1
|
Spaccapaniccia E, Cazzorla T, Rossetti D, De Simone L, Antonangeli MI, Antonosante A, Galli F, Cattani F, Maffei M, Martin F. Efficient Production of Recombinant Human Brain-Derived Neurotrophic Factor in Escherichia coli Through the Engineering of Its Pro-Region. Int J Mol Sci 2024; 25:13425. [PMID: 39769188 PMCID: PMC11678288 DOI: 10.3390/ijms252413425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Thus far, no manufacturing process able to support industrialization has been reported for the recombinant human brain-derived neurotrophic factor (rhBDNF). Here, we described the setup of a new protocol for its production in Escherichia coli (E. coli) and its purification to homogeneity. A synthetic gene, codifying for the neurotrophin precursor, was inserted into an E. coli expression vector and transformed into BL21 (DE3) strain. The recombinant protein accumulates, at high yields, into inclusion bodies. With the developed strategy, more than 50% of the precursor can be refolded. The protein is successively digested by trypsin and the rhBDNF mature form is finally purified by two additional chromatographic steps If the wild-type precursor can be efficiently obtained by the proposed methodology, its pro-peptide remotion, through enzymatic digestion, is however problematic. To circumvent this difficulty, the precursor hinge region, containing the natural furin recognition site, was engineered to be more specifically cleaved by trypsin. Notwithstanding the substitution of three residues in the pro-region carboxyterminal, the precursor correctly refolds and is efficiently cleaved to generate a biologically active mature rhBDNF. This efficient high-yield process fills the current need of a scalable protocol to produce GMP-grade material and unlocks the rhBDNF employment in future clinical investigations.
Collapse
Affiliation(s)
- Elisa Spaccapaniccia
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Tiziano Cazzorla
- Altadoc S.r.l., Via Della Stazione, 24, Celano, 67043 L’Aquila, Italy
| | - Daniela Rossetti
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Lucio De Simone
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Maria Irene Antonangeli
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Andrea Antonosante
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Francesca Galli
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Franca Cattani
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Mariano Maffei
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| | - Franck Martin
- Dompé Farmaceutici S.p.A., Via Campo di Pile, Nucleo Industriale Pile, 67100 L’Aquila, Italy (F.C.); (M.M.)
| |
Collapse
|
2
|
Arad M, Frey C, Balagtas R, Hare R, Ku K, Jereb D, Nestman Z, Sidhu A, Shi Y, Fordwour O, Moon KM, Foster LJ, Ghafourifar G. Development of an Automated, Ultra-Rapid Bottom-Up Proteomics Workflow Utilizing Alginate-Based Hydrogels. Anal Chem 2024; 96:18880-18889. [PMID: 39528415 PMCID: PMC11603402 DOI: 10.1021/acs.analchem.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A new approach to sample preparation and enzymatic digestion in bottom-up proteomics has been developed using alginate-based hydrogel entrapment of enzymes. This hydrogel facilitates rapid and room-temperature digestions with multienzyme capabilities. Three methodologies were tested: within microcentrifuge tubes, in situ pipette tips, and automated robotic liquid handling. Factorial experimental design identified a 1 h, room temperature, pepsin-trypsin dual-enzyme digestion as optimal for sequence coverage and protein group identification, comparable to a gold-standard overnight proteomic protocol. This method promises significant advancements in proteomic analysis by enhancing reusability, speed, throughput, convenience, and cost-effectiveness, without hindering digestion efficiency.
Collapse
Affiliation(s)
- Maor Arad
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Connor Frey
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
- Department
of Medicine, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ronald Balagtas
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Rhien Hare
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
- Faculty of
Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
| | - Kenneth Ku
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Dario Jereb
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Zach Nestman
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Anoop Sidhu
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| | - Yuming Shi
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Osei Fordwour
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kyung-Mee Moon
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Leonard J. Foster
- Department
of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Golfam Ghafourifar
- Department
of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M7, Canada
| |
Collapse
|
3
|
Tian X, Vossen E, De Smet S, Van Hecke T. Glucose addition and oven-heating of pork stimulate glycoxidation and protein carbonylation, while reducing lipid oxidation during simulated gastrointestinal digestion. Food Chem 2024; 453:139662. [PMID: 38762946 DOI: 10.1016/j.foodchem.2024.139662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
In the present study, it was investigated if glucose addition (3 or 5%) to pork stimulates glycoxidation (pentosidine, PEN), glycation (Maillard reaction products, MRP), lipid oxidation (4-hydroxy-2-nonenal, 4-HNE; hexanal, HEX; thiobarbituric acid reactive substances, TBARS), and protein oxidation (protein carbonyl compounds, PCC) during various heating conditions and subsequent in vitro gastrointestinal digestion. An increase in protein-bound PEN level was observed during meat digestion, which was significantly stimulated by glucose addition (up to 3.3-fold) and longer oven-heating time (up to 2.5-fold) of the meat. These changes were accompanied by the distinct formation of MRP during heating and digestion of the meats. Remarkably, stimulated glyc(oxid)ation was accompanied by increased protein oxidation, whereas lipid oxidation was decreased, indicating these reactions are interrelated during gastrointestinal digestion of meat. Glucose addition generally didn't affect these oxidative reactions when pork was packed preventing air exposure and oven-heated until a core temperature of 75 °C was reached.
Collapse
Affiliation(s)
- Xiaona Tian
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
4
|
Swinnen S, de Azambuja F, Parac-Vogt TN. From Nanozymes to Multi-Purpose Nanomaterials: The Potential of Metal-Organic Frameworks for Proteomics Applications. Adv Healthc Mater 2024:e2401547. [PMID: 39246191 DOI: 10.1002/adhm.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Metal-organic frameworks (MOFs) have the potential to revolutionize the biotechnological and medical landscapes due to their easily tunable crystalline porous structure. Herein, the study presents MOFs' potential impact on proteomics, unveiling the diverse roles MOFs can play to boost it. Although MOFs are excellent catalysts in other scientific disciplines, their role as catalysts in proteomics applications remains largely underexplored, despite protein cleavage being of crucial importance in proteomics protocols. Additionally, the study discusses evolving MOF materials that are tailored for proteomics, showcasing their structural diversity and functional advantages compared to other types of materials used for similar applications. MOFs can be developed to seamlessly integrate into proteomics workflows due to their tunable features, contributing to protein separation, peptide enrichment, and ionization for mass spectrometry. This review is meant as a guide to help bridge the gap between material scientists, engineers, and MOF chemists and on the other side researchers in biology or bioinformatics working in proteomics.
Collapse
Affiliation(s)
- Siene Swinnen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | | |
Collapse
|
5
|
Akbar Z, Ahmad MS. Crystal structure of the Michaelis complex of trypsin with N‐α‐benzoyl‐ l‐arginine ethyl ester. J CHIN CHEM SOC-TAIP 2024. [DOI: 10.1002/jccs.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
AbstractThe crystal structure of Michaelis complex of the bovine trypsin with N‐α‐benzoyl‐l‐arginine ethyl ester (BAEE) was determined at 2.30 Å resolution. The structure of enzyme‐substrate complex was solved in space group H32. The active site of trypsin was found to be occupied with the N‐α‐benzoyl‐l‐arginine ethyl ester. The hydrolyzed product of substrate molecules was also crystallized with trypsin. The substrate was embedded within the S1 binding site of the enzyme, and showed contacts with Gly‐195, Ser‐216, and Ser‐192. Some water molecules were also found within the vicinity of catalytic residues of enzyme. Interestingly, the hydrolyzed product present within the crystal lattice was found to be with inverted configuration. The crystal structure of trypsin in‐complex with N‐α‐benzoyl‐l‐arginine ethyl ester has never been reported previously.
Collapse
Affiliation(s)
- Zeeshan Akbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Malik Shoaib Ahmad
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| |
Collapse
|
6
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
7
|
Oliver N, Choi MJ, Arul AB, Whitaker MD, Robinson RAS. Establishing Quality Control Metrics for Large-Scale Plasma Proteomic Sample Preparation. ACS MEASUREMENT SCIENCE AU 2024; 4:442-451. [PMID: 39184360 PMCID: PMC11342454 DOI: 10.1021/acsmeasuresciau.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 08/27/2024]
Abstract
Large-scale plasma proteomics studies have been transformed due to the multiplexing and automation of sample preparation workflows. However, these workflows can suffer from reproducibility issues, a lack of standardized quality control (QC) metrics, and the assessment of variation before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The incorporation of robust QC metrics in sample preparation workflows ensures better reproducibility, lower assay variation, and better-informed decisions for troubleshooting. Our laboratory conducted a plasma proteomics study of a cohort of patient samples (N = 808) using tandem mass tag (TMT) 16-plex batches (N = 58). The proteomic workflow consisted of protein depletion, protein digestion, TMT labeling, and fractionation. Five QC sample types (QCstd, QCdig, QCpool, QCTMT, and QCBSA) were created to measure the performance of sample preparation prior to the final LC-MS/MS analysis. We measured <10% CV for individual sample preparation steps in the proteomic workflow based on data from various QC sample steps. The establishment of robust measures for QC of sample preparation steps allowed for greater confidence in prepared samples for subsequent LC-MS/MS analysis. This study also provides recommendations for standardized QC metrics that can assist with future large-scale cohort sample preparation workflows.
