with hydroxyl or carboxyl terminal groups, which were further chemically functionalized by acryloyl chloride to introduce sufficient, photocurable, and unsaturated double bonds. The chemical structures of the acrylated polyesters were characterized by FT IR and NMR spectroscopies. The photoinitiated crosslinking behavior of the acrylated polyesters under ultraviolet irradiation without the addition of any photoinitiator was investigated. The results showed that the precursor polyesters that had a greater number of terminated hydroxyls and a less branched structure obtained a relatively high acetylation degree. A longer chain of aliphatic dicarboxylic acids (ADCAs) and higher ADCA proportion lead to a relatively lower photopolymerization rate of acrylated polyesters. However, the photocured elastomers with a higher ADCA proportion or longer-chain ADCAs resulted in better mechanical properties and a lower degradation rate. The glass transition temperature (Tg) of the elastomer increased with the alkyl chain length of the ADCAs, and a higher Gly proportion resulted in a lower Tg of the elastomer due to its higher crosslinking density. Thermal gravimetric analysis (TGA) showed that the chain length of the ADCAs and the molar ratio of Gly to ADCAs had less of an effect on the thermal stability of the elastomer. As the physicochemical properties can be adjusted by choosing the alkyl chain length of the ADCAs, as well as changing the ratio of Gly:ADCA, the photocurable polyesters are expected to be applied in multiple fields.
Collapse
Affiliation(s)
| | | | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (R.H.); (W.Y.); (F.L.); (X.C.)
| | | | | |
Collapse
|
3
|
Karamzadeh V, Shen ML, Ravanbakhsh H, Sohrabi‐Kashani A, Okhovatian S, Savoji H, Radisic M, Juncker D. High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer. Adv Healthc Mater 2024; 13:e2303708. [PMID: 37990819 PMCID: PMC11468968 DOI: 10.1002/adhm.202303708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Artificial organs and organs-on-a-chip (OoC) are of great clinical and scientific interest and have recently been made by additive manufacturing, but depend on, and benefit from, biocompatible, biodegradable, and soft materials. Poly(octamethylene maleate (anhydride) citrate (POMaC) meets these criteria and has gained popularity, and as in principle, it can be photocured and is amenable to vat-photopolymerization (VP) 3D printing, but only low-resolution structures have been produced so far. Here, a VP-POMaC ink is introduced and 3D printing of 80 µm positive features and complex 3D structures is demonstrated using low-cost (≈US$300) liquid-crystal display (LCD) printers. The ink includes POMaC, a diluent and porogen additive to reduce viscosity within the range of VP, and a crosslinker to speed up reaction kinetics. The mechanical properties of the cured ink are tuned to match the elastic moduli of different tissues simply by varying the porogen concentration. The biocompatibility is assessed by cell culture which yielded 80% viability and the potential for tissue engineering illustrated with a 3D-printed gyroid seeded with cells. VP-POMaC and low-cost LCD printers make the additive manufacturing of high resolution, elastomeric, and biodegradable constructs widely accessible, paving the way for a myriad of applications in tissue engineering and 3D cell culture as demonstrated here, and possibly in OoC, implants, wearables, and soft robotics.
