1
|
Bergman NP, Bergquist J, Hedeland M, Palmblad M. Text Mining and Computational Chemistry Reveal Trends in Applications of Laser Desorption/Ionization Techniques to Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2507-2515. [PMID: 39308355 PMCID: PMC11457301 DOI: 10.1021/jasms.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
Continued development of laser desorption/ionization (LDI) since its inception in the 1960s has produced an explosion of soft ionization techniques, where ionization is assisted by the physical or chemical properties of a structure or matrix. While many of these techniques have primarily been used to ionize large biomolecules, including proteins, some have recently seen increasing applications to small molecules such as pharmaceuticals. Small molecules pose particular challenges for LDI techniques, including interference from the matrix or support in the low mass range. To investigate trends in the application of soft LDI techniques to small molecules, we combined text mining and computational chemistry, looking specifically at matrix substances, analyte properties, and the research domain. In addition to making visible the history of LDI techniques, the results may inform the choice of method and suggest new avenues of method development. All software and collected data are freely available on GitHub (https://github.com/ReinV/SCOPE), VOSviewer (https://www.vosviewer.com), and OSF (https://osf.io/zkmua/).
Collapse
Affiliation(s)
- Nina P. Bergman
- Analytical
Chemistry and Neurochemistry, Department of Chemistry−BMC, Uppsala University, SE-75124 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical
Chemistry and Neurochemistry, Department of Chemistry−BMC, Uppsala University, SE-75124 Uppsala, Sweden
| | - Mikael Hedeland
- Analytical
Pharmaceutical Chemistry, Department of Medicinal Chemistry−BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Magnus Palmblad
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
2
|
Chen Y, Che J, Wang J, Tuo Y, Zhao H, Chen Y, Sai L, Zhao H, Zhang R. Functional Melanin Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for High-Sensitivity Detection of TBBPA and TBBPS Contaminations in Animal-Derived Foodstuffs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6744-6753. [PMID: 38498411 DOI: 10.1021/acs.jafc.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) have been widely used as additives in various products; however, their residues damage human health mainly via dietary ingestion. The current detection techniques remain challenging in directly and sensitively identifying TBBPA and TBBPS from food samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has great potential as an alternative tool for the analysis of low-mass environmental pollution. Herein, we successfully screened and optimized COOH-MNP-COOH as a novel MALDI matrix to enhance deprotonation for the analysis of TBBPA and TBBPS from animal-derived food samples in negative-ion mode. Notably, COOH-MNP-COOH was synthesized by a facile self-assembly strategy and characterized by TEM, FT-IR, UV-vis, and zeta potential analysis. Compared with conventional and control matrices, the COOH-MNP-COOH matrix exhibited excellent performance of TBBPA and TBBPS with high chemical stability, favorable reproducibility, remarkable salt and protein tolerance, and high sensitivity owing to abundant active groups, stronger UV-vis absorption at 355 nm, and better hydrophilicity and biocompatibility. TBBPA and TBBPS were detected with the assistance of an internal standard with limits of detection (LODs) of 300 and 200 pg/mL, respectively. Moreover, this method was applied to directly identify the residues of TBBPA and TBBPS in milk products, followed by basa catfish and meat. This research may provide a promising approach for the analysis of environmental pollutants in foodstuffs.
Collapse
Affiliation(s)
- Yuan Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiaying Che
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiagui Wang
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yuanyuan Tuo
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huayu Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yi Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Luheng Sai
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huifang Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030012, China
| |
Collapse
|
3
|
Wu YC, Zhang XW, Huang YC, Lu IC. Advancing carbohydrate quantification in MALDI mass spectrometry by the rapidly freeze-drying droplet (RFDD) method. Analyst 2024; 149:1766-1773. [PMID: 38372348 DOI: 10.1039/d3an02201c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Quantitative carbohydrate analysis faces challenges in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), including insufficient sensitivity and inconsistent spatial distribution of ion intensity. This study introduces an innovative sample preparation approach, the Rapidly Freeze-Drying Droplet (RFDD) method, aimed at overcoming these challenges by enhancing the homogeneity of the sample morphology and signal intensity in MALDI. Compared to conventional preparation methods, the RFDD method reduces the laser energy threshold and demonstrates a remarkable increase in signal intensity for carbohydrates, facilitating the detection of high-molecular-weight polysaccharides (>10 kDa). The RFDD-prepared samples exhibit a uniformly distributed signal intensity that overcomes the 'sweet spot' issue in MALDI. The enhanced signal intensity and reproducibility lead to reliable quantitative analysis of carbohydrates, eliminating the need for expensive isotopic standards in each sample. A straightforward and accessible approach is presented for general laboratories, revolutionizing carbohydrate analysis in MALDI-MS.
Collapse
Affiliation(s)
- Yu-Cheng Wu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - Xin-Wen Zhang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - Yi-Ching Huang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| |
Collapse
|
4
|
Reynolds AJ, Smith AM, Qiu TA. Detection, Quantification, and Isomer Differentiation of Per- and Polyfluoroalkyl Substances (PFAS) Using MALDI-TOF with Trapped Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:317-325. [PMID: 38251632 DOI: 10.1021/jasms.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of organic compounds that have attracted global attention for their persistence in the environment, exposure to biological organisms, and their adverse health effects. There is an urgent need to develop analytical methodologies for the characterization of PFAS in various sample matrices. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) represents a chromatography-free MS method that performs laser-based ionization and in situ analysis on samples. In this study, we present PFAS analysis by MALDI-time-of-flight (TOF) MS with trapped ion mobility spectrometry (TIMS), which provides an additional dimension of gas phase separation based on the size-to-charge ratios. MALDI matrix composition and key instrument parameters were optimized to produce different ranges of calibration curves. Parts per billion (ppb) range of calibration curves were achieved for a list of legacy and alternative perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs), while ion mobility spectrum filtering enabled parts per trillion (ppt) range of calibration curves for PFSAs. We also successfully demonstrated the separation of three perfluorooctanesulfonic acid (PFOS) structural isomers in the gas phase using TIMS. Our results demonstrated the new development of utilizing MALDI-TOF-MS coupled with TIMS for fast, quantitative, and sensitive analysis of PFAS, paving ways to future high-throughput and in situ analysis of PFAS such as MS imaging applications.
