1
|
Cain RL, Webb IK. Comparison of Partially Denatured Cytochrome c Structural Ensembles in Solution and Gas Phases Using Cross-Linking Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:153-160. [PMID: 39665677 DOI: 10.1021/jasms.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) can retain intact protein structures, but details about partially folded and unfolded protein structures during and after introduction to the gas phase are elusive. Here we use ESI-MS with chemical cross-linkers to compare denatured cytochrome c structures in both solution and gas phases. Solution phase cross-linking prior to ESI captures solution phase structures, while gas phase cross-linking through ion/ion reactions in the trap cell captures gas phase structures. Comparing the ECD fragmentation of the cross-linked products under both conditions shows very similar cross-linker identifications, alluding to no major structural dissimilarities between solution and gas structures. Molecular modeling of the denatured protein using the identified cross-linked sites as distant restraints allows for visualization of the denatured structures to pinpoint where unfolding begins. Our data suggest that cytochrome c likely begins to unfold due to interior hydrophobic expansion, followed by α helical unfolding. This localization of structural changes is more specific than using CCS measurements alone.
Collapse
Affiliation(s)
- Rebecca L Cain
- Department of Chemistry and Chemical Biology, Indiana University─Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University─Indianapolis, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
Benabou S, de Juan A, Gabelica V. Probing the Intramolecular Folding of Nucleic Acids with Native Ion Mobility Mass Spectrometry: Strategies and Caveats. Anal Chem 2024; 96:19277-19285. [PMID: 39621425 DOI: 10.1021/acs.analchem.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The goal of native mass spectrometry is to obtain information on noncovalent interactions in solution through mass spectrometry measurements in the gas phase. Characterizing intramolecular folding requires using structural probing techniques such as ion mobility spectrometry. However, inferring solution structures of nucleic acids is difficult because the low-charge state ions produced from aqueous solutions at physiological ionic strength get compacted during electrospray. Here we explored whether native supercharging could produce higher charge states that would better reflect solution folding, and whether the voltage required for collision-induced unfolding (CIU) could reflect preserved intramolecular hydrogen bonds. We studied pH-responsive i-motif structures with different loops, and unstructured controls. We also implemented a multivariate curve resolution procedure to extract physically meaningful pure components from the CIU data and reconstruct unfolding curves. We found that the relative unfolding voltages reflect to some extent, but not always unambiguously, the number of intramolecular hydrogen bonds that were present in solution. Reaching phosphate charging densities over 0.25 makes it easier to discriminate between structures, and the use of native supercharging agents is thus essential. We also uncovered several caveats in data interpretation: (1) when different structures (for example the i-motif with and without hairpin) unfold via different pathways, the unfolding voltages do not necessarily reflect the number of hydrogen bonds, (2) unstructured controls also undergo unfolding, and the base composition influences the unfolding voltage, (3) changing the solution pH also unexpectedly changed the unfolding voltage, and (4) the ion mobility patterns become more complicated when two structures are present simultaneously, such as an i-motif and a harpin, because of opposite effects on the collision cross section upon activation.