Collapse
Affiliation(s)
- Nekesa
C. Oliver
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Min Ji Choi
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Albert B. Arul
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marsalas D. Whitaker
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Renã A. S. Robinson
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Memory and Alzheimer’s Center, Vanderbilt
University Medical Center, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Neurology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
8
|
Mousseau CB, Hu DD, Schultz SR, Champion MM. Quenching Trypsin Is Unnecessary in Filter-Based Bottom-Up Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2028-2031. [PMID: 38982799 PMCID: PMC11313428 DOI: 10.1021/jasms.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Quenching digestions in proteomics prior to analysis is routine in order to eliminate residual protease activity. Residual activity leads to overdigestion, nonspecific star-activity, and back-exchange in isotopic 18O quantitation. Chemical and isobaric labeling (e.g., TMT/iTRAQ) of proteins or peptides for mass spectrometry-based proteomics is generally incompatible with ubiquitous postdigestion acidification. This necessitates buffer exchange and pH adjustments. We demonstrate that quenching is unnecessary with peptides generated from protein filter-traps, as trypsin activity and intact trypsin are negligible in the eluate from these preparations. Labeling can be directly performed on enzymatic digests from these methods, improving recovery, throughput, and ease of automation.
Collapse
Affiliation(s)
- C. Bruce Mousseau
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel D. Hu
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sadie R. Schultz
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew M. Champion
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Wang Y, Qian D, Wang X, Zhang X, Li Z, Meng X, Yu L, Yan X, He Z. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. ACS NANO 2024; 18:19283-19302. [PMID: 38990194 DOI: 10.1021/acsnano.4c05369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zerui Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
10
|
Yuan FF, Wang P, Han XJ, Qin TT, Lu X, Bai HJ. Efficient and rapid digestion of proteins with a dual-enzyme microreactor featuring 3-D pores formed by dopamine/polyethyleneimine/acrylamide-coated KIT-6 molecular sieve. Sci Rep 2024; 14:15667. [PMID: 38977741 PMCID: PMC11231357 DOI: 10.1038/s41598-024-65045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The microreactor with two types of immobilized enzymes, exhibiting excellent orthogonal performance, represents an effective approach to counteract the reduced digestion efficiency resulting from the absence of a single enzyme cleavage site, thereby impacting protein identification. In this study, we developed a hydrophilic dual-enzyme microreactor characterized by rapid mass transfer and superior enzymatic activity. Initially, we selected KIT-6 molecular sieve as the carrier for the dual-IMER due to its three-dimensional network pore structure. Modification involved co-deposition of polyethyleneimine (PEI) and acrylamide (AM) as amine donors, along with dopamine to enhance material hydrophilicity. Remaining amino and double bond functional groups facilitated stepwise immobilization of trypsin and Glu-C. Digestion times for bovine serum albumin (BSA) and bovine hemoglobin (BHb) on the dual-IMER were significantly reduced compared to solution-based digestion (1 min vs. 36 h), resulting in improved sequence coverage (91.30% vs. 82.7% for BSA; 90.24% vs. 89.20% for BHb). Additionally, the dual-IMER demonstrated excellent durability, retaining 96.08% relative activity after 29 reuse cycles. Enhanced protein digestion efficiency can be attributed to several factors: (1) KIT-6's large specific surface area, enabling higher enzyme loading capacity; (2) Its three-dimensional network pore structure, facilitating faster mass transfer and substance diffusion; (3) Orthogonality of trypsin and Glu-C enzyme cleavage sites; (4) The spatial effect introduced by the chain structure of PEI and glutaraldehyde's spacing arm, reducing spatial hindrance and enhancing enzyme-substrate interactions; (5) Mild and stable enzyme immobilization. The KIT-6-based dual-IMER offers a promising technical tool for protein digestion, while the PDA/PEI/AM-KIT-6 platform holds potential for immobilizing other proteins or active substances.
Collapse
Affiliation(s)
- Fang-Fang Yuan
- Tianjin Institute for Drug Control, Tianjin, 300070, China
| | - Pei Wang
- Tianjin Institute for Drug Control, Tianjin, 300070, China
| | - Xiao-Jie Han
- Tianjin Institute for Drug Control, Tianjin, 300070, China
| | - Ting-Ting Qin
- Tianjin Institute for Drug Control, Tianjin, 300070, China
| | - Xin Lu
- Tianjin Institute for Drug Control, Tianjin, 300070, China
| | - Hai-Jiao Bai
- Tianjin Institute for Drug Control, Tianjin, 300070, China.
| |
Collapse
|
11
|
Yan M, Chen Y, Feng Y, Saeed M, Fang Z, Zhen W, Ni Z, Chen H. Perspective on Agricultural Industrialization: Modification Strategies for Enhancing the Catalytic Capacity of Keratinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38832583 DOI: 10.1021/acs.jafc.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.
Collapse
Affiliation(s)
- Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Ying Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhen Fang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Wang Zhen
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
12
|
Yannone SM, Tuteja V, Goleva O, Leung DYM, Stotland A, Keoseyan AJ, Hendricks NG, Van Eyk JE, Kreimer S. Blood to Biomarker Quantitation in Under One Hour with Rapid Proteomics using a Hyperthermoacidic Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596979. [PMID: 38853916 PMCID: PMC11160709 DOI: 10.1101/2024.06.01.596979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Multi-step multi-hour tryptic proteolysis has limited the utility of bottom-up proteomics for cases that require immediate quantitative information. The recently available hyperthermoacidic (HTA) protease "Krakatoa" digests samples in a single 5 to 30-minute step at pH 3 and >80 °C; conditions that disrupt most cells and tissues, denature proteins, and block disulfide reformation. The combination of quick single-step sample preparation with high throughput dual trapping column single analytical column (DTSC) liquid chromatography-mass spectrometry (LC-MS) achieves "Rapid Proteomics" in which the time from sample collection to actionable data is less than 1 hour. The presented development and systematic evaluation of this methodology found reproducible quantitation of over 160 proteins from just 1 microliter of whole blood. Furthermore, the preference of the HTA-protease for intact proteins over peptides allows for sensitive targeted quantitation of the Angiotensin I and II bioactive peptides in under half an hour. With these methods we analyzed serum and plasma from 53 individuals and quantified Angiotensin and proteins that were not detected with trypsin. This assessment of Rapid Proteomics suggests that concentration of circulating protein and peptide biomarkers could be measured in almost real-time by LC-MS. TOC Figure Rapid proteomics enables near real-time monitoring of circulating blood biomarkers. One microliter of blood is collected every 8 minutes, digested for 20 minutes, and then analyzed by targeted mass spectrometry for 8 minutes. This results in a 30-minute delay with datapoints every 8 minutes.
Collapse
|
13
|
Adams C, Gabriel W, Laukens K, Picciani M, Wilhelm M, Bittremieux W, Boonen K. Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF. Nat Commun 2024; 15:3956. [PMID: 38730277 PMCID: PMC11087512 DOI: 10.1038/s41467-024-48322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Immunopeptidomics is crucial for immunotherapy and vaccine development. Because the generation of immunopeptides from their parent proteins does not adhere to clear-cut rules, rather than being able to use known digestion patterns, every possible protein subsequence within human leukocyte antigen (HLA) class-specific length restrictions needs to be considered during sequence database searching. This leads to an inflation of the search space and results in lower spectrum annotation rates. Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching that boosts the spectrum annotation performance. We analyze 302,105 unique synthesized non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847 unique peptides, that is used to fine-tune the deep learning-based fragment ion intensity prediction model Prosit. We demonstrate up to 3-fold improvement in the identification of immunopeptides, as well as increased detection of immunopeptides from low input samples.