Collapse
Affiliation(s)
- Vahid Karamzadeh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Molly L. Shen
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Hossein Ravanbakhsh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
- Department of Biomedical EngineeringThe University of AkronAkronOH44325USA
| | - Ahmad Sohrabi‐Kashani
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Sargol Okhovatian
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - Houman Savoji
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3C 3J7Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3C 3A7Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - David Juncker
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| |
Collapse
|
4
|
Hu Q, Cui J, Zhang H, Liu S, Ramalingam M. A 5 + 1-Axis 3D Printing Platform for Producing Customized Intestinal Fistula Stents. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:955-970. [PMID: 37886400 PMCID: PMC10599436 DOI: 10.1089/3dp.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Tailored intestinal fistula stents with a hollow bent pipe structure prepared by using a three-axis bio-printing platform are often unsuitable due to low printing efficiency and quality caused by the unavoidable need for a supporting structure. Herein, a 5 + 1-axis 3D printing platform was built and developed for producing support-free intestinal fistula stents. A 3D model of the target stent shape and dimensions was treated by a dynamic slicing algorithm, which was then used to prepare a motion control code. Our printing method showed improved printing efficiency, superior stent surface properties and structure and ideal elasticity and mechanical strength to meet the mechanical requirements of the human body. Static simulations showed the importance of axial printing techniques, whereas the stent itself was shown to have excellent biocompatibility with wettability and cell proliferation tests. We present a customizable, efficient, and high-quality method with the potential for preparing bespoke stents for treating intestinal fistulas.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jian Cui
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
5
|
Fei J, Rong Y, Zhu L, Li H, Zhang X, Lu Y, An J, Bao Q, Huang X. Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review. Macromol Rapid Commun 2023; 44:e2300211. [PMID: 37294875 DOI: 10.1002/marc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Indexed: 06/11/2023]
Abstract
In recent years, as a class of advanced additive manufacturing (AM) technology, photocurable 3D printing has gained increasing attention. Based on its outstanding printing efficiency and molding accuracy, it is employed in various fields, such as industrial manufacturing, biomedical, soft robotics, electronic sensors. Photocurable 3D printing is a molding technology based on the principle of area-selective curing of photopolymerization reaction. At present, the main printing material suitable for this technology is the photosensitive resin, a composite mixture consisting of a photosensitive prepolymer, reactive monomer, photoinitiator, and other additives. As the technique research deepens and its application gets more developed, the design of printing materials suitable for different applications is becoming the hotspot. Specifically, these materials not only can be photocured but also have excellent properties, such as elasticity, tear resistance, fatigue resistance. Photosensitive polyurethanes can endow photocured resin with desirable performance due to their unique molecular structure including the inherent alternating soft and hard segments, and microphase separation. For this reason, this review summarizes and comments on the research and application progress of photocurable 3D printing of photosensitive polyurethanes, analyzing the advantages and shortcomings of this technology, also offering an outlook on this rapid development direction.
Collapse
Affiliation(s)
- Jianhua Fei
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Youjie Rong
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Lisheng Zhu
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Huijie Li
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaomin Zhang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Ying Lu
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, 030032, P. R. China
| | - Jian An
- Shanxi Coal Center Hospital, Taiyuan, 030006, P. R. China
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Qingbo Bao
- Shanxi Coal Center Hospital, Taiyuan, 030006, P. R. China
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Xiaobo Huang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
6
|
Yue T, He J, Tao L, Li Y. High-Throughput Screening and Prediction of High Modulus of Resilience Polymers Using Explainable Machine Learning. J Chem Theory Comput 2023; 19:4641-4653. [PMID: 37338332 DOI: 10.1021/acs.jctc.3c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The ability to store and release elastic strain energy, as well as mechanical strength, are crucial factors in both natural and man-made mechanical systems. The modulus of resilience (R) indicates a material's capacity to absorb and release elastic strain energy, with the yield strength (σy) and Young's modulus (E) as R = σy2/(2E) for linear elastic solids. To improve the R in linear elastic solids, a high σy and low E combination in materials is sought after. However, achieving this combination is a significant challenge as both properties typically increase together. To address this challenge, we propose a computational method to quickly identify polymers with a high modulus of resilience using machine learning (ML) and validate the predictions through high-fidelity molecular dynamics (MD) simulations. Our approach commences by training single-task ML models, multitask ML models, and Evidential Deep Learning models to forecast the mechanical properties of polymers based on experimentally reported values. Utilizing explainable ML models, we were able to determine the critical substructures that significantly impact the mechanical properties of polymers, such as E and σy. This information can be utilized to create and develop new polymers with improved mechanical characteristics. Our single-task and multitask ML models can predict the properties of 12 854 real polymers and 8 million hypothetical polyimides and uncover 10 new real polymers and 10 hypothetical polyimides with exceptional modulus of resilience. The improved modulus of resilience of these novel polymers was validated through MD simulations. Our method efficiently speeds up the discovery of high-performing polymers using ML predictions and MD validation and can be applied to other polymer material discovery challenges, such as polymer membranes, dielectric polymers, and more.