Collapse
Affiliation(s)
- Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, F-33600 Pessac, France
| | - Anna de Juan
- Chemometrics Group, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, F-33600 Pessac, France
- Section of Pharmaceutical Sciences, University of Geneva, CMU Bat. B09, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Ami D, Santambrogio C, Vertemara J, Bovio F, Santisteban-Veiga A, Sabín J, Zampella G, Grandori R, Cipolla L, Natalello A. The Landscape of Osteocalcin Proteoforms Reveals Distinct Structural and Functional Roles of Its Carboxylation Sites. J Am Chem Soc 2024; 146:27755-27769. [PMID: 39348444 DOI: 10.1021/jacs.4c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Human osteocalcin (OC) undergoes reversible, vitamin K-dependent γ-carboxylation at three glutamic acid residues, modulating its release from bones and its hormonal roles. A complete understanding of OC roles and structure-activity relationships is still lacking, as only uncarboxylated and few differently carboxylated variants have been considered so far. To fill this lack of knowledge, a comprehensive experimental and computational investigation of the structural properties and calcium-binding activity of all the OC variants is reported here. Such a comparative study indicates that the carboxylation sites are not equivalent and differently affect the OC structure and interaction with calcium, properties that are relevant for the modulation of OC functions. This study also discloses cooperative effects and provides structural and mechanistic interpretation. The disclosed peculiar features of each carboxylated proteoform strongly suggest that considering all eight possible OC variants in future studies may help rationalize some of the conflicting hypotheses observed in the literature.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Andrea Santisteban-Veiga
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| |
Collapse
|
4
|
Todd BP, Downard KM. Structural Phylogenetics with Protein Mass Spectrometry: A Proof-of-Concept. Protein J 2024; 43:997-1008. [PMID: 39078529 DOI: 10.1007/s10930-024-10227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
It is demonstrated, for the first time, that a mass spectrometry approach (known as phylonumerics) can be successfully implemented for structural phylogenetics investigations to chart the evolution of a protein's structure and function. Illustrated for the compact globular protein myoglobin, peptide masses produced from the proteolytic digestion of the protein across animal species generate trees congruent to the sequence tree counterparts. Single point mutations calculated during the same mass tree building step can be followed along interconnected branches of the tree and represent a viable structural metric. A mass tree built for 15 diverse animal species, easily resolve the birds from mammal species, and the ruminant mammals from the remainder of the animals. Mutations within helix-spanning peptide segments alter both the mass and structure of the protein in these segments. Greater evolution is found in the B-helix over the A, E, F, G and H helices. A further mass tree study, of six more closely related primate species, resolves gorilla from the other primates based on a P22S mutation within the B-helix. The remaining five primates are resolved into two groups based on whether they contain a glycine or serine at position 23 in the same helix. The orangutan is resolved from the gibbon and siamang by its G-helix C110S mutation, while homo sapiens are resolved from chimpanzee based on the Q116H mutation. All are associated with structural perturbations in such helices. These structure altering mutations can be tracked along interconnecting branches of a mass tree, to follow the protein's structure and evolution, and ultimately the evolution of the species in which the proteins are expressed. Those that have the greatest impact on a protein's structure, its function, and ultimately the evolution of the species, can be selectively tracked or monitored.
Collapse
Affiliation(s)
- Benjamin P Todd
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Yang G, Zhang L, Xie S, Wu J, Khan M, Zhang Y, Liu L, Li J. Protonation State-Induced Unfolding of Protein Secondary Structure in the Gas Phase. J Phys Chem Lett 2024; 15:9374-9379. [PMID: 39240543 DOI: 10.1021/acs.jpclett.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The combination of infrared spectroscopy (IR) and ion mobility mass spectrometry (IM-MS) has revealed that protein secondary structures are retained upon transformation from aqueous solution to the gas phase under gentle conditions. Yet the details about where and how these structural elements are embedded in the gas phase remain elusive. In this study, we employ long time scale molecular dynamics (MD) simulations to examine the extent to which proteins retain their solution structures and the impact of protonation state on the stability of secondary structures in the gas phase. Our investigation focuses on two well-studied proteins, myoglobin and β-lactoglobulin, representing typical helical and β-sheet proteins, respectively. Our simulations accurately reproduce the experimental collision cross section (CCS) data measured by IM-MS. Based on accurately reproducing previous experimental collision cross section data and dominant secondary structural species obtained from IM-MS and IR, we confirm that both proteins largely retain their native secondary structural components upon passing from aqueous solution to the gas phase. However, we observe significant reductions in secondary structure contents (19.2 ± 1.2% for myoglobin and 7.3 ± 0.6% for β-lactoglobulin) in specific regions predominantly composed of ionizable residues. Further mechanistic analysis suggests that alterations in protonation states of these residues after phase transition induce changes in their local interaction networks and backbone dihedral angles, which potentially promote the unfolding of secondary structures in the gas phase. We anticipate that similar protonation state induced unfolding may be observed in other proteins possessing distinct secondary structures. Further studies on a broader array of proteins will be essential to refine our understanding of protein structural behavior during the transition to the gas phase.