Collapse
|
5
|
Yang C, Pan Y, Yu H, Hu X, Li X, Deng C. Hollow Crystallization COF Capsuled MOF Hybrids Depict Serum Metabolic Profiling for Precise Early Diagnosis and Risk Stratification of Acute Coronary Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302109. [PMID: 37340584 PMCID: PMC10460873 DOI: 10.1002/advs.202302109] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 06/22/2023]
Abstract
Acute coronary syndrome (ACS), comprising unstable angina (UA) and acute myocardial infarction (AMI), is the leading cause of death worldwide. Currently, lacking effective strategies for classifying ACS hinders the prognosis improvement of ACS patients. Disclosing the nature of metabolic disorders holds the potential to reflect disease progress and high-throughput mass spectrometry-based metabolic analysis is a promising tool for large-scale screening. Herein, a hollow crystallization COF capsuled MOF hybrids (UiO-66@HCOF) assisted serum metabolic analysis is developed for the early diagnosis and risk stratification of ACS. UiO-66@HCOF exhibits unrivaled chemical and structural stability as well as endowing satisfying desorption/ionization efficiency in the detection of metabolites. Paired with machine learning algorithms, early diagnosis of ACS is achieved with the area under the curve (AUC) value of 0.945 for validation sets. Besides, a comprehensive ACS risk stratification method is established, and the AUC value for the discrimination of ACS from healthy controls, and AMI from UA are 0.890, and 0.928. Moreover, the AUC value of the subtyping of AMI is 0.964. Finally, the potential biomarkers exhibit high sensitivity and specificity. This study makes metabolic molecular diagnosis a reality and provided new insight into the progress of ACS.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of ChemistryFudan UniversityShanghai200433China
| | - Yilong Pan
- Department of CardiologyShengjing Hospital of China Medical UniversityNO.36 Sanhao Street, Heping DistrictShenyang110004China
| | - Hailong Yu
- Department of ChemistryFudan UniversityShanghai200433China
| | - Xufang Hu
- School of Chemical Science and TechnologyYunnan UniversityNo. 2 North Cuihu RoadKunming650091P. R. China
| | - Xiaodong Li
- Department of CardiologyShengjing Hospital of China Medical UniversityNO.36 Sanhao Street, Heping DistrictShenyang110004China
| | - Chunhui Deng
- Department of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
6
|
Wang Q, Li X, Wang H, Li S, Zhang C, Chen X, Dong J, Shao H, Wang J, Jin F. Spatial Distribution and Migration Characteristic of Forchlorfenuron in Oriental Melon Fruit by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Foods 2023; 12:2858. [PMID: 37569126 PMCID: PMC10417659 DOI: 10.3390/foods12152858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Forchlorfenuron is a widely used plant growth regulator to support the pollination and fruit set of oriental melons. It is critical to investigate the spatial distribution and migration characteristics of forchlorfenuron among fruit tissues to understand its metabolism and toxic effects on plants. However, the application of imaging mass spectrometry in pesticides remains challenging due to the usually extremely low residual concentration and the strong interference from plant tissues. In this study, a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method was developed for the first time to obtain the dynamic images of forchlorfenuron in oriental melon. A quantitative assessment has also been performed for MALDI-MSI to characterize the time-dependent permeation and degradation sites of forchlorfenuron in oriental melon. The majority of forchlorfenuron was detected in the exocarp and mesocarp regions of oriental melon and decreased within two days after application. The degradation rate obtained by MALDI-MSI in this study was comparable to that obtained by HPLC-MS/MS, indicating that the methodology and quantification approach based on the MALDI-MSI was reliable and practicable for pesticide degradation study. These results provide an important scientific basis for the assessment of the potential risks and effects of forchlorfenuron on oriental melons.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xiaohui Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Hongping Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Simeng Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Chen Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xueying Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Dong
- Shimadzu China MS Center, Beijing 100020, China
| | - Hua Shao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| |
Collapse
|
7
|
Dodangeh M, Farrokhpour H, Ghaziaskar HS, Tabrizchi M, Momeni MM, Motalebian M. Substrate-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Some Small Biomolecules Using TiO 2-Nanotubes: The Effect of Nanotube Diameter and Salt Addition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:374-382. [PMID: 36693382 DOI: 10.1021/jasms.2c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Substrate-assisted laser desorption/ionization (SALDI) is a kind of soft ionization method that is most suitable for the analysis of low molecular weight analytes when it is coupled with a time-of-flight mass spectrometer. Unlike the conventional matrix-assisted laser desorption/ionization, there is no interference in the SALDI with matrices for the low mass analyte peaks (m/z < 700). The focus of this work is to develop substrates based on nanomaterials to obtain higher sensitivity, better reproducibility, and easier preparation. The mass spectra of some small molecules (capecitabine, hemin, methadone, noscapine, oxycodone, thebaine, malathion, chlorpyrifos, ethion, permethrin, and phosalone) deposited on the TiO2-nanotube (TiO2-NTs) plate by the SALDI-TOF-MS technique are reported. The nanotubes are synthesized in different diameter sizes of nanotubes via the anodizing method. The intensity of the analyte peaks and the softness of ionization are optimized by varying the diameter of nanotubes and adding relevant alkali salts to the analytes. In addition, the reproducibility of the signal intensity of analytes is optimized by changing the surface hydrophilicity of the TiO2-NT plate.