Collapse
Affiliation(s)
- Tianle Yue
- Department of Mechanical Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jinlong He
- Department of Mechanical Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Lei Tao
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Yue L, Macrae Montgomery S, Sun X, Yu L, Song Y, Nomura T, Tanaka M, Jerry Qi H. Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nat Commun 2023; 14:1251. [PMID: 36878943 PMCID: PMC9988868 DOI: 10.1038/s41467-023-36909-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Multimaterial additive manufacturing has important applications in various emerging fields. However, it is very challenging due to material and printing technology limitations. Here, we present a resin design strategy that can be used for single-vat single-cure grayscale digital light processing (g-DLP) 3D printing where light intensity can locally control the conversion of monomers to form from a highly stretchable soft organogel to a stiff thermoset within in a single layer of printing. The high modulus contrast and high stretchability can be realized simultaneously in a monolithic structure at a high printing speed (z-direction height 1 mm/min). We further demonstrate that the capability can enable previously unachievable or hard-to-achieve 3D printed structures for biomimetic designs, inflatable soft robots and actuators, and soft stretchable electronics. This resin design strategy thus provides a material solution in multimaterial additive manufacture for a variety of emerging applications.
Collapse
Affiliation(s)
- Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - S Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yuyang Song
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA
| | - Tsuyoshi Nomura
- Toyota Central R&D Laboratories, Inc., Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Masato Tanaka
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
8
|
Zhao Y, Zhong J, Wang Y, Chen Q, Yin J, Wang J, Zhao H, Li Y, Gong H, Huang W. Photocurable and elastic polyurethane based on polyether glycol with adjustable hardness for 3D printing customized flatfoot orthosis. Biomater Sci 2023; 11:1692-1703. [PMID: 36626200 DOI: 10.1039/d2bm01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Orthopedic insoles is the most commonly used nonsurgical treatment method for the flatfoot. Polyurethane (PU) plays a crucial role in the manufacturing of orthopedic insoles due to its high wear resistance and elastic recovery. However, preparing orthopedic insoles with adjustable hardness, high-accuracy, and matches the plantar morphology is challenging. Herein, a liquid crystal display (LCD) three-dimensional (3D) printer was used to prepare the customized arch-support insoles based on photo-curable and elastic polyurethane acrylate (PUA) composite resins. Two kinds of photo-curable polyurethanes (DL1000-PUA and DL2000-PUA) were successfully synthesized, and a series of fast-photocuring polyurethane acrylate (PUA) composite resins for photo-polymerization 3D printing were developed. The effects of different acrylate monomers on the Shore hardness, viscosity, and mechanical properties of the PUA composite resins were evaluated. The PUA-3-1 composite resin exhibited low viscosity, optimal hardness, and mechanical properties. A deviation analysis was conducted to assess the accuracy of printed insole. Furthermore, the stress conditions of the PUA composite resin and ethylene vinyl acetate (EVA) under the weight load of healthy adults were compared by finite element analysis (FEA) simulation. The results demonstrated that the stress of the PUA composite resin and EVA were 0.152 MPa and 0.285 MPa, and displacement were 0.051 mm and 3.449 mm, respectively. These results indicate that 3D-printed arch-support insole based on photocurable PUA composite resin are high-accuracy, and can reduce plantar pressure and prevent insoles premature deformation, which show great potential in the physiotherapeutic intervention for foot disorders.
Collapse
Affiliation(s)
- Yanyan Zhao
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yilin Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qiwei Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Junfeiyang Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jiejie Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hong Zhao
- Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanbing Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haihuan Gong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Department of Stomatology, Affiliated Hospital of Guangdong Medical University, Guangdong medical university, Zhanjiang, 524000, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
9
|
Impact Performance of 3D Printed Spatially Varying Elastomeric Lattices. Polymers (Basel) 2023; 15:polym15051178. [PMID: 36904418 PMCID: PMC10007455 DOI: 10.3390/polym15051178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Additive manufacturing is catalyzing a new class of volumetrically varying lattice structures in which the dynamic mechanical response can be tailored for a specific application. Simultaneously, a diversity of materials is now available as feedstock including elastomers, which provide high viscoelasticity and increased durability. The combined benefits of complex lattices coupled with elastomers is particularly appealing for anatomy-specific wearable applications such as in athletic or safety equipment. In this study, Siemens' DARPA TRADES-funded design and geometry-generation software, Mithril, was leveraged to design vertically-graded and uniform lattices, the configurations of which offer varying degrees of stiffness. The designed lattices were fabricated in two elastomers using different additive manufacturing processes: (a) vat photopolymerization (with compliant SIL30 elastomer from Carbon) and (b) thermoplastic material extrusion (with Ultimaker™ TPU filament providing increased stiffness). Both materials provided unique benefits with the SIL30 material offering compliance suitable for lower energy impacts and the Ultimaker™ TPU offering improved protection against higher impact energies. Moreover, a hybrid lattice combination of both materials was evaluated and demonstrated the simultaneous benefits of each, with good performance across a wider range of impact energies. This study explores the design, material, and process space for manufacturing a new class of comfortable, energy-absorbing protective equipment to protect athletes, consumers, soldiers, first responders, and packaged goods.