Collapse
Affiliation(s)
- Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Wassim Gabriel
- Computational Mass Spectrometry, Technical University of Munich, 85354, Freising, Germany
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Mario Picciani
- Computational Mass Spectrometry, Technical University of Munich, 85354, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich, 85354, Freising, Germany
- Munich Data Science Institute, Technical University of Munich, 85748, Garching, Germany
| | - Wout Bittremieux
- Department of Computer Science, University of Antwerp, Antwerp, Belgium.
| | - Kurt Boonen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Antwerp, Belgium.
| |
Collapse
|
14
|
Cruz FT, Rosa DP, Vasconcelos AVB, de Oliveira JS, Bleicher L, Santos AMC. Purification and partial physical-chemical characterization of a new bovine trypsin proteoform (zeta-trypsin). Int J Biol Macromol 2024; 268:131860. [PMID: 38670206 DOI: 10.1016/j.ijbiomac.2024.131860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Recent advancements in enzyme research have unveiled a new proteoform of bovine trypsin, expanding our understanding of this well-characterized enzyme. While generally similar to other trypsins, this novel proteoform comprises three polypeptide chains, marking a significant difference in activity, kinetic properties, and conformational stability. Compared with the already known bovine trypsin proteoforms, the results showed a lower: activity, kcat and kcat.KM-1 and protein 'foldedness' ratio for the new proteoform. Molecular autolysis, a common feature in trypsin and chymotrypsin, has been explored through comparative physical chemistry properties with other proteoforms. This new proteoform of trypsin not only enriches the existing enzyme repertoire but also promises to shed light on the intricate physiological pathway for enzyme inactivation. Our results suggest that the new trypsin proteoform is one of the likely final pathways for enzyme inactivation in a physiological environment. This discovery opens up new avenues for further research into the functional implications of this new trypsin proteoform.
Collapse
Affiliation(s)
- Fabiano Torres Cruz
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Dayanne Pinho Rosa
- Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Jamil Silvano de Oliveira
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Bleicher
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Pos-Graduate at Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Martins Costa Santos
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil; Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
15
|
Kaur J, Mirgane HA, Patil VS, Ahlawat GM, Bhosale SV, Singh PK. Expanding the scope of self-assembled supramolecular biosensors: a highly selective and sensitive enzyme-responsive AIE-based fluorescent biosensor for trypsin detection and inhibitor screening. J Mater Chem B 2024; 12:3786-3796. [PMID: 38546335 DOI: 10.1039/d4tb00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Trypsin, a pancreatic enzyme associated with diseases like pancreatic cancer and cystic fibrosis, requires effective diagnostic tools. Current detection systems seldom utilize macrocyclic molecules and tetraphenyl ethylene (TPE) derivative-based supramolecular assemblies, known for their biocompatibility and aggregation-induced emission (AIE) properties, for trypsin detection. This study presents an enzyme-responsive, AIE-based fluorescence 'Turn-On' sensing platform for trypsin detection, employing sulfated-β-cyclodextrin (S-βCD), an imidazolium derivative of TPE (TPE-IM), and protamine sulfate (PrS). The anionic S-βCD and cationic TPE-IM formed a strongly fluorescent supramolecular aggregation complex in an aqueous buffer. However, PrS suppresses fluorescence because of its strong binding affinity with S-βCD. The non-fluorescent TPE-IM/S-βCD/PrS supramolecular assembly system exhibits trypsin-responsive properties, as PrS is a known trypsin substrate. Trypsin restores fluorescence in the TPE-IM/S-βCD system through the enzymatic cleavage of PrS, correlating linearly with trypsin catalytic activity in the 0-10 nM concentration range. The limit of detection is 10 pM. This work contributes to the development of self-assembled supramolecular biosensors using charged TPE derivatives and β-cyclodextrin-based host-guest chemistry, offering an innovative fluorescence 'Turn-On' trypsin sensing platform. The sensing system is highly stable under various conditions, selective for trypsin, and demonstrates potential for biological analysis and disease diagnosis in human serum. Additionally, it shows promise for the screening of trypsin inhibitors.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- University Institute of Biotechnology, Chandigarh University, Panjab 140 413, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Vrushali S Patil
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- School of Nanoscience & Technology, Shivaji University Kolhapur, Vidya Nagar, Kolhapur 416004, Maharashtra, India
| | - Geetika M Ahlawat
- University Institute of Biotechnology, Chandigarh University, Panjab 140 413, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
16
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
17
|
Agten A, Vilenne F, Prostko P, Valkenborg D. A compositional data model to predict the isotope distribution for average peptides using a compositional spline model. Proteomics 2024; 24:e2300154. [PMID: 38044297 DOI: 10.1002/pmic.202300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
We propose an updated approach for approximating the isotope distribution of average peptides given their monoisotopic mass. Our methodology involves in-silico cleavage of the entire UNIPROT database of human-reviewed proteins using Trypsin, generating a theoretical peptide dataset. The isotope distribution is computed using BRAIN. We apply a compositional data modelling strategy that utilizes an additive log-ratio transformation for the isotope probabilities followed by a penalized spline regression. Furthermore, due to the impact of the number of sulphur atoms on the course of the isotope distribution, we develop separate models for peptides containing zero up to five sulphur atoms. Additionally, we propose three methods to estimate the number of sulphur atoms based on an observed isotope distribution. The performance of the spline models and the sulphur prediction approaches is evaluated using a mean squared error and a modified Pearson's χ2 goodness-of-fit measure on an experimental UPS2 data set. Our analysis reveals that the variability in spectral accuracy, that is, the variability between MS1 scans, contributes more to the errors than the approximation of the theoretical isotope distribution by our proposed average peptide model. Moreover, we find that the accuracy of predicting the number of sulphur atoms based on the observed isotope distribution is limited by measurement accuracy.
Collapse
Affiliation(s)
- Annelies Agten
- Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Frédérique Vilenne
- Data Science Institute, Hasselt University, Diepenbeek, Belgium
- Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Piotr Prostko
- Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Dirk Valkenborg
- Data Science Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
18
|
Degliesposti G. Peptide-Based Mass Spectrometry for the Investigation of Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:31-40. [PMID: 38507198 DOI: 10.1007/978-3-031-52193-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In the last two decades, biological mass spectrometry has become the gold standard for the identification of proteins in biological samples. The technological advancement of mass spectrometers and the development of methods for ionization, gas phase transfer, peptide fragmentation as well as for acquisition of high-resolution mass spectrometric data marked the success of the technique. This chapter introduces peptide-based mass spectrometry as a tool for the investigation of protein complexes. It provides an overview of the main steps for sample preparation starting from protein fractionation, reduction, alkylation and focus on the final step of protein digestion. The basic concepts of biological mass spectrometry as well as details about instrumental analysis and data acquisition are described. Finally, the most common methods for data analysis and sequence determination are summarized with an emphasis on its application to protein-protein complexes.
Collapse
|
19
|
Rebak AS, Hendriks IA, Nielsen ML. Characterizing citrullination by mass spectrometry-based proteomics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220237. [PMID: 37778389 PMCID: PMC10542455 DOI: 10.1098/rstb.2022.0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 10/03/2023] Open
Abstract
Citrullination is an important post-translational modification (PTM) of arginine, known to play a role in autoimmune disorders, innate immunity response and maintenance of stem cell potency. However, citrullination remains poorly characterized and not as comprehensively understood compared to other PTMs, such as phosphorylation and ubiquitylation. High-resolution mass spectrometry (MS)-based proteomics offers a valuable approach for studying citrullination in an unbiased manner, allowing confident identification of citrullination modification sites and distinction from deamidation events on asparagine and glutamine. MS efforts have already provided valuable insights into peptidyl arginine deaminase targeting along with site-specific information of citrullination in for example synovial fluids derived from rheumatoid arthritis patients. Still, there is unrealized potential for the wider citrullination field by applying MS-based mass spectrometry approaches for proteome-wide investigations. Here we will outline contemporary methods and current challenges for studying citrullination by MS, and discuss how the development of neoteric citrullination-specific proteomics approaches still may improve our understanding of citrullination networks. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- A. S. Rebak
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - I. A. Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - M. L. Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Simms C, Mullaliu A, de de Azambuja F, Aquilanti G, Parac-Vogt TN. Green, Safe, and Reliable Synthesis of Bimetallic MOF-808 Nanozymes With Enhanced Aqueous Stability and Reactivity for Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307236. [PMID: 37974471 DOI: 10.1002/smll.202307236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Indexed: 11/19/2023]
Abstract
Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.
Collapse
Affiliation(s)
- Charlotte Simms
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Angelo Mullaliu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | | | | |
Collapse
|
21
|
Fan X, Chu Z, Zhu M, Song Y, Zhao Y, Meng B, Gong X, Zhang D, Jiang Y, Wu L, Tamiya K, Yu X, Zhai R, Dai X, Fang X. Precise Control of Trypsin Immobilization by a Programmable DNA Tetrahedron Designed for Ultrafast Proteome Digestion and Accurate Protein Quantification. Anal Chem 2023; 95:15875-15883. [PMID: 37851939 DOI: 10.1021/acs.analchem.3c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In proteomics research, with advantages including short digestion times and reusable applications, immobilized enzyme reactors (IMERs) have been paid increasing attention. However, traditional IMERs ignore the reasonable spatial arrangement of trypsin on the supporting matrixes, resulting in the partial overlapping of the active domain on trypsin and reducing digesting efficiency. In this work, a DNA tetrahedron (DNA TET)-based IMER Fe3O4-GO-AuNPs-DNA TET-Trypsin was designed and prepared. The distance between vertices of DNA TETs effectively controls the distribution of trypsin on the nanomaterials; thus, highly efficient protein digestion and accurate quantitative results can be achieved. Compared to the in-solution digestion (12-16 h), the sequence coverage of bovine serum albumin was up to 91% after a 2-min digestion by the new IMER. In addition, 3328 proteins and 18,488 peptides can be identified from HeLa cell protein extract after a 20-min digestion. For the first time, human growth hormone reference material was rapidly and accurately quantified after a 4-h digestion by IMER. Therefore, this new IMER has great application potential in proteomics research and SI traceable quantification.