Collapse
Affiliation(s)
- Masood Dodangeh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hassan S Ghaziaskar
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahmoud Tabrizchi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohamad Mohsen Momeni
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Majid Motalebian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
8
|
Ti3C2(OH)x-assisted LDI-TOF-MS for the rapid analysis of natural small molecules. Anal Bioanal Chem 2022; 414:8447-8461. [DOI: 10.1007/s00216-022-04382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
9
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
10
|
Zhao H, Zhao H, Wang J, Liu Y, Li Y, Zhang R. The local electric field effect of onion-like carbon nanoparticles for improved laser desorption/ionization efficiency of saccharides. Colloids Surf B Biointerfaces 2022; 211:112321. [PMID: 35032850 DOI: 10.1016/j.colsurfb.2022.112321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 01/02/2023]
Abstract
It is still a challenge to improve ionization efficiency of saccharides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Herein, the highly curved onion-like carbon nanoparticles (OCS) were synthesized from the low-price candle raw via a facile strategy. The unique nanostructure of OCS showed large surface area with plentiful mesoporous architecture, highly curved sp2 carbon with regulating electronic effect, and good hydrophilicity, which could be beneficial to facilitate the desorption and ionization efficiency in MS process. The prepared OCS material as MALDI matrix exhibited the superior performance for the detection of xylose, glucose, maltose monohydrate, and raffinose pentahydrate in positive-ion mode with low background noise, enhanced ion intensities, uniform distribution, excellent reproducibility, good salt-tolerance, and high sensitivity compared to control candle soot (CS) and traditional α-cyano-4-hydroxycinnamic acid (CHCA) matrices. This highly effective LDI of OCS matrix was attributed to its enhancing local electric field effect, strong UV absorption ability, and high photo-thermal conversion performance. Furthermore, the OCS-assisted LDI MS approach was employed to quantitatively detect glucose in rat serum. This LDI MS platform may have valuable for the analysis of metabolites in clinical research.
Collapse
Affiliation(s)
- Huifang Zhao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Huayu Zhao
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Jie Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yulong Liu
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Yanqiu Li
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| |
Collapse
|
11
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
12
|
Zhao X, Wang H, Liu Y, Ou R, Liu Y, Li X, Pan Y. Lignin as a MALDI matrix for small molecules: a proof of concept. Analyst 2021; 146:7573-7582. [PMID: 34780589 DOI: 10.1039/d1an01632f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Driven by the interest in metabolomic studies and the progress of imaging techniques, small molecule analysis is booming, while it remains challenging to be realized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, lignin, the second most abundant biomass in nature, was applied as a dual-ion-mode MALDI matrix for the first time to analyze small molecules. The low ionization efficiency and strong optical absorption properties make lignin a potential MALDI matrix in small molecule analysis. A total of 30 different small molecules were identified qualitatively and six kinds of representative molecules were detected quantitatively with a good linear response (R2 > 0.995). To verify the accuracy of our quantitative method in MALDI, myricitrin, a major bioactive component in Chinese bayberry, was analyzed in different cultivars and tissues. The myricitrin content in real samples detected by MALDI was highly consistent (R2 > 0.999) with that detected by high-performance liquid chromatography, thus indicating the applicability of the lignin matrix. Further characterization by ultraviolet and nuclear magnetic resonance spectroscopy was carried out to explain the possible mechanism of lignin as a matrix and provide more theories for a rational matrix design.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| | - Huiwen Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yilong Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| | - Ruohan Ou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
Qin ZN, Ding J, Yu QW, Zhou P, Feng YQ. A boronic acid-modified C 60 derivatization reagent for the rapid detection of 3-monochloropropane-1,2-diol using matrix-assisted laser desorption/ionization-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9169. [PMID: 34293234 DOI: 10.1002/rcm.9169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE 3-Monochloropropane-1,2-diol (3-MCPD) is a well-known contaminant formed in food thermal processing, which could be found in a variety of foodstuffs. Due to its potential carcinogenicity, it was essential to quickly develop a rapid and high-throughput analytical method to monitor 3-MCPD in foodstuffs, which is described in this study. METHODS 3-MCPD was extracted from foodstuffs and then was derivatized with a boronic acid-modified C60 (B-C60 ) through the boronic acid-diol reaction. Microwave heating was used to accelerate the derivatization reaction. Mass spectrometry (MS) analysis was conducted using matrix-assisted laser desorption/ionization-MS (MALDI-MS). The application of the method was validated using various smoked food samples. RESULTS The chemical derivatization of 3-MCPD with B-C60 enabled the addition of a C60 -tag to 3-MCPD. High-throughput analysis of the sample within 0.5 h was realized. A good linear range from 0.02 to 1.5 μg mL-1 for 3-MCPD was obtained, with a detection limit of 0.005 μg mL-1 . The recoveries in spiked foodstuffs ranged from 85.4% to 115.1% with relative standard deviations of 2.0%-14.2%. This method was successfully applied to detect 3-MCPD in smoked foodstuffs. CONCLUSIONS A quantitative method was developed for the detection of 3-MCPD in foodstuffs using B-C60 derivatization combined with MALDI-MS strategy. This proposed method may serve as a potential platform for the rapid and high-throughput analysis of 3-MCPD in foodstuffs for the purpose of food safety control.