Collapse
Affiliation(s)
- Guiqian Yang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lanbi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Majid Khan
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongqi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
6
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Ezeduru V, Shao ARQ, Venegas FA, McKay G, Rich J, Nguyen D, Thibodeaux CJ. Defining the functional properties of cyclopropane fatty acid synthase from Pseudomonas aeruginosa PAO1. J Biol Chem 2024; 300:107618. [PMID: 39095026 PMCID: PMC11387697 DOI: 10.1016/j.jbc.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA), an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid-binding domain of CFAS enzymes, perhaps suggesting distinct membrane-binding properties among different orthologs. This work lays an important foundation for further characterization of CFAS in P. aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.
Collapse
Affiliation(s)
- Vivian Ezeduru
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Felipe A Venegas
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jacquelyn Rich
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Hanifi K, Scrosati PM, Konermann L. MD Simulations of Peptide-Containing Electrospray Droplets: Effects of Parameter Settings on the Predicted Mechanisms of Gas Phase Ion Formation. J Phys Chem B 2024; 128:5973-5986. [PMID: 38864851 DOI: 10.1021/acs.jpcb.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Electrospray ionization (ESI) mass spectrometry is widely used for interrogating peptides, proteins, and other biomolecular analytes. A growing number of laboratories use molecular dynamics (MD) simulations for uncovering ESI mechanisms by modeling the behavior of highly charged nanodroplets. The outcome of any MD simulation depends on certain assumptions and parameter settings, and it is desirable to optimize these factors by benchmarking computational data against experiments. Unfortunately, benchmarking of ESI simulations is difficult because experimentally generated gaseous ions do not generally retain any features that would reveal their formation pathway [e.g., the charged residue mechanism (CRM) or the ion evaporation mechanism (IEM)]. Here, we tackle this problem by examining the effects of various MD settings on the ESI behavior of the 9-residue peptide bradykinin in acidic aqueous droplets. Several parameters were found to significantly affect the kinetic competition between peptide IEM and CRM. By systematically probing the droplet behavior, we uncovered problems associated with certain settings, including peptide/solvent temperature imbalances, unexpected peptide deceleration during IEM, and a dependence of the ESI mechanism on the water model. We also noted different simulation outcomes for different force fields. On the basis of comprehensive tests, we propose a set of "best practice" parameter settings for MD simulations of ESI droplets. The strategies used here should be transferable to other types of droplet simulations, paving the way toward a more solid understanding of ESI mechanisms.
Collapse
Affiliation(s)
- Kasra Hanifi
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
9
|
Habeck T, Maciel EVS, Kretschmer K, Lermyte F. Charge site manipulation to enhance top-down fragmentation efficiency. Proteomics 2024; 24:e2300082. [PMID: 37043727 DOI: 10.1002/pmic.202300082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
In recent years, top-down mass spectrometry has become a widely used approach to study proteoforms; however, improving sequence coverage remains an important goal. Here, two different proteins, α-synuclein and bovine carbonic anhydrase, were subjected to top-down collision-induced dissociation (CID) after electrospray ionisation. Two high-boiling solvents, DMSO and propylene carbonate, were added to the protein solution in low concentration (2%) and the effects on the top-down fragmentation patterns of the proteins were systematically investigated. Each sample was measured in triplicate, which revealed highly reproducible differences in the top-down CID fragmentation patterns in the presence of a solution additive, even if the same precursor charge state was isolated in the quadrupole of the instrument. Further investigation supports the solution condition-dependent selective formation of different protonation site isomers as the underlying cause of these differences. Higher sequence coverage was often observed in the presence of additives, and the benefits of this approach became even more evident when datasets from different solution conditions were combined, as increases up to 35% in cleavage coverage were obtained. Overall, this approach therefore represents a promising opportunity to increase top-down fragmentation efficiency.