Collapse
Affiliation(s)
- Xiaoxue Fan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- College of Life Sciences, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, PR China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Manman Zhu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Yumeng Song
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- College of Life Sciences, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, PR China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Di Zhang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Liqing Wu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Keiichi Tamiya
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing 100191, PR China
| | - Xiaoping Yu
- College of Life Sciences, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, PR China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| |
Collapse
|
22
|
McCabe MC, Gejji V, Barnebey A, Siuzdak G, Hoang LT, Pham T, Larson KY, Saviola AJ, Yannone SM, Hansen KC. From volcanoes to the bench: Advantages of novel hyperthermoacidic archaeal proteases for proteomics workflows. J Proteomics 2023; 289:104992. [PMID: 37634627 DOI: 10.1016/j.jprot.2023.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Here we introduce hyperthermoacidic archaeal proteases (HTA-Proteases©) isolated from organisms that thrive in nearly boiling acidic volcanic springs and investigate their use for bottom-up proteomic experiments. We find that HTA-Proteases have novel cleavage specificities, show no autolysis, function in dilute formic acid, and store at ambient temperature for years. HTA-Proteases function optimally at 70-90 °C and pH of 2-4 with rapid digestion kinetics. The extreme HTA-Protease reaction conditions actively denature sample proteins, obviate the use of chaotropes, are largely independent of reduction and alkylation, and allow for a one-step/five-minute sample preparation protocol without sample manipulation, dilution, or additional cleanup. We find that brief one-step HTA-Protease protocols significantly increase proteome and protein sequence coverage with datasets orthogonal to trypsin. Importantly, HTA-Protease digests markedly increase coverage and identifications for ribonucleoproteins, histones, and mitochondrial membrane proteins as compared to tryptic digests alone. In addition to increased coverage in these classes, HTA-Proteases and simplified one-step protocols are expected to reduce technical variability and advance the fields of clinical and high-throughput proteomics. This work reveals significant utility of heretofore unavailable HTA-Proteases for proteomic workflows. We discuss some of the potential for these remarkable enzymes to empower new proteomics methods, approaches, and biological insights. SIGNIFICANCE: Here we introduce new capabilities for bottom-up proteomics applications with hyperthermoacidic archaeal proteases (HTA-Proteases©). HTA-Proteases have novel cleavage specificity, require no chaotropes, and allow simple one-step/five-minute sample preparations that promise to reduce variability between samples and laboratories. HTA-Proteases generate unique sets of observable peptides that are non-overlapping with tryptic peptides and significantly increase sequence coverage and available peptide targets relative to trypsin alone. HTA-Proteases show some bias for the detection and coverage of nucleic acid-binding proteins and membrane proteins relative to trypsin. These new ultra-stable enzymes function optimally in nearly boiling acidic conditions, show no autolysis, and do not require aliquoting as they are stable for years at ambient temperatures. Used independently or in conjunction with tryptic digests, HTA-Proteases offer increased proteome coverage, unique peptide targets, and brief one-step protocols amenable to automation, rapid turnaround, and high-throughput approaches.
Collapse
Affiliation(s)
- Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Varun Gejji
- Cinder Biological, Inc., 1933 Davis Street, STE 208, San Leandro, CA 94577, USA
| | - Adam Barnebey
- Cinder Biological, Inc., 1933 Davis Street, STE 208, San Leandro, CA 94577, USA
| | - Gary Siuzdak
- Departments of Chemistry, Molecular, and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Linh Truc Hoang
- Departments of Chemistry, Molecular, and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Truc Pham
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Keira Y Larson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Steven M Yannone
- Cinder Biological, Inc., 1933 Davis Street, STE 208, San Leandro, CA 94577, USA.
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Woessmann J, Petrosius V, Üresin N, Kotol D, Aragon-Fernandez P, Hober A, auf dem Keller U, Edfors F, Schoof EM. Assessing the Role of Trypsin in Quantitative Plasma and Single-Cell Proteomics toward Clinical Application. Anal Chem 2023; 95:13649-13658. [PMID: 37639361 PMCID: PMC10500548 DOI: 10.1021/acs.analchem.3c02543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Mass spectrometry-based bottom-up proteomics is rapidly evolving and routinely applied in large-scale biomedical studies. Proteases are a central component of every bottom-up proteomics experiment, digesting proteins into peptides. Trypsin has been the most widely applied protease in proteomics due to its characteristics. With ever-larger cohort sizes and possible future clinical application of mass spectrometry-based proteomics, the technical impact of trypsin becomes increasingly relevant. To assess possible biases introduced by trypsin digestion, we evaluated the impact of eight commercially available trypsins in a variety of bottom-up proteomics experiments and across a range of protease concentrations and storage times. To investigate the universal impact of these technical attributes, we included bulk HeLa cell lysate, human plasma, and single HEK293 cells, which were analyzed over a range of selected reaction monitoring (SRM), data-independent acquisition (DIA), and data-dependent acquisition (DDA) instrument methods on three LC-MS instruments. The quantification methods employed encompassed both label-free approaches and absolute quantification utilizing spike-in heavy-labeled recombinant protein fragment standards. Based on this extensive data set, we report variations between commercial trypsins, their source, and their concentration. Furthermore, we provide suggestions on the handling of trypsin in large-scale studies.
Collapse
Affiliation(s)
- Jakob Woessmann
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Valdemaras Petrosius
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nil Üresin
- The
Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech
Research and Innovation Centre (BRIC), University
of Copenhagen, 2200 Copenhagen, Denmark
| | - David Kotol
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Pedro Aragon-Fernandez
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andreas Hober
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Ulrich auf dem Keller
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Fredrik Edfors
- Science
for Life Laboratory, KTH—Royal Institute
of Technology, SE-171 65 Solna, Sweden
- Department
of Protein Science, KTH—Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Erwin M. Schoof
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Naplekov D, Jadeja S, Fučíková AM, Švec F, Sklenářová H, Lenčo J. Easy, Robust, and Repeatable Online Acid Cleavage of Proteins in Mobile Phase for Fast Quantitative LC-MS Bottom-Up Protein Analysis─Application for Ricin Detection. Anal Chem 2023; 95:12339-12348. [PMID: 37565982 PMCID: PMC10448442 DOI: 10.1021/acs.analchem.3c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Sample preparation involving the cleavage of proteins into peptides is the first critical step for successful bottom-up proteomics and protein analyses. Time- and labor-intensiveness are among the bottlenecks of the commonly used methods for protein sample preparation. Here, we report a fast online method for postinjection acid cleavage of proteins directly in the mobile phase typically used for LC-MS analyses in proteomics. The chemical cleavage is achieved in 0.1% formic acid within 35 s in a capillary heated to 195 °C installed upstream of the analytical column, enabling the generated peptides to be separated. The peptides generated by the optimized method covered the entire sequence except for one amino acid of trastuzumab used for the method development. The qualitative results are extraordinarily stable, even over a long period of time. Moreover, the method is also suitable for accurate and repeatable quantification. The procedure requires only one manual step, significantly decreasing sample transfer losses. To demonstrate its practical utility, we tested the method for the fast detection of ricin. Ricin can be unambiguously identified from an injection of 10 ng, and the results can be obtained within 7-8 min after receiving a suspicious sample. Because no sophisticated accessories and no additional reagents are needed, the method can be seamlessly transferred to any laboratory for high-throughput proteomic workflows.