Collapse
Affiliation(s)
- Zhang-Na Qin
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Jun Ding
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Ping Zhou
- Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y, Suzuki T. Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications. Clin Chem Lab Med 2021; 58:883-896. [PMID: 32229653 DOI: 10.1515/cclm-2019-0868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023]
Abstract
Background Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) has been used for more than 30 years. Compared with other analytical techniques, it offers ease of use, high throughput, robustness, cost-effectiveness, rapid analysis and sensitivity. As advantages, current clinical techniques (e.g. immunoassays) are unable to directly measure the biomarker; rather, they measure secondary signals. MALDI-MS has been extensively researched for clinical applications, and it is set for a breakthrough as a routine tool for clinical diagnostics. Content This review reports on the principles of MALDI-MS and discusses current clinical applications and the future clinical prospects for MALDI-MS. Furthermore, the review assesses the limitations currently experienced in clinical assays, the advantages and the impact of MALDI-MS to transform clinical laboratories. Summary MALDI-MS is widely used in clinical microbiology for the screening of microbial isolates; however, there is scope to apply MALDI-MS in the diagnosis, prognosis, therapeutic drug monitoring and biopsy imaging in many diseases. Outlook There is considerable potential for MALDI-MS in clinic as a tool for screening, profiling and imaging because of its high sensitivity and specificity over alternative techniques.
Collapse
Affiliation(s)
- Muhammad Zubair Israr
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Dennis Bernieh
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Naples, Italy
| | - Shabana Cassambai
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yoshiyuki Yazaki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Müller WH, De Pauw E, Far J, Malherbe C, Eppe G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog Lipid Res 2021; 83:101114. [PMID: 34217733 DOI: 10.1016/j.plipres.2021.101114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Knowing the spatial location of the lipid species present in biological samples is of paramount importance for the elucidation of pathological and physiological processes. In this context, mass spectrometry imaging (MSI) has emerged as a powerful technology allowing the visualization of the spatial distributions of biomolecules, including lipids, in complex biological samples. Among the different ionization methods available, the emerging surface-assisted laser desorption/ionization (SALDI) MSI offers unique capabilities for the study of lipids. This review describes the specific advantages of SALDI-MSI for lipid analysis, including the ability to perform analyses in both ionization modes with the same nanosubstrate, the detection of lipids characterized by low ionization efficiency in MALDI-MS, and the possibilities of surface modification to improve the detection of lipids. The complementarity of SALDI and MALDI-MSI is also discussed. Finally, this review presents data processing strategies applied in SALDI-MSI of lipids, as well as examples of applications of SALDI-MSI in biomedical lipidomics.
Collapse
Affiliation(s)
- Wendy H Müller
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium.
| |
Collapse
|
17
|
Tang W, Gordon A, Wang F, Chen Y, Li B. Hydralazine as a Versatile and Universal Matrix for High-Molecular Coverage and Dual-Polarity Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2021; 93:9083-9093. [PMID: 34152727 DOI: 10.1021/acs.analchem.1c00498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few matrices have the potential to be universally applicable for imaging vast endogenous compounds ranging from micro to macromolecules. In this article, we present hydralazine (HZN) as a versatile and universal matrix for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) of a wide range of endogenous compounds between 50.0 and 20,000.0 Da. HZN was prepared from its hydrochloride by alkalizing HZN·HCl with ammonia to enhance the optical absorptivity at the preferred MALDI UV laser wavelength. To further improve its performance for MALDI MS, HZN was doped with NH4OH or TFA, resulting in matrix superior performance for imaging biologically relevant compounds in the negative and positive-ion modes, respectively. The analyte-matrix interaction was also enhanced by the optimized matrix solvent and the deposition amount. Compared with conventional matrices such as 2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, and 9-aminoacridine (9-AA), the HZN matrix provided higher sensitivity, broader molecular coverage, and improved signal intensities. Its broad acquisition range makes it versatile for imaging small molecular metabolites and lipids, as well as proteins. In addition, HZN was applied successfully for the visualization of tissue-specific distributions and changes of small molecules, lipids, and proteins in the kidney and liver sections of obese ob/ob and diabetic db/db mice. The use of the HZN matrix shows great potential application in the field of pathological research.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Andrew Gordon
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanwen Chen
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Rapid Determination of Endogenous 20-Hydroxyecdysone in Plants on MALDI-TOF/TOF Mass Spectrometry via Chemical Labeling Based on Boronate Affinity. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00179-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Amiri R, Farrokhpour H, Tabrizchi M. Sodium salts effect on the time of flight mass spectra of some amino acids in the
direct‐
laser desorption ionization and matrix‐assisted laser desorption/ionization. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razieh Amiri
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| | | | - Mahmoud Tabrizchi
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| |
Collapse
|
20
|
Borden SA, Palaty J, Termopoli V, Famiglini G, Cappiello A, Gill CG, Palma P. MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. MASS SPECTROMETRY REVIEWS 2020; 39:703-744. [PMID: 32048319 DOI: 10.1002/mas.21624] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Mass spectrometry has been the "gold standard" for drugs of abuse (DoA) analysis for many decades because of the selectivity and sensitivity it affords. Recent progress in all aspects of mass spectrometry has seen significant developments in the field of DoA analysis. Mass spectrometry is particularly well suited to address the rapidly proliferating number of very high potency, novel psychoactive substances that are causing an alarming number of fatalities worldwide. This review surveys advancements in the areas of sample preparation, gas and liquid chromatography-mass spectrometry, as well as the rapidly emerging field of ambient ionization mass spectrometry. We have predominantly targeted literature progress over the past ten years and present our outlook for the future. © 2020 Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Scott A Borden
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Jan Palaty
- LifeLabs Medical Laboratories, Burnaby, BC, V3W 1H8, Canada
| | - Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Achille Cappiello
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195
| | - Pierangela Palma
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
21
|
Sharma A, Rejeeth C, Vivek R, Babu VN, Ding X. Novel Green Silver Nanoparticles as Matrix in the Detection of Small Molecules Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS). J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Fan B, Zhou H, Wang Y, Zhao Z, Ren S, Xu L, Wu J, Yan H, Gao Z. Surface Siloxane-Modified Silica Materials Combined with Metal-Organic Frameworks as Novel MALDI Matrixes for the Detection of Low-MW Compounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37793-37803. [PMID: 32691581 DOI: 10.1021/acsami.0c11404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface siloxane (3-aminopropyl triethoxysilane hydrolyzates)-modified silica materials were used as "initiators", which resulted in the release and desorption of intact molecules adsorbed on the surface of a matrix. A covalently cross-linked MIL-53(Al) material was used to enhance the ionization of analytes. Herein, we have provided an efficient matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) matrix strategy, which responded to both ion and laser irradiation with low background interference in the low-molecular-weight (MW) region. The matrixes MIL-53(Al), SBA-15@APTES, SiO2@APTES, SBA-15@APTES@MOF, and SiO2@APTES@MOF were synthetized and used for the analysis of a series of low-MW compounds to verify the effectiveness of the strategies. Compared to conventional matrixes, the surface-modified SBA-15@APTES@MOF and SiO2@APTES@MOF had low background, high sensitivity, extensive applicability, good stability, and ultrahigh tolerance of salt concentrations. The detection limits of standard analytes were determined to range from 0.1 to 1 × 10-5 mg/mL for 16 amino acids as well as citric acid, reserpine, tetraethylammonium chloride, melamine, bisphenol A, and malachite green. These results could help in designing more efficient nanostructure-initiator materials and further promote the application of MALDI-TOF MS.