Collapse
|
10
|
Liu Z, Cai Y, Song F, Li J, Zhang J, Sun Y, Luo G, Shen Q. Study on Chemical Graft Structure Modification and Mechanical Properties of Photocured Polyimide. ACS OMEGA 2022; 7:9582-9593. [PMID: 35350346 PMCID: PMC8945119 DOI: 10.1021/acsomega.1c06933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The great challenge facing additive manufacturing is that the available high-performance 3D printing materials can hardly keep up with the rapid development of new additive manufacturing technology. Then, the commercial resins available in the market have some problems, such as poor thermal stability, insufficient light-curing degree, and large shrinkage after curing, which need to be solved urgently. This study reports a photocurable polyimide ink for digital light processing (DLP) 3D printing to prepare controllable 3D structures with high thermal stability, low shrinkage, and excellent comprehensive properties. In this study, pyromellitic dianhydride and diaminodiphenyl ether, the Kapton polyimide with the highest performance synthesized so far, were selected as raw materials, and 2,2'-bis(3,4-dicarboxylic acid) hexafluoropropane dianhydride containing fluorine was introduced to modify the branched-chain structure. The polyimide was prepared by one-step imidization, and then the graft with photocurable double bonds and certain functions was grafted by reaction of glycidyl methacrylate with phenolic hydroxyl groups. In this work, the solubility of the synthesized oligomer polyimide in organic solvents was greatly increased by combining three methods, thereby allowing the formation of ink for photocuring 3D printing, and the ink can be stacked to form low-shrinkage polyimide with complex controllable shape. Polyimide printed by DLP can produce complex structures with good mechanical character and thermal stability and small shrinkage. Therefore, the polyimide prepared in this study is considered to be a resin of great commercial possibility. In addition, due to its properties, it has important development potential in some fields with high demand for thermal stability, such as high-temperature cooling valves, aerospace, and other fields.
Collapse
Affiliation(s)
- Zhiqiang Liu
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yilun Cai
- Hospital
of Wuhan University of Technology, Wuhan
University of Technology, Wuhan 430070, China
| | - Feifan Song
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiajin Li
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Zhang
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Sun
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guoqiang Luo
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Chaozhou
Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Qiang Shen
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Wu J, Guo J, Linghu C, Lu Y, Song J, Xie T, Zhao Q. Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface. Nat Commun 2021; 12:6070. [PMID: 34663828 PMCID: PMC8523520 DOI: 10.1038/s41467-021-26386-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
The low productivity of typical 3D printing is a major hurdle for its utilization in large-scale manufacturing. Innovative techniques have been developed to break the limitation of printing speed, however, sophisticated facilities or costly consumables are required, which still substantially restricts the economic efficiency. Here we report that a common stereolithographic 3D printing facility can achieve a very high printing speed (400 mm/h) using a green and inexpensive hydrogel as a separation interface against the cured part. In sharp contrast to other techniques, the unique separation mechanism relies on the large recoverable deformation along the thickness direction of the hydrogel interface during the layer-wise printing. The hydrogel needs to be extraordinarily soft and unusually thick to remarkably reduce the adhesion force which is a key factor for achieving rapid 3D printing. This technique shows excellent printing stability even for fabricating large continuous solid structures, which is extremely challenging for other rapid 3D printing techniques. The printing process is highly robust for fabricating diversified materials with various functions. With the advantages mentioned above, the presented technique is believed to make a large impact on large-scale manufacturing.
Collapse
Affiliation(s)
- Jingjun Wu
- Ningbo Research Institute Zhejiang University, Ningbo, 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing Guo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Changhong Linghu
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Yahui Lu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China.
| | - Tao Xie
- Ningbo Research Institute Zhejiang University, Ningbo, 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Qian Zhao
- Ningbo Research Institute Zhejiang University, Ningbo, 315807, China.