Collapse
Affiliation(s)
- Denis
K. Naplekov
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Alena Myslivcová Fučíková
- Department
of Biology, Faculty of Science, University
of Hradec Králové, Hradecká 1285, 500 03 Hradec Králové, Czech Republic
| | - František Švec
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Hana Sklenářová
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
25
|
Vosáhlová-Kadlecová Z, Gilar M, Molnárová K, Kozlík P, Kalíková K. Mixed-mode column allows simple direct coupling with immobilized enzymatic reactor for on-line protein digestion. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123866. [PMID: 37657402 DOI: 10.1016/j.jchromb.2023.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Liquid chromatography coupled with mass spectrometry is widely used in the field of proteomic analysis after off-line protein digestion. On-line digestion with chromatographic column connected in a series with immobilized enzymatic reactor is not often used approach. In this work we investigated the impact of chromatographic conditions on the protein digestion efficiency. The investigation of trypsin reactor activity was performed by on-line digestion of N-α-benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA), followed by separation of the digests on the mixed-mode column. Two trypsin column reactors with the different trypsin coverage on the bridged ethylene hybrid particles were evaluated. To ensure optimal trypsin activity, the separation temperature was set at 37.0 °C and the pH of the mobile phase buffer was maintained at 8.5. The on-line digestion itself ongoing during the initial state of gradient was carried out at a low flow rate using a mobile phase that was free of organic modifiers. Proteins such as cytochrome C, enolase, and myoglobin were successfully digested on-line without prior reduction or alkylation, and the resulting peptides were separated using a mixed-mode column. Additionally, proteins that contain multiple cysteines, such as α-lactalbumin, albumin, β-lactoglobulin A, and conalbumin, were also successfully digested on-line (after reduction and alkylation). Moreover, trypsin immobilized enzymatic reactors were utilized for over 300 injections without any noticeable loss of digestion activity.
Collapse
Affiliation(s)
- Zuzana Vosáhlová-Kadlecová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Katarína Molnárová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic.
| |
Collapse
|
26
|
Yildiz P, Ozcan S. A single protein to multiple peptides: Investigation of protein-peptide correlations using targeted alpha-2-macroglobulin analysis. Talanta 2023; 265:124878. [PMID: 37392709 DOI: 10.1016/j.talanta.2023.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Recent advances in proteomics technologies have enabled the analysis of thousands of proteins in a high-throughput manner. Mass spectrometry (MS) based proteomics uses a peptide-centric approach where biological samples undergo specific proteolytic digestion and then only unique peptides are used for protein identification and quantification. Considering the fact that a single protein may have multiple unique peptides and a number of different forms, it becomes essential to understand dynamic protein-peptide relationships to ensure robust and reliable peptide-centric protein analysis. In this study, we investigated the correlation between protein concentration and corresponding unique peptide responses under a conventional proteolytic digestion condition. Protein-peptide correlation, digestion efficiency, matrix-effect, and concentration-effect were evaluated. Twelve unique peptides of alpha-2-macroglobulin (A2MG) were monitored using a targeted MS approach to acquire insights into protein-peptide dynamics. Although the peptide responses were reproducible between replicates, protein-peptide correlation was moderate in protein standards and low in complex matrices. The results suggest that reproducible peptide signal could be misleading in clinical studies and a peptide selection could dramatically change the outcome at protein level. This is the first study investigating quantitative protein-peptide correlations in biological samples using all unique peptides representing the same protein and opens a discussion on peptide-based proteomics.
Collapse
Affiliation(s)
- Pelin Yildiz
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Nanografi Nanotechnology Co, Middle East Technical University (METU) Technopolis, 06531, Ankara, Turkiye
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Cancer Systems Biology Laboratory (CanSyL), Middle East Technical University (METU), 06800, Ankara, Turkiye.
| |
Collapse
|
27
|
Agten A, Claesen J, Burzykowski T, Valkenborg D. Machine learning approach for the prediction of the number of sulphur atoms in peptides using the theoretical aggregated isotope distribution. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9480. [PMID: 36798055 DOI: 10.1002/rcm.9480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
RATIONALE The observed isotope distribution is an important attribute for the identification of peptides and proteins in mass spectrometry-based proteomics. Sulphur atoms have a very distinctive elemental isotope definition, and therefore, the presence of sulphur atoms has a substantial effect on the isotope distribution of biomolecules. Hence, knowledge of the number of sulphur atoms can improve the identification of peptides and proteins. METHODS In this paper, we conducted a theoretical investigation on the isotope properties of sulphur-containing peptides. We proposed a gradient boosting approach to predict the number of sulphur atoms based on the aggregated isotope distribution. We compared prediction accuracy and assessed the predictive power of the features using the mass and isotope abundance information from the first three, five and eight aggregated isotope peaks. RESULTS Mass features alone are not sufficient to accurately predict the number of sulphur atoms. However, we reach near-perfect prediction when we include isotope abundance features. The abundance ratios of the eighth and the seventh, the fifth and the fourth, and the third and the second aggregated isotope peaks are the most important abundance features. The mass difference between the eighth, the fifth or the third aggregated isotope peaks and the monoisotopic peak are the most predictive mass features. CONCLUSIONS Based on the validation analysis it can be concluded that the prediction of the number of sulphur atoms based on the isotope profile fails, because the isotope ratios are not measured accurately. These results indicate that it is valuable for future instrument developments to focus more on improving spectral accuracy to measure peak intensities of higher-order isotope peaks more accurately.
Collapse
Affiliation(s)
- Annelies Agten
- Uhasselt, Data Science Institute (DSI), Agoralaan, Diepenbeek, Belgium
| | - Jurgen Claesen
- Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tomasz Burzykowski
- Uhasselt, Data Science Institute (DSI), Agoralaan, Diepenbeek, Belgium
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Bialystok, Poland
| | - Dirk Valkenborg
- Uhasselt, Data Science Institute (DSI), Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
28
|
Grundy HH, Soto Quintana C, Korzow Richter K, Read WA, Hutchinson ML, Stephen Lloyd A, Donarski JA. A qualitative peptide biomarker approach to identify piscine gelatine in products to support food security. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:465-474. [PMID: 36800396 DOI: 10.1080/19440049.2023.2177083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Due to allergy concerns, it is mandatory under EU law to declare in food products all ingredients derived from fish. Gelatine is prepared from the waste collagen of animal carcasses, including piscine, bovine and porcine materials, and is an ingredient in a wide range of foods. The Elliott Review into the integrity and assurance of food supply networks highlighted requirements for analytical surveillance methods to support due diligence, food safety and authenticity. We present the development of a method to extract gelatine from foods and determine the presence of piscine gelatine by liquid chromatography-tandem mass spectrometry using a suite of sixteen piscine marker peptides. The method has been successfully applied to gelatine granules, capsules and composite retail food products. While a study is required to determine parameters including the limit of detection of this method, the data indicate the method is reproducible between replicates of sub-samples and applies to a range of piscine gelatines collected over 16 years. Once validation studies are complete, there is potential for enforcement officers to apply the technology to verify the authenticity of fish products to support consumers in ensuring food safety and also food provenance relating to animal origin.
Collapse
|
29
|
Abstract
Proteins are the key biological actors within cells, driving many biological processes integral to both healthy and diseased states. Understanding the depth of complexity represented within the proteome is crucial to our scientific understanding of cellular biology and to provide disease specific insights for clinical applications. Mass spectrometry-based proteomics is the premier method for proteome analysis, with the ability to both identify and quantify proteins. Although proteomics continues to grow as a robust field of bioanalytical chemistry, advances are still necessary to enable a more comprehensive view of the proteome. In this review, we provide a broad overview of mass spectrometry-based proteomics in general, and highlight four developing areas of bottom-up proteomics: (1) protein inference, (2) alternative proteases, (3) sample-specific databases and (4) post-translational modification discovery.
Collapse
Affiliation(s)
- Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
30
|
Smit NPM, Romijn FPHTM, van Ham VJJ, Reijnders E, Cobbaert CM, Ruhaak LR. Quantitative protein mass-spectrometry requires a standardized pre-analytical phase. Clin Chem Lab Med 2023; 61:55-66. [PMID: 36069790 DOI: 10.1515/cclm-2022-0735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Quantitative protein mass-spectrometry (QPMS) in blood depends on tryptic digestion of proteins and subsequent measurement of representing peptides. Whether serum and plasma can be used interchangeably and whether in-vitro anticoagulants affect the recovery is unknown. In our laboratory serum samples are the preferred matrix for QPMS measurement of multiple apolipoproteins. In this study, we investigated the effect of different matrices on apolipoprotein quantification by mass spectrometry. METHODS Blood samples were collected from 44 healthy donors in Beckton Dickinson blood tubes simultaneously for serum (with/without gel) and plasma (heparin, citrate or EDTA). Nine apolipoproteins were quantified according to standard operating procedure using value-assigned native serum calibrators for quantitation. Tryptic digestion kinetics were investigated in the different matrices by following formation of peptides for each apolipoprotein in time, up to 22 h. RESULTS In citrate plasma recovery of apolipoproteins showed an overall reduction with a bias of -14.6%. For heparin plasma only -0.3% bias was found compared to serum, whereas for EDTA-plasma reduction was more pronounced (-5.3% bias) and variable with >14% reduction for peptides of apoA-I, A-II and C-III. Digestion kinetics revealed that especially slow forming peptides showed reduced formation in EDTA-plasma. CONCLUSIONS Plasma anticoagulants affect QPMS test results. Heparin plasma showed comparable results to serum. Reduced concentrations in citrate plasma can be explained by dilution, whereas reduced recovery in EDTA-plasma is dependent on altered proteolytic digestion efficiency. The results highlight the importance of a standardized pre-analytical phase for accurate QPMS applications in clinical chemistry.