Collapse
Affiliation(s)
- Bingyan Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yonghui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zunquan Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lu Xu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
23
|
Crystalline MOF nanofilm-based SALDI-MS array for determination of small molecules. Mikrochim Acta 2020; 187:326. [DOI: 10.1007/s00604-020-04310-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022]
|
24
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Risoluti R, Napoli A. Protein Extraction, Enrichment and MALDI MS and MS/MS Analysis from Bitter Orange Leaves ( Citrus aurantium). Molecules 2020; 25:E1485. [PMID: 32218285 PMCID: PMC7181213 DOI: 10.3390/molecules25071485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Citrus aurantium is a widespread tree in the Mediterranean area, and it is mainly used as rootstock for other citrus. In the present study, a vacuum infiltration centrifugation procedure, followed by solid phase extraction matrix-assisted laser desorption ionization tandem mass spectrometry (SPE MALDI MS/MS) analysis, was adopted to isolate proteins from leaves. The results of mass spectrometry (MS) profiling, combined with the top-down proteomics approach, allowed the identification of 78 proteins. The bioinformatic databases TargetP, SignalP, ChloroP, WallProtDB, and mGOASVM-Loc were used to predict the subcellular localization of the identified proteins. Among 78 identified proteins, 20 were targeted as secretory pathway proteins and 36 were predicted to be in cellular compartments including cytoplasm, nucleus, and cell membrane. The largest subcellular fraction was the secretory pathway, accounting for 25% of total proteins. Gene Ontology (GO) of Citrus sinensis was used to simplify the functional annotation of the proteins that were identified in the leaves. The Kyoto Encyclopedia of Genes and Genomes (KEGG) showed the enrichment of metabolic pathways including glutathione metabolism and biosynthesis of secondary metabolites, suggesting that the response to a range of environmental factors is the key processes in citrus leaves. Finally, the Lipase GDSL domain-containing protein GDSL esterase/lipase, which is involved in plant development and defense response, was for the first time identified and characterized in Citrus aurantium.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Roberta Risoluti
- Department of Chemistry, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy;
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| |
Collapse
|
25
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration. Food Chem 2020; 307:125527. [DOI: 10.1016/j.foodchem.2019.125527] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
|
26
|
Palanisamy S, Huang S, Zhao H, Zhu D, Zhang X. In situ derivatization of Au nanoclusters via aurophilic interactions of a triphenylphosphine gold(i) salt with neurotransmitters and their rapid MALDI-TOF-MS detection in mice brain tissue extracts. J Mater Chem B 2020; 8:38-44. [PMID: 31763660 DOI: 10.1039/c9tb01800j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) has attracted much attention for the detection of small molecules such as neurotransmitters due to its softness, high sensitivity, extensive compatibility and diverse mass analyzers. However, it has been really a difficult challenge to develop a highly specific organic compound as a matrix for the rapid, sensitive and selective detection of neurotransmitters. Herein, we report tris(triphenylphosphine)gold oxonium tetrafluoroborate ([Ph3PAu]3O+BF4-) for the first time as an efficient matrix for the rapid and simultaneous MALDI-MS detection of neurotransmitters. [Ph3PAu]3O+BF4- facilitates the in situ derivatization of gold nanoclusters (Au NCLs) during the interaction with neurotransmitters, which increases their ionization energy by absorbing more ultra-violet (UV) radiation during MALDI-TOF-MS detection. The results show that this [Ph3PAu]3O+BF4- matrix can exhibit a 10-fold faster response time compared to previously reported pyrylium matrices. In addition, [Ph3PAu]3O+BF4- can also provide the simultaneous derivatization of various neurotransmitters, including dopamine (DA), noradrenaline (NAd), serotonin (5-HT), γ-aminobutyric acid (GABA), histamine (H) and tyramine (TY), in mice brain tissue extracts, which can be detected in the MALDI-TOF-MS spectra.