Collapse
Affiliation(s)
- Tanja Habeck
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Hessen, Germany
| | - Edvaldo Vasconcelos Soares Maciel
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Hessen, Germany
| | - Kevin Kretschmer
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Hessen, Germany
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Hessen, Germany
| |
Collapse
|
10
|
Villacob RA, Feizi N, Beno SC, Solouki T. Collision-Induced Unfolding, Tandem MS, Bottom-up Proteomics, and Interactomics for Identification of Protein Complexes in Native Surface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:13-30. [PMID: 38095581 DOI: 10.1021/jasms.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS). This multiprong analysis is achieved by acquiring NSMS, MS/MS, ion mobility (IM), and bottom-up proteomics data from a single surface extracted sample. The validity of this multiprong approach was confirmed by the successful characterization of nine surface-deposited proteins, with molecular weights ranging from 8 to 147 kDa, in two separate mixtures. Bottom-up proteomics provided a list of proteins to match against observed proteins in NSMS and their detected subunits in tandem MS. The method was applied to characterize endogenous proteins from untreated chicken liver samples. The subcapsular liver sampling for NSMS analysis allowed for the detection of endogenous proteins with molecular weights of up to ∼220 kDa. Moreover, using IM-MS, collision cross sections and collision-induced unfolding pathways of enzymatic proteins and protein complexes of up to 145 kDa were obtained.
Collapse
Affiliation(s)
- Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Neda Feizi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sarah C Beno
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
11
|
Luan M, Hou Z, Zhang B, Ma L, Yuan S, Liu Y, Huang G. Inter-Domain Repulsion of Dumbbell-Shaped Calmodulin during Electrospray Ionization Revealed by Molecular Dynamics Simulations. Anal Chem 2023; 95:8798-8806. [PMID: 37309130 DOI: 10.1021/acs.analchem.2c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanisms whereby protein ions are released from nanodroplets at the liquid-gas interface have continued to be controversial since electrospray ionization (ESI) mass spectrometry was widely applied in biomolecular structure analysis in solution. Several viable pathways have been proposed and verified for single-domain proteins. However, the ESI mechanism of multi-domain proteins with more complicated and flexible structures remains unclear. Herein, dumbbell-shaped calmodulin was chosen as a multi-domain protein model to perform molecular dynamics simulations to investigate the structural evolution during the ESI process. For [Ca4CAM], the protein followed the classical charge residue model. As the inter-domain electrostatic repulsion increased, the droplet was found to split into two sub-droplets, while stronger-repulsive apo-calmodulin unfolded during the early evaporation stage. We designated this novel ESI mechanism as the domain repulsion model, which provides new mechanistic insights into further exploration of proteins containing more domains. Our results suggest that greater attention should be paid to the effect of domain-domain interactions on structure retention during liquid-gas interface transfer when mass spectrometry is used as the developing technique in gas phase structural biology.
Collapse
Affiliation(s)
- Moujun Luan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Buchun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Siming Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Yang L, Zhang W, Xu W. Efficient protein conformation dynamics characterization enabled by mobility-mass spectrometry. Anal Chim Acta 2023; 1243:340800. [PMID: 36697173 DOI: 10.1016/j.aca.2023.340800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Protein structure dynamics in solution and from solution to gas phase are important but challenging topics. Great efforts and advances have been made especially since the wide application of ion mobility mass spectrometry (IM-MS), by which protein collision cross section (CCS) in gas phase could be measured. Due to the lack of efficient experimental methods, protein structures in protein databank are typically referred as their structures in solution. Although conventional structural biology techniques provide high-resolution protein structures, complicated and stringent processes also limit their applicability under different solvent conditions, thus preventing the capture of protein dynamics in solution. Enabled by the combination of mobility capillary electrophoresis (MCE) and IM-MS, an efficient experimental protocol was developed to characterize protein conformation dynamics in solution and from solution to gas phase. As a first attempt, key factors that affecting protein conformations were distinguished and evaluated separately, including pH, temperature, softness