Collapse
Affiliation(s)
- Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Fred P H T M Romijn
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
31
|
Berryhill CA, Hanquier JN, Doud EH, Cordeiro-Spinetti E, Dickson BM, Rothbart SB, Mosley AL, Cornett EM. Global lysine methylome profiling using systematically characterized affinity reagents. Sci Rep 2023; 13:377. [PMID: 36611042 PMCID: PMC9825382 DOI: 10.1038/s41598-022-27175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
Lysine methylation modulates the function of histone and non-histone proteins, and the enzymes that add or remove lysine methylation-lysine methyltransferases (KMTs) and lysine demethylases (KDMs), respectively-are frequently mutated and dysregulated in human diseases. Identification of lysine methylation sites proteome-wide has been a critical barrier to identifying the non-histone substrates of KMTs and KDMs and for studying functions of non-histone lysine methylation. Detection of lysine methylation by mass spectrometry (MS) typically relies on the enrichment of methylated peptides by pan-methyllysine antibodies. In this study, we use peptide microarrays to show that pan-methyllysine antibodies have sequence bias, and we evaluate how the differential selectivity of these reagents impacts the detection of methylated peptides in MS-based workflows. We discovered that most commercially available pan-Kme antibodies have an in vitro sequence bias, and multiple enrichment approaches provide the most comprehensive coverage of the lysine methylome. Overall, global lysine methylation proteomics with multiple characterized pan-methyllysine antibodies resulted in the detection of 5089 lysine methylation sites on 2751 proteins from two human cell lines, nearly doubling the number of reported lysine methylation sites in the human proteome.
Collapse
Affiliation(s)
- Christine A Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyne N Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
32
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
33
|
Ku K, Frey C, Arad M, Ghafourifar G. Development of novel enzyme immobilization methods employing formaldehyde or triethoxysilylbutyraldehyde to fabricate immobilized enzyme microreactors for peptide mapping. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4053-4063. [PMID: 36196924 DOI: 10.1039/d2ay00840h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The digestion of proteins with proteolytic enzymes has expedited the analysis of peptide mapping. Here, we compared the digestion efficiency of soluble chymotrypsin (CT) with two immobilized CT preparations using bovine serum albumin (BSA) as the substrate. An efficient method of immobilizing chymotrypsin using formaldehyde (FA) was optimized and the conditions were applied to assess a novel immobilization reagent, triethoxysilylbutaraldehyde (TESB). Efforts to determine the best enzyme-to-substrate (E : S) ratios during digestion of denatured BSA with single-use FA-CT enzyme particles were performed by adjusting the amount of substrate used. An E : S ratio of 10 : 1 was found to be best based on the LC-MS/MS analysis data showing sequence coverage of 67%. Fabrication of immobilized enzyme microreactors (IMERs) was carried out using both (3-aminopropyl)triethoxysilane (APTES) with the idealized conditions with FA, as well as the novel procedure utilizing TESB for a proof of concept open-tubular IMER. It was found that the FA-APTES IMER had a sequence coverage of 6%, while the TESB IMER had 29% sequence coverage from MS analysis. The application of TESB in enzyme immobilization has the potential to facilitate a greater degree of enzymatic digestion with higher sequence coverage than traditional immobilization or crosslinking reagents for bottom-up proteomics.
Collapse
Affiliation(s)
- Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Connor Frey
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Maor Arad
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| |
Collapse
|
34
|
Nickerson JL, Doucette AA. Maximizing Cumulative Trypsin Activity with Calcium at Elevated Temperature for Enhanced Bottom-Up Proteome Analysis. BIOLOGY 2022; 11:biology11101444. [PMID: 36290348 PMCID: PMC9598648 DOI: 10.3390/biology11101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Simple Summary Trypsin is frequently employed to cleave proteins ahead of mass spectrometry characterization. Traditionally, enzyme digestion involves overnight incubation of proteins at 37 °C, which is time consuming though still may yield poor digestion efficiency. While raising the temperature should theoretically accelerate the digestion, it also destabilizes the enzyme and promotes trypsin de-activation. We therefore questioned whether elevated temperature is beneficial for improving tryptic digestion. Here, we quantify protein digestion kinetics at elevated temperatures for calcium-stabilized trypsin and enforce the critical importance of calcium ions to preserve the enzyme. We quantitatively demonstrate that 1 h at 47 °C provides a superior digest when compared to conventional (overnight, 37 °C) processing of the proteome. The practical impact of our enhanced digestion protocol is shown through bottom-up mass spectrometry analysis of a complex proteome mixture. Abstract Bottom-up proteomics relies on efficient trypsin digestion ahead of MS analysis. Prior studies have suggested digestion at elevated temperature to accelerate proteolysis, showing an increase in the number of MS-identified peptides. However, improved sequence coverage may be a consequence of partial digestion, as higher temperatures destabilize and degrade the enzyme, causing enhanced activity to be short-lived. Here, we use a spectroscopic (BAEE) assay to quantify calcium-stabilized trypsin activity over the complete time course of a digestion. At 47 °C, the addition of calcium contributes a 25-fold enhancement in trypsin stability. Higher temperatures show a net decrease in cumulative trypsin activity. Through bottom-up MS analysis of a yeast proteome extract, we demonstrate that a 1 h digestion at 47 °C with 10 mM Ca2+ provides a 29% increase in the total number of peptide identifications. Simultaneously, the quantitative proportion of peptides with 1 or more missed cleavage sites was diminished in the 47 °C digestion, supporting enhanced digestion efficiency with the 1 h protocol. Trypsin specificity also improves, as seen by a drop in the quantitative abundance of semi-tryptic peptides. Our enhanced digestion protocol improves throughput for bottom-up sample preparation and validates the approach as a robust, low-cost alternative to maximized protein digestion efficiency.
Collapse
|
35
|
Wang Q, Yu W, Li Z, Liu B, Hu Y, Chen S, de Vries R, Yuan Y, Erazo Quintero LE, Hou G, Hu C, Li Y. The stability and bioavailability of curcumin loaded α-lactalbumin nanocarriers formulated in functional dairy drink. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Surrogate peptide selection and internal standardization for accurate quantification of endogenous proteins. Bioanalysis 2022; 14:949-961. [PMID: 36017716 DOI: 10.4155/bio-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Relative quantification techniques have dominated the field of proteomics. However, biomarker discovery, mathematical model development and studies on transporter-mediated drug disposition still need absolute quantification of proteins. The quality of data of trace-level protein quantification is solely dependent on the specific selection of surrogate peptides. Selection of surrogate peptides has a major impact on the accuracy of the method. In this article, the advanced approaches for selection of surrogate peptides, which can provide absolute quantification of the proteins are discussed. In addition, internal standardization, which accounts for variations in the quantitation process to achieve absolute protein quantification is discussed.
Collapse
|
37
|
Abstract
Bacteriophage Mu is a paradigm coliphage studied mainly because of its use of transposition for genome replication. However, in extensive nonsense mutant screens, only one lysis gene has been identified, the endolysin gp22. This is surprising because in Gram-negative hosts, lysis by Caudovirales phages has been shown to require proteins which disrupt all three layers of the cell envelope. Usually this involves a holin, an endolysin, and a spanin targeting the cytoplasmic membrane, peptidoglycan (PG), and outer membrane (OM), respectively, with the holin determining the timing of lysis initiation. Here, we demonstrate that gp22 is a signal-anchor-release (SAR) endolysin and identify gp23 and gp23.1 as two-component spanin subunits. However, we find that Mu lacks a holin and instead encodes a membrane-tethered cytoplasmic protein, gp25, which is required for the release of the SAR endolysin. Mutational analysis showed that this dependence on gp25 is conferred by lysine residues at positions 6 and 7 of the short cytoplasmic domain of gp22. gp25, which we designate as a releasin, also facilitates the release of SAR endolysins from other phages. Moreover, the entire length of gp25, including its N-terminal transmembrane domain, belongs to a protein family, DUF2730, found in many Mu-like phages, including those with cytoplasmic endolysins. These results are discussed in terms of models for the evolution and mechanism of releasin function and a rationale for Mu lysis without holin control. IMPORTANCE Host cell lysis is the terminal event of the bacteriophage infection cycle. In Gram-negative hosts, lysis requires proteins that disrupt each of the three cell envelope components, only one of which has been identified in Mu: the endolysin gp22. We show that gp22 can be characterized as a SAR endolysin, a muralytic enzyme that activates upon release from the membrane to degrade the cell wall. Furthermore, we identify genes 23 and 23.1 as spanin subunits used for outer membrane disruption. Significantly, we demonstrate that Mu is the first known Caudovirales phage to lack a holin, a protein that disrupts the inner membrane and is traditionally known to release endolysins. In its stead, we report the discovery of a lysis protein, termed the releasin, which Mu uses for SAR endolysin release. This is an example of a system where the dynamic membrane localization of one protein is controlled by a secondary protein.