Collapse
Affiliation(s)
- Sivakumar Palanisamy
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Shuai Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Huiyuan Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Di Zhu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
27
|
Klyba LV, Sanzheeva ER, Shagun LG, Zhilitskaya LV. Study of the Synthetic Potential of the Reaction of Benzimidazole with Bis(iodomethyl)tetramethyldisiloxane by Matrix-Free Laser Desorption/Ionization Mass Spectrometry. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Bie Z, Huang A, Zhang Y, Chen Y. Boronate affinity Metal–Organic frameworks for highly efficient cis-diol molecules in-situ enrichment and surface-assisted laser desorption/ionization mass spectrometric detection. Anal Chim Acta 2019; 1065:40-48. [DOI: 10.1016/j.aca.2019.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023]
|
29
|
Kober SL, Hollert H, Frohme M. Quantification of nitroaromatic explosives in contaminated soil using MALDI-TOF mass spectrometry. Anal Bioanal Chem 2019; 411:5993-6003. [PMID: 31278552 PMCID: PMC6706601 DOI: 10.1007/s00216-019-01976-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/27/2022]
Abstract
Contamination from various sources is a global environmental and health threat, with mining and military activities in particular having spread nitroaromatic compounds, such as 2,4,6-trinitrotoluene and its degradation products and by-products, to the soil. The investigation and monitoring of large contaminated areas requires new detection methods since the established ones are expensive and time-consuming. Hence, we established a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method using 1,5-diaminonaphthalene as the matrix substance and an internal standard for quantification. Analyzing standard substances, we found specific signals for radical and fragment ions of different nitrotoluenes and nitrobenzenes with good reproducibility and detection limits down to 0.25 ng/μL. The analysis of soil sample extracts from a former production site showed clear signals for 2,4,6-trinitrotoluene and the primary degradation products aminodinitrotoluenes. Furthermore, quantification gave results comparable to those obtained by conventional liquid chromatography-tandem mass spectrometry analysis. The MALDI-TOF MS method has a comparatively lower reproducibility, with relative standard deviations of 6% to 20% for multiple measurements of standard solutions and soil sample extracts. Nevertheless, a comparison of both methods revealed the advantages of MALDI-TOF MS analysis of explosive-contaminated areas with regard to costs, time, and handling. Finally, our MALDI-TOF MS method fulfills all the needs for high sample throughput and can therefore be a valuable screening tool for explosive-contaminated areas. Graphical abstract.
Collapse
Affiliation(s)
- S Liane Kober
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Henner Hollert
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany.
| |
Collapse
|
30
|
Yang S, Mu L, Feng R, Kong X. Selection of Internal Standards for Quantitative Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis Based on Correlation Coefficients. ACS OMEGA 2019; 4:8249-8254. [PMID: 31459912 PMCID: PMC6648383 DOI: 10.1021/acsomega.9b00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has shown its great success in the qualitative analysis of a wide range of organic and biological molecules. However, its application in quantitative analysis is still limited by the difficulty in the availability of isotope-labeled internal standards. The present work investigates the relationship between the correlation coefficient of the peak intensities of analyte and candidate internal standard ions and the linearity of possible quantitative analysis. Based on the two analyte examples, ciprofloxacin and substance P, the results show that the performance of the selected nonisotope-labeled internal standard is greatly related to the correlation coefficient. A high positive correlation coefficient (>0.7) between the ions of analyte and candidate standard can result in a good linearity (R 2 > 0.98) and vice versa. The results provide a new way to select nonisotope-labeled internal standards for MALDI analysis and thus can be potentially applied in the rapid quantitative mass spectrometry.
Collapse
Affiliation(s)
- Shumei Yang
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lei Mu
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Ruxia Feng
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Xianglei Kong
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
31
|
Magnetic silica nanoparticles for use in matrix-assisted laser desorption ionization mass spectrometry of labile biomolecules such as oligosaccharides, amino acids, peptides and nucleosides. Mikrochim Acta 2019; 186:104. [DOI: 10.1007/s00604-018-3208-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
|
32
|
Confining analyte droplets on visible Si pillars for improving reproducibility and sensitivity of SALDI-TOF MS. Anal Bioanal Chem 2019; 411:1135-1142. [PMID: 30623222 DOI: 10.1007/s00216-018-01565-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
We present a universal method to efficiently improve reproducibility and sensitivity of surface-assisted laser desorption/ionization time of flight mass spectrometry (SALDI-TOF MS). In this method, the Si pillar array with unique surface wettability is used as substrate for ionizing analyte. The Si pillar is fabricated based on the combination of photolithography and metal-assisted chemical etching, which is of hydrophilic top and hydrophobic bottom and side wall. Based on the surface wettability of the Si pillar, a droplet of an aqueous analyte solution can be confined on the top of the Si pillar. After evaporation of solvent, an analyte deposition spot is formed on the top of Si pillar. The visible size of the Si pillar allows the sample spot to be easily found. Meanwhile, the diameter of the Si pillar is smaller than that of the laser, allowing the observation of all analyte molecules under one laser shot. Therefore, the reproducibility and sensitivity are highly improved with this method, which allows for the quantitative analysis. Furthermore, this method is applicable for different analytes dissolved in water, including amino acids, dye molecules, polypeptides, and polymers. The application of this substrate is demonstrated by analyzing real samples at low concentration. It should be a promising method for sensitive and reproducible detection for SALDI-TOF MS. Graphical abstract ᅟ.
Collapse
|
33
|
Ma W, Xu S, Ai W, Lin C, Bai Y, Liu H. A flexible and multifunctional metal–organic framework as a matrix for analysis of small molecules using laser desorption/ionization mass spectrometry. Chem Commun (Camb) 2019; 55:6898-6901. [DOI: 10.1039/c9cc02611h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fast screening of multi-functional MOFs as SALDI-MS matrices for the detection of small molecules and simultaneous enrichment and detection of analytes.
Collapse
Affiliation(s)
- Wen Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Shuting Xu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Wanpeng Ai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry
- Boston University School of Medicine
- Boston
- USA
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| |
Collapse
|
34
|
Chang YJ, Yang SS, Yu X, Zhang H, Shang W, Gu ZY. Ultrahigh efficient laser desorption ionization of saccharides by Ti-based metal-organic frameworks nanosheets. Anal Chim Acta 2018; 1032:91-98. [DOI: 10.1016/j.aca.2018.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
35
|
Klyba LV, Sanzheeva ER, Shagun LG, Zhilitskaya LV. Matrix-Free NALDI Mass Spectrometric Study of the Major and Minor Products of the Reaction of Imidazole with Bis(iodomethyl)tetramethyldisiloxane. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018090191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 2018; 15:683-696. [PMID: 30058389 DOI: 10.1080/14789450.2018.1505510] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.