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.
| |
Collapse
|
12
|
Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical and Chemical Property Sensors. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of flexible sensors has tripled over the last decade due to the increased demand in various fields including health monitoring, food packaging, electronic skins and soft robotics. Flexible sensors have the ability to be bent and stretched during use and can still maintain their electrical and mechanical properties. This gives them an advantage over rigid sensors that lose their sensitivity when subject to bending. Advancements in 3D printing have enabled the development of tailored flexible sensors. Various additive manufacturing methods are being used to develop these sensors including inkjet printing, aerosol jet printing, fused deposition modelling, direct ink writing, selective laser melting and others. Hydrogels have gained much attention in the literature due to their self-healing and shape transforming. Self-healing enables the sensor to recover from damages such as cracks and cuts incurred during use, and this enables the sensor to have a longer operating life and stability. Various polymers are used as substrates on which the sensing material is placed. Polymers including polydimethylsiloxane, Poly(N-isopropylacrylamide) and polyvinyl acetate are extensively used in flexible sensors. The most widely used nanomaterials in flexible sensors are carbon and silver due to their excellent electrical properties. This review gives an overview of various types of flexible sensors (including temperature, pressure and chemical sensors), paying particular attention to the application areas and the corresponding characteristics/properties of interest required for such. Current advances/trends in the field including 3D printing, novel nanomaterials and responsive polymers, and self-healable sensors and wearables will also be discussed in more detail.
Collapse
|
13
|
Shaukat U, Rossegger E, Schlögl S. Thiol–acrylate based vitrimers: From their structure–property relationship to the additive manufacturing of self-healable soft active devices. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Wang Y, Li C, Tuo X, Gong Y, Guo J. Polyethylene glycol modified epoxy acrylate
UV
curable
3D
printing materials. J Appl Polym Sci 2021. [DOI: 10.1002/app.50102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiyang Wang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Cheng Li
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| |
Collapse
|
15
|
Peng B, Yang Y, Ju T, Cavicchi KA. Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12777-12788. [PMID: 33297679 DOI: 10.1021/acsami.0c18618] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A polymer blend with high extensibility, exhibiting both shape memory and self-healing, was 4D printed using a low-cost fused filament fabrication (FFF, or fused deposition modeling, FDM) 3D printer. The material is composed of two commercially available commodity polymers, polycaprolactone (PCL), a semi-crystalline thermoplastic, and polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene (SEBS), a thermoplastic elastomer. The shape memory and self-healing properties of the blends were studied systematically through thermo-mechanical and morphological characterization, providing insight into the shape memory mechanism useful for tuning the material properties. In 3D-printed articles, the orientation of the semi-crystalline and micro-phase-separated domains leads to improvement of the shape memory property and extensibility of this material compared to compression-molded samples. By controlling the orientation of the printed fibers, we achieved a high strain at break over 1200%, outperforming previously reported flexible 4D-printed materials. The self-healing agent, PCL, enables the material to heal scratches and cracks and adhere two surfaces after annealing at 80 °C for 30 min. The high performance, multi-functionality, and potential scalability make it a promising candidate for a broad spectrum of applications, including flexible electronics, soft actuators, and deployable devices.
Collapse
Affiliation(s)
- Bangan Peng
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Yunchong Yang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Tianxiong Ju
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kevin A Cavicchi
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, Zhang J, Sheng Z, Xie C, Peng Z, Zhuang X, Bunpetch V, Zou Y, Huang W, Zhang Q, Alakpa EV, Zhang S, Ouyang H. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 2020; 258:120287. [DOI: 10.1016/j.biomaterials.2020.120287] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
17
|
Pooput K, Channasanon S, Tesavibul P, Pittayavinai P, Taweelue W. Photocurable elastomers with tunable mechanical properties for 3D digital light processing printing. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02289-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Liu XR, Wang Y, Liu LY, Dong X, Wang DJ. Time and Temperature Dependence of the Structural Evolution for Polyamide 1012. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Ji Z, Jiang D, Zhang X, Guo Y, Wang X. Facile Photo and Thermal Two‐Stage Curing for High‐Performance 3D Printing of Poly(Dimethylsiloxane). Macromol Rapid Commun 2020; 41:e2000064. [DOI: 10.1002/marc.202000064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Zhongying Ji
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Dong Jiang
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 China
| | - Xiaoqin Zhang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Yuxiong Guo