of ionization process, presence and specific location of disulfide bonds. Although similar extent of unfolding could be observed for different proteins, in-depth analysis reveals that pH decrease from 7.0 to 3.0 dominates the unfolding of proteins without disulfide bonds in conventional ESI-MS experiments; while harshness of the ionization process dominates the unfolding of proteins with disulfide bonds. Second, disulfide bonds show capability of preserving protein conformations in acidic solution environments. However, by monitoring protein conformation dynamics and comparing results from different proteins, it is also found that their capability is position dependent. Surprisingly, disulfide bonds did not show the capability of preserving protein conformations during ionization processes.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenjing Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
13
|
Khristenko N, Rosu F, Largy E, Haustant J, Mesmin C, Gabelica V. Native Electrospray Ionization of Multi-Domain Proteins via a Bead Ejection Mechanism. J Am Chem Soc 2023; 145:498-506. [PMID: 36573911 DOI: 10.1021/jacs.2c10762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Native ion mobility mass spectrometry is potentially useful for the biophysical characterization of proteins, as the electrospray charge state distribution and the collision cross section distribution depend on their solution conformation. We examine here the charging and gas-phase conformation of multi-domain therapeutic proteins comprising globular domains tethered by disordered linkers. The charge and collision cross section distributions are multimodal, suggesting several conformations in solution, as confirmed by solution hydrogen/deuterium exchange. The most intriguing question is the ionization mechanism of these structures: a fraction of the population does not follow the charged residue mechanism but cannot ionize by pure chain ejection either. We deduce that a hybrid mechanism is possible, wherein globular domains are ejected one at a time from a parent droplet. The charge vs solvent accessible surface area correlations of denatured and intrinsically disordered proteins are also compatible with this "bead ejection mechanism", which we propose as a general tenet of biomolecule electrospray.
Collapse
Affiliation(s)
- Nina Khristenko
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, PessacF-33600, France
| | - Frédéric Rosu
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, PessacF-33600, France
| | - Eric Largy
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, PessacF-33600, France
| | - Jérôme Haustant
- Merck Biodevelopment SAS/An Affiliate of Merck KGaA - Darmstadt, Germany, MartillacF-33650, France
| | - Cédric Mesmin
- Merck Biodevelopment SAS/An Affiliate of Merck KGaA - Darmstadt, Germany, MartillacF-33650, France
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, PessacF-33600, France.,Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, PessacF-33600, France
| |
Collapse
|
14
|
Villacob RA, Egbejiogu BC, Feizi N, Hogan C, Murray KK, Solouki T. Native Mass Spectrometry and Collision-Induced Unfolding of Laser-Ablated Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2215-2225. [PMID: 36346890 DOI: 10.1021/jasms.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infrared laser ablation sample transfer (LAST) was used to collect samples from solid surfaces for mass spectrometry under native spray conditions. Native mass spectrometry was utilized to probe the charge states and collision-induced unfolding (CIU) characteristics of bovine serum albumin (BSA), bovine hemoglobin (BHb), and jack-bean concanavalin A (ConA) via direct injection electrospray, after liquid extraction surface sampling, and after LAST. Each protein was deposited from solution on solid surfaces and laser-ablated for off-line analysis or sampled for online analysis. It was found that the protein ion gas-phase charge-state distributions were comparable for direct infusion, liquid extraction, and laser ablation experiments. Moreover, calculated average collision cross section (CCS) values from direct injection, liquid extraction, and laser ablation experiments were consistent with previously reported literature values. Additionally, an equivalent number of mobility features and conformational turnovers were identified from unfolding pathways from all three methods for all charge states of each protein analyzed in this work. The presented work suggests that laser ablation yields intact proteins (BSA, BHb, and ConA), is compatible with native mass spectrometry, and could be suitable for spatially resolved interrogation of unfolding pathways of proteins.
Collapse
Affiliation(s)
| | | | - Neda Feizi
- Baylor University, Waco, Texas 76706, United States
| | - Cole Hogan
- Baylor University, Waco, Texas 76706, United States
| | - Kermit K Murray
- Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
15
|
Santambrogio C, Ponzini