Collapse
Affiliation(s)
- Viviana Greco
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| | - Cristian Piras
- c Dipartimento di Medicina Veterinaria , Università degli studi di Milano , Milano , Italy
| | - Luisa Pieroni
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy
| | - Maurizio Ronci
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy.,e Department of Medical, Oral and Biotechnological Sciences , University "G. D'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Lorenza Putignani
- f Unit of Parasitology Bambino Gesù Children's Hospital , IRCCS , Rome , Italy.,g Unit of Human Microbiome , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Paola Roncada
- h Dipartimento di Scienze della Salute , Università degli studi "Magna Græcia" di Catanzaro , Catanzaro , Italy
| | - Andrea Urbani
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| |
Collapse
|
37
|
Garcia MM, Wrobel K, Segovia ASR, Barrientos EY, Escobosa ARC, Serrano O, Aguilar FJA, Wrobel K. Application of MALDI-TOFMS Combined with Partial Least Square Regression for the Determination of Mercury and Copper in Canned Tuna, Using Dithizone as the Complexing Agent and Ag(I) as Internal Standard. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Dong J, Ning W, Mans DJ, Mans JD. A binary matrix for the rapid detection and characterization of small-molecule cardiovascular drugs by MALDI-MS and MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:572-578. [PMID: 30319716 PMCID: PMC6178826 DOI: 10.1039/c7ay02583a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A mixture of α-cyano-4-hydroxycinnamic acid and 1,5-diaminonaphthalene was discovered as a novel binary matrix for the qualitative analysis of 14 small-molecule (~250-550 Da) cardiovascular drugs by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and MS/MS in either positive or negative ion mode.
Collapse
Affiliation(s)
- Jinlan Dong
- Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, MO, 63110, USA
| | - Wenjing Ning
- Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, MO, 63110, USA
| | - Daniel J Mans
- Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, MO, 63110, USA
| | - Jamie D Mans
- Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, MO, 63110, USA
| |
Collapse
|
39
|
Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 2018; 8:22335-22350. [PMID: 35539746 PMCID: PMC9081429 DOI: 10.1039/c8ra01574k] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolomics is the systematic study of all the metabolites present within a biological system, which consists of a mass of molecules, having a variety of physical and chemical properties and existing over an extensive dynamic range in biological samples. Diverse analytical techniques are needed to achieve higher coverage of metabolites. The application of mass spectrometry (MS) in metabolomics has increased exponentially since the discovery and development of electrospray ionization and matrix-assisted laser desorption ionization techniques. Significant advances have also occurred in separation-based MS techniques (gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and ion mobility-mass spectrometry), as well as separation-free MS techniques (direct infusion-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, mass spectrometry imaging, and direct analysis in real time mass spectrometry) in the past decades. This review presents a brief overview of the recent advanced MS techniques and their latest applications in metabolomics. The software/websites for MS result analyses are also reviewed. Metabolomics is the systematic study of all the metabolites present within a biological system, supply functional information and has received extensive attention in the field of life sciences.![]()
Collapse
Affiliation(s)
- Jun-Ling Ren
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ling Kong
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
40
|
Wang Q, Yu L, Qi CB, Ding J, He XM, Wang RQ, Feng YQ. Rapid and sensitive serum glucose determination using chemical labeling coupled with black phosphorus-assisted laser desorption/ionization time-of-flight mass spectrometry. Talanta 2018; 176:344-349. [DOI: 10.1016/j.talanta.2017.08.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
|
41
|
Wang J, Wang C, Han X. Enhanced coverage of lipid analysis and imaging by matrix-assisted laser desorption/ionization mass spectrometry via a strategy with an optimized mixture of matrices. Anal Chim Acta 2017; 1000:155-162. [PMID: 29289304 DOI: 10.1016/j.aca.2017.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/03/2023]
Abstract
In matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) analysis and imaging of lipids, comprehensive ionization of lipids simultaneously by a universal matrix is a very challenging problem. Ion suppression of readily ionizable lipids to others is common. To overcome this obstacle and enhance the coverage of MALDI MS analysis and imaging of lipids, we developed a novel strategy employing a mixture of matrices, each of which is capable of selective ionization of different lipid classes. Given that MALDI MS with either 9-aminoacridine (9-AA) or N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) yields weak in-source decay which is critical for analysis of complex biological samples and possesses orthogonal selectivity for ionization of lipid classes, we tested the mixtures of NEDC and 9-AA with different ratios for analysis of standard lipids and mouse brain lipid extracts. We determined 1.35 of NEDC/9-AA as an optimized molar ratio. It was demonstrated that an enhanced coverage with the optimized mixture was obtained, which enabled us to analyze and map all the major classes of phospholipids and sulfatide from either lipid extracts or tissue slides, respectively. We believe that this powerful novel strategy can enhance lipidomics analysis and MALDI MS imaging of lipids in a high-throughput and semi-quantitative fashion.