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Xiaolong Wang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
20
|
Deng Y, Li J, He Z, Hong J, Bao J. Urethane acrylate‐based photosensitive resin for three‐dimensional printing of stereolithographic elastomer. J Appl Polym Sci 2020. [DOI: 10.1002/app.49294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuhao Deng
- The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu People's Republic of China
| | - Jie Li
- The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu People's Republic of China
- Research Center for Application of GrapheneSichuan University Wuxi China
| | - Zuhan He
- The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu People's Republic of China
| | - Jiang Hong
- Institute of Advanced Polymer Materials TechnologyJiangsu Industrial Technology Research Institute Nanjing China
| | - Jianjun Bao
- The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu People's Republic of China
- Research Center for Application of GrapheneSichuan University Wuxi China
| |
Collapse
|
21
|
Peng S, Li Y, Wu L, Zhong J, Weng Z, Zheng L, Yang Z, Miao JT. 3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6479-6488. [PMID: 31927985 DOI: 10.1021/acsami.9b20631] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced stretchable electronic sensors with a complex structure place higher requirements on the mechanical properties and manufacturing process of the stretchable substrate materials. Herein, three kinds of polyurethane acrylate oligomers were synthesized successfully and mixed with a commercial acrylate monomer (isobornyl acrylate) to prepare photocurable resins with a low viscosity for a digital light processing three-dimensional (3D) printer without custom equipment. Results showed that the resin containing poly(tetrahydrofuran) units (PPTMGA-40) exhibited optimal mechanical properties and shape recoverability. The tensile strength and elongation at break of PPTMGA-40 were 15.7 MPa and 414.3%, respectively. The unprecedented fatigue resistance of PPTMGA-40 allowed it to withstand 100 compression cycles at 80% strain without fracture. The transmittance of PPTMGA-40 reached 89.4% at 550 nm, showing high transparency. An ionic hydrogel was coated on the surface of 3D-printed structures to fabricate stretchable sensors, and their conductivity, transparency, and mechanical performance were characterized. A robust piezoresistive strain sensor with a high strength (∼6 MPa) and a wearable finger guard sensor were fabricated, demonstrating that this hydrogel-elastomer system can meet the requirements of applications for advanced stretchable electronic sensors and expand the usage scope.
Collapse
Affiliation(s)
- Shuqiang Peng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yuewei Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Jie Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Zixiang Weng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Longhui Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Zhi Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Jia-Tao Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| |
Collapse
|
22
|
Childress KK, Alim MD, Hernandez JJ, Stansbury JW, Bowman CN. Additive manufacture of lightly crosslinked semicrystalline thiol-enes for enhanced mechanical performance. Polym Chem 2020; 11:39-46. [PMID: 31903100 PMCID: PMC6941418 DOI: 10.1039/c9py01452g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photopolymerizable semicrystalline thermoplastics resulting from thiol-ene polymerizations were formed via fast polymerizations and achieved excellent mechanical properties. These materials have been shown to produce materials desirable for additive manufacturing (3D printing), especially for recyclable printing and investment casting. However, while well-resolved prints were previously achieved with the thiol-ene thermoplastics, the remarkable elongation at break (ϵmax) and toughness (T) attained in bulk were not realized for 3D printed components (ϵmax,bulk ~ 790%, Tbulk ~ 102 MJ m-3 vs. ϵmax,print < 5%, Tprint < 0.5 MJ m-3). In this work, small concentrations (5-10 mol%) of a crosslinker were added to the original thiol-ene resin composition without sacrificing crystallization potential to achieve semicrystalline, covalently crosslinked networks with enhanced mechanical properties. Improvements in ductility and overall toughness were observed for printed crosslinked structures, and substantial mechanical augmentation was further demonstrated with post-manufacture thermal conditioning of printed materials above the melting temperature (Tm). In some instances, this thermal conditioning to reset the crystalline component of the crosslinked prints yielded mechanical properties that were comparable or superior to its bulk counterpart (ϵmax ~ 790%, T ~ 95 MJ m-3). These unique photopolymerizations and their corresponding monomer compositions exhibited concurrent polymerization and crystallization along with mechanical properties that were tunable by changes to the monomer composition, photopolymerization conditions, and post-polymerization conditioning. This is the first example of a 3D printed semicrystalline, crosslinked material with thermally tunable mechanical properties that are superior to many commercially-available resins.
Collapse
Affiliation(s)
- Kimberly K Childress
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Marvin D Alim
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Juan J Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Jeffrey W Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, 12800 East 19th Avenue, Aurora, Colorado 80045, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|