Collapse
|
38
|
Roth A, Sander A, Oswald MS, Gärtner F, Knippschild U, Bischof J. Comprehensive Characterization of CK1δ-Mediated Tau Phosphorylation in Alzheimer’s Disease. Front Mol Biosci 2022; 9:872171. [PMID: 36203870 PMCID: PMC9531328 DOI: 10.3389/fmolb.2022.872171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
A main pathological event in Alzheimer’s disease is the generation of neurofibrillary tangles originating from hyperphosphorylated and subsequently aggregated tau proteins. Previous reports demonstrated the critical involvement of members of the protein kinase family CK1 in the pathogenesis of Alzheimer’s disease by hyperphosphorylation of tau. However, precise mechanisms and effects of CK1-mediated tau phosphorylation are still not fully understood. In this study, we analyzed recombinant tau441 phosphorylated by CK1δ in vitro via mass spectrometry and identified ten potential phosphorylation sites, five of them are associated to Alzheimer’s disease. To confirm these results, in vitro kinase assays and two-dimensional phosphopeptide analyses were performed with tau441 phosphomutants confirming Alzheimer’s disease-associated residues Ser68/Thr71 and Ser289 as CK1δ-specific phosphorylation sites. Treatment of differentiated human neural progenitor cells with PF-670462 and Western blot analysis identified Ser214 as CK1δ-targeted phosphorylation site. The use of an in vitro tau aggregation assay demonstrated a possible role of CK1δ in tau aggregation. Results obtained in this study highlight the potential of CK1δ to be a promising target in the treatment of Alzheimer’s disease.
Collapse
|
39
|
Van der Jeugt F, Maertens R, Steyaert A, Verschaffelt P, De Tender C, Dawyndt P, Mesuere B. UMGAP: the Unipept MetaGenomics Analysis Pipeline. BMC Genomics 2022; 23:433. [PMID: 35689184 PMCID: PMC9188040 DOI: 10.1186/s12864-022-08542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background Shotgun metagenomics yields ever richer and larger data volumes on the complex communities living in diverse environments. Extracting deep insights from the raw reads heavily depends on the availability of fast, accurate and user-friendly biodiversity analysis tools. Results Because environmental samples may contain strains and species that are not covered in reference databases and because protein sequences are more conserved than the genes encoding them, we explore the alternative route of taxonomic profiling based on protein coding regions translated from the shotgun metagenomics reads, instead of directly processing the DNA reads. We therefore developed the Unipept MetaGenomics Analysis Pipeline (UMGAP), a highly versatile suite of open source tools that are implemented in Rust and support parallelization to achieve optimal performance. Six preconfigured pipelines with different performance trade-offs were carefully selected, and benchmarked against a selection of state-of-the-art shotgun metagenomics taxonomic profiling tools. Conclusions UMGAP’s protein space detour for taxonomic profiling makes it competitive with state-of-the-art shotgun metagenomics tools. Despite our design choices of an extra protein translation step, a broad spectrum index that can identify both archaea, bacteria, eukaryotes and viruses, and a highly configurable non-monolithic design, UMGAP achieves low runtime, manageable memory footprint and high accuracy. Its interactive visualizations allow for easy exploration and comparison of complex communities. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08542-4).
Collapse
Affiliation(s)
- Felix Van der Jeugt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
| | - Rien Maertens
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Aranka Steyaert
- Department of Information Technology, IDLab, imec, Ghent, Belgium
| | - Pieter Verschaffelt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Caroline De Tender
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Ghent, Belgium
| | - Peter Dawyndt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bart Mesuere
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
40
|
Sharifi S, Saei AA, Gharibi H, Mahmoud NN, Harkins S, Dararatana N, Lisabeth EM, Serpooshan V, Végvári Á, Moore A, Mahmoudi M. Mass Spectrometry, Structural Analysis, and Anti-Inflammatory Properties of Photo-Cross-Linked Human Albumin Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:2643-2663. [PMID: 35544705 DOI: 10.1021/acsabm.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Albumin-based hydrogels offer unique benefits such as biodegradability and high binding affinity to various biomolecules, which make them suitable candidates for biomedical applications. Here, we report a non-immunogenic photocurable human serum-based (HSA) hydrogel synthesized by methacryloylation of human serum albumin by methacrylic anhydride (MAA). We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, liquid chromatography-tandem mass spectrometry, as well as size exclusion chromatography to evaluate the extent of modification, hydrolytic and enzymatic degradation of methacrylated albumin macromer and its cross-linked hydrogels. The impacts of methacryloylation and cross-linking on alteration of inflammatory response and toxicity were evaluated in vitro using brain-derived HMC3 macrophages and Ex-Ovo chick chorioallantoic membrane assay. Results revealed that the lysines in HSA were the primary targets reacting with MAA, though modification of cysteine, threonine, serine, and tyrosine, with MAA was also confirmed. Both methacrylated HSA and its derived hydrogels were nontoxic and did not induce inflammatory pathways, while significantly reducing macrophage adhesion to the hydrogels; one of the key steps in the process of foreign body reaction to biomaterials. Cytokine and growth factor analysis showed that albumin-based hydrogels demonstrated anti-inflammatory response modulating cellular events in HMC3 macrophages. Ex-Ovo results also confirmed the biocompatibility of HSA macromer and hydrogels along with slight angiogenesis-modulating effects. Photocurable albumin hydrogels may be used as a non-immunogenic platform for various biomedical applications including passivation coatings.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Nouf N Mahmoud
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shannon Harkins
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Naruphorn Dararatana
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Erika M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
41
|
McCann A, Kune C, Massonnet P, Far J, Ongena M, Eppe G, Quinton L, De Pauw E. Cyclic Peptide Protomer Detection in the Gas Phase: Impact on CCS Measurement and Fragmentation Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:851-858. [PMID: 35467879 DOI: 10.1021/jasms.2c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the recent improvements in ion mobility resolution, it is now possible to separate small protomeric tautomers, called protomers. In larger molecules above 1000 Da such as peptides, a few studies suggest that protomers do exist as well and may contribute to their gas-phase conformational heterogeneity. In this work, we observed a CCS distribution that can be explained by the presence of protomers of surfactin, a small lipopeptide with no basic site. Following preliminary density functional theoretical calculations, several protonation sites in the gas phase were energetically favorable in positive ionization mode. Experimentally, at least three near-resolved IM peaks were observed in positive ionization mode, while only one was detected in negative ionization mode. These results were in good agreement with the DFT predictions. CID breakdown curve analysis after IM separation showed different inflection points (CE50) suggesting that different intramolecular interactions were implied in the stabilization of the structures of surfactin. The fragment ratio observed after collision-induced fragmentation was also different, suggesting different ring-opening localizations. All these observations support the presence of protomers on the cyclic peptide moieties of the surfactin. These data strongly suggest that protomeric tautomerism can still be observed on molecules above 1000 Da if the IM resolving power is sufficient. It also supports that the proton localization involves a change in the 3D structure that can affect the experimental CCS and the fragmentation channels of such peptides.
Collapse
Affiliation(s)
- Andréa McCann
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Philippe Massonnet
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, 6229ER Maastricht, Limburg, The Netherlands
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
42
|
Simms C, Savić N, De Winter K, Parac-Vogt TN. Understanding the role of surfactants in the interaction and hydrolysis of myoglobin by Zr‐MOF‐808. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Nada Savić
- KU Leuven: Katholieke Universiteit Leuven Chemistry BELGIUM
| | | | - Tatjana N. Parac-Vogt
- KU Leuven Department of Chemistry Molecular Design and Synthesis Celestijnenlaan 200F 3001 Leuven BELGIUM
| |
Collapse
|
43
|
Zhang YM, Jiang YH, Li HW, Li XZ, Zhang QL. Purification and characterization of Lactobacillus plantarum-derived bacteriocin with activity against Staphylococcus argenteus planktonic cells and biofilm. J Food Sci 2022; 87:2718-2731. [PMID: 35470896 DOI: 10.1111/1750-3841.16148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
Bacteriocins inhibit various foodborne bacteria in planktonic and biofilm forms. However, bacteriocins with antibacterial and antibiofilm activity against Staphylococcus argenteus, a pathogen that can cause food poisoning, are still poorly known. Here, the novel bacteriocin LSB1 derived from Lactobacillus plantarum CGMCC 1.12934 was purified and characterized extensively. LSB1 had a molecular weight of 1425.78 Da and an amino acid sequence of YIFVTGGVVSSLGK. Moreover, LSB1 exhibited excellent stability under heat and acid-base stress and presented sensitivity to pepsin and proteinase K. LSB1 exhibited an extensive antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration of LSB1 against S. argenteus_70917 was 10.36 µg/ml, which was lower than that of most of the previously found bacteriocins against Staphylococcus strains. Furthermore, LSB1 significantly inhibited S. argenteus_70917 planktonic cells (p < 0.01) and decreased their viability. Scanning electron microscopy analysis revealed that cell membrane permeability of S. argenteus_70917 upon exposure to LSB1 showed leakage of cytoplasmic contents and rupture, leading to cell death. In addition, biofilm formation ability of S. argenteus_70917 was significantly (p < 0.01) impaired by LSB1, with the percent inhibition of 35% at 10 µg/ml and 80% at 20 µg/ml. Overall, this study indicates that LSB1 can be considered a potential antibacterial agent in the control of S. argenteus in both planktonic and biofilm states. PRACTICAL APPLICATION: Foodborne pathogenic bacteria, such as Staphylococcus argenteus, and their biofilms represent potential risks for food safety. In recent years, customers' demand for "natural" products has increased food control. This study describes the novel bacteriocin LSB1 produced by the lactic acid bacterium species Lactobacillus plantarum. LSB1 showed strong antibacterial and antibiofilm activity against S. argenteus as well as thermal and acid-alkaline stability. Furthermore, the mechanisms of action of LSB1 on S. argenteus were preliminarily explored. These results indicate that LSB1 might be potentially used as an effective and natural food preservative.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
44
|
Grifnée E, Kune C, Delvaux C, Quinton L, Far J, Mazzucchelli G, De Pauw E. Label-Free Higher Order Structure and Dynamic Investigation Method of Proteins in Solution Using an Enzymatic Reactor Coupled to Electrospray High-Resolution Mass Spectrometry Detection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:284-295. [PMID: 34969249 DOI: 10.1021/jasms.1c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For decades, structural analysis of proteins have received considerable attention, from their sequencing to the determination of their 3D structures either in the free state (e.g., no host-guest system, apoproteins) or (non)covalently bound complexes. The elucidation of the 3D structures and the mapping of intra- and intermolecular interactions are valuable sources of information to understand the physicochemical properties of such systems. X-ray crystallography and nuclear magnetic resonance are methods of choice for obtaining structures at the atomic level. Nonetheless, they still present drawbacks which limit their use to highly purified systems in a relatively high amount. On the contrary, mass spectrometry (MS) has become a powerful tool thanks to its selectivity, sensitivity, and the development of structural methods both at the global shape and the residue level. The combination of several MS-based methods is mandatory to fully assign a putative structure in combination with computational chemistry and bioinformatics. In that context, we propose a strategy which complements the existing methods of structural studies (e.g., circular dichroism, hydrogen/deuterium exchange and cross-links experiments, nuclear magnetic resonance). The workflow is based on the collection of structural information on proteins from the apparition rates and the time of appearance of released peptides generated by a protease in controlled experimental conditions with online detection by electrospray high-resolution mass spectrometry. Nondenaturing, partially or fully denatured proteins were digested by the enzymatic reactor, i.e., β-lactoglobulin, cytochrome c, and β-casein. The collected data are interpreted with regard to the kinetic schemes with time-dependent rates of the enzymatic digestion established beforehand, considering kinetics parameters in the Michaelis-Menten formalism including kcat (the turnover number), k1 (formation of the enzyme-substrate complex), k-1 (dissociation of the enzyme-substrate complex), koff (local refolding of the protein around the cleavage site), and kon (local unfolding of the protein around the cleavage site). Solvent-accessible surface analysis through digestion kinetics was also investigated. The initial apparition rates of released peptides varied according to the protein state (folded vs denatured) and informs the koff/kon ratio around the cleavage site. On the other hand, the time of appearance of a given peptide is related to its solvent accessibility and to the resilience of the residual protein structure in solution. Temperature-dependent digestion experiments allowed estimation of the type of secondary structures around the cleavage site.
Collapse
Affiliation(s)
- Elodie Grifnée
- Mass Spectrometry Laboratory, MolSys Research Unit, Quartier Agora, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, Quartier Agora, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| | - Cédric Delvaux
- Mass Spectrometry Laboratory, MolSys Research Unit, Quartier Agora, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Quartier Agora, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, Quartier Agora, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Quartier Agora, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Quartier Agora, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| |
Collapse
|
45
|
Segl M, Stutz H. Bottom-Up Analysis of Proteins by Peptide Mass Fingerprinting with tCITP-CZE-ESI-TOF MS After Tryptic Digest. Methods Mol Biol 2022; 2531:93-106. [PMID: 35941481 DOI: 10.1007/978-1-0716-2493-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of proteins in samples of moderate to complex composition is primarily done by bottom-up approaches. Therefore, proteins are enzymatically digested, mostly by trypsin, and the resulting peptides are then separated prior to their transfer to a mass spectrometer. The following protocol portrays a bottom-up method, which was optimized for the application of CZE-ESI-TOF MS. Protein denaturation is achieved by addition of 2,2,2-trifluoroethanol (TFE) and heat treatment. Afterwards, disulfide bonds are reduced with tris-(2-carboxyethyl)phosphine (TCEP) and subsequently alkylated with iodoacetamide (IAA). The tryptic digest is performed in an ammonium bicarbonate buffer at pH 8.0. The digested protein sample is then concentrated in-capillary by transient capillary isotachophoresis (tCITP) with subsequent CZE separation of tryptic peptides in an acidic background electrolyte. Hyphenation to a time-of-flight (TOF) mass spectrometer is carried out by a triple-tube coaxial sheath flow interface, which uses electrospray ionization (ESI). Peptide identification is done by peptide mass fingerprinting (PMF). The protocol is outlined exemplarily for a model protein, i.e., bovine β-lactoglobulin A.
Collapse
Affiliation(s)
- Marius Segl
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria
| | - Hanno Stutz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
46
|
Dual-function monolithic enzyme reactor based on dopamine/graphene oxide coating for simultaneous protein enzymatic hydrolysis and glycopeptide enrichment. J Chromatogr A 2022; 1666:462848. [DOI: 10.1016/j.chroma.2022.462848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
|
47
|
Abstract
This protocol offers step-by-step instructions for preparation of raw blood plasma for liquid chromatography - tandem mass spectrometry (LC-MS/MS) analysis in clinical proteomics studies. The technique is simple, robust, and reproducible, and the entire transformation from plasma proteins to desalted tryptic peptides takes only 3-4 h. The protocol ensures efficient denaturation of native proteases that, in combination with the speediness of the procedure, prevents non-specific and irreproducible cleavage of digested peptides. The protocol can be adopted for large-scale studies and automation. For complete details on the use and execution of this protocol, please refer to Overmyer et al. (2020).
Collapse
Affiliation(s)
- Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
48
|
Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingjing Xu
- Center for Molecular Recognition and Biosensing School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Haohan Miao
- Institute for Advanced Materials School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Lihua Zou
- Center for Molecular Recognition and Biosensing School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Bernadette Tse Sum Bui
- Université de Technologie de Compiègne CNRS Enzyme and Cell Engineering Laboratory Rue du Docteur Schweitzer 60203 Compiègne Cedex France
| | - Karsten Haupt
- Université de Technologie de Compiègne CNRS Enzyme and Cell Engineering Laboratory Rue du Docteur Schweitzer 60203 Compiègne Cedex France
| | - Guoqing Pan
- Institute for Advanced Materials School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
49
|
Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem Int Ed Engl 2021; 60:24526-24533. [PMID: 34418248 DOI: 10.1002/anie.202106657] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Molecular imprinting represents one of the most promising strategies to design artificial enzyme inhibitors. However, the study of molecularly imprinted enzyme inhibitors (MIEIs) remains at a primary stage. Advanced applications of MIEIs for cell regulation have rarely been explored. Using a solid-phase oriented imprinting strategy so as to leave the active site of the enzymes accessible, we synthesized two MIEIs that exhibit high specificity and potent inhibitory effects (inhibition constant at low nM range) towards trypsin and angiogenin. The trypsin MIEI inhibits trypsin activity, tryptic digestion-induced extracellular matrix lysis and cell membrane destruction, indicating its utility in the treatment of active trypsin-dependent cell injury. The angiogenin MIEI blocks cancer cell proliferation by suppressing the ribonuclease activity of angiogenin and decreasing the angiogenin level inside and outside HeLa cells. Our work demonstrates the versatility of MIEIs for both enzyme inhibition and cell fate manipulation, showing their great potential as therapeutic drugs in biomedicine.
Collapse
Affiliation(s)
- Jingjing Xu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lihua Zou
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Bernadette Tse Sum Bui
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203, Compiègne Cedex, France
| | - Karsten Haupt
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203, Compiègne Cedex, France
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
50
|
Purification, characterization, and antibacterial and antibiofilm activity of a novel bacteriocin against Salmonella Enteritidis. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|