Collapse
Affiliation(s)
- Jianing Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, United States
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, United States
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, United States.
| |
Collapse
|
42
|
Shi R, Dai X, Li W, Lu F, Liu Y, Qu H, Li H, Chen Q, Tian H, Wu E, Wang Y, Zhou R, Lee ST, Lifshitz Y, Kang Z, Liu J. Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS NANO 2017; 11:9500-9513. [PMID: 28850220 DOI: 10.1021/acsnano.7b05328] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small molecules play critical roles in life science, yet their facile detection and imaging in physiological or pathological settings remain a challenge. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is a powerful tool for molecular analysis. However, conventional organic matrices (CHCA, DHB, etc.) used in assisting analyte ionization suffer from intensive background noise in the mass region below m/z 700, which hinders MALDI MS applications for small-molecule detection. Here, we report that a hydroxyl-group-dominated graphite dot (GD) matrix overcomes limitations of conventional matrices and allows MALDI MS to be used in fast and high-throughput analysis of small biomolecules. GDs exhibit extremely low background noise and ultrahigh sensitivity (with limit of detection <1 fmol) in MALDI MS. This approach allows identification of complex oligosaccharides, detection of low-molecular-weight components in traditional Chinese herbs, and facile analysis of puerarin and its metabolites in serum without purification. Moreover, we show that the GDs provide an effective matrix for the direct imaging or spatiotemporal mapping of small molecules and their metabolites (m/z < 700) simultaneously at the suborgan tissue level. Density functional theory calculations further provide the mechanistic basis of GDs as an effective MALDI matrix in both the positive-ion and negative-ion modes. Collectively, our work uncovered a useful matrix which reshapes MALDI MS technology for a wide range of applications in biology and medicine.
Collapse
Affiliation(s)
| | | | | | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Huihua Qu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Qiongyang Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | | | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University , Shenzhen, Guangdong Province 518060, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | | | - Yeshayahu Lifshitz
- Department of Materials Science and Engineering, Technion Israel Institute of Technology , Haifa 3200003, Israel
| | | | | |
Collapse
|
43
|
Matrix-assisted laser desorption/ionization mass spectrometry for the analysis of polyamines in plant micro-tissues using cucurbituril as a host molecule. Anal Chim Acta 2017; 987:56-63. [PMID: 28916040 DOI: 10.1016/j.aca.2017.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 01/05/2023]
Abstract
In this study, a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) strategy using cucurbit[n]uril (CB[n]) as a host molecule is proposed for the analysis of low molecular weight (LMW) compounds in complex samples. As a proof-of-concept, CB[6] was selected as the host molecule, and endogenous polyamines in plant tissue were chosen as the target analytes. Due to the molecular recognition and mass shifting properties of CB[6], the ionic signals associated with polyamines were moved to the higher mass region (>1000 Da) after specifically binding to CB[6], while signal interference derived from the conventional organic matrix and the complex sample matrix remained in the low mass region because of the incompatibility of their molecular size with CB[6] cavities. The strategy not only facilitated the analysis of LMW compounds in complex samples by MALDI MS, but also offered high throughput by accomplishing the entire analytical procedure within 10 min. The detection of polyamine concentration showed good linearity in the range of 0.02-10.0 ng/μL with correlation coefficients (R) greater than 0.9915. The limits of detection were 8.8-28.8 pg. The good reproducibility and reliability of the method were demonstrated by excellent intraday and interday precisions with relative standard deviations less than 7.9%, and the recovery ranged from 92.1% to 117.1%. Finally, the good sensitivity of the method allowed for the quantitative analysis of endogenous polyamine concentrations in various micro-tissues of Arabidopsis thaliana (20.0-740.0 μg fresh weight for each sample).
Collapse
|
44
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
45
|
Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. NANOMATERIALS 2017; 7:nano7040087. [PMID: 28430138 PMCID: PMC5408179 DOI: 10.3390/nano7040087] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Collapse
|
46
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Wu P, Xiao HM, Ding J, Deng QY, Zheng F, Feng YQ. Development of C60-based labeling reagents for the determination of low-molecular-weight compounds by matrix assisted laser desorption ionization mass (I): Determination of amino acids in microliter biofluids. Anal Chim Acta 2017; 960:90-100. [DOI: 10.1016/j.aca.2017.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
48
|
Marsico ALM, Duncan B, Landis RF, Tonga GY, Rotello VM, Vachet RW. Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Anal Chem 2017; 89:3009-3014. [PMID: 28193006 DOI: 10.1021/acs.analchem.6b04538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanomaterials have been extensively used as alternate matrices to minimize the low molecular weight interferences observed in typical MALDI but such nanomaterials typically do not improve the spot-to-spot variability that is commonly seen. In this work, we demonstrate that nanoparticles and low matrix concentrations (<2.5 mg/mL) can be used to homogeneously concentrate analytes into a narrow ring by taking advantage of the "coffee ring" effect. Concentration of the samples in this way leads to enhanced signals when compared to conventional MALDI, with higher m/z analytes being enhanced to the greatest extent. Moreover, the ionization suppression often observed in samples with high salt concentrations can be overcome by preparing samples in this way. The ring that is formed is readily visible, allowing the laser to be focused only on spots that contain analyte. The coffee-ring effect represents a new mode by which nanomaterials can be used to enhance the MALDI-based detection of biomolecules.
Collapse
Affiliation(s)
- Alyssa L M Marsico
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Ryan F Landis
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
Duzhak AB, Williams TD, Panfilova ZI, Tsentalovich YP, Duzhak TG. Application of microbial alkaloid prodigiosin as a potent matrix for the MALDI mass spectrometry analysis of low-molecular-weight plant antioxidants. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934816130049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Wang P, Giese RW. Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry. J Chromatogr A 2017; 1486:35-41. [PMID: 28118972 DOI: 10.1016/j.chroma.2017.01.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for quantitative analysis of small molecules for many years. It is usually preceded by an LC separation step when complex samples are tested. With the development several years ago of "modern MALDI" (automation, high repetition laser, high resolution peaks), the ease of use and performance of MALDI as a quantitative technique greatly increased. This review focuses on practical aspects of modern MALDI for quantitation of small molecules conducted in an ordinary way (no special reagents, devices or techniques for the spotting step of MALDI), and includes our ordinary, preferred methods The review is organized as 18 recommendations with accompanying explanations, criticisms and exceptions.
Collapse
Affiliation(s)
- Poguang Wang
- Department of Pharmaceutical Sciences and Barnett Institute, Bouve College, Northeastern University, Boston, MA 02115, USA
| | - Roger W Giese
- Department of Pharmaceutical Sciences and Barnett Institute, Bouve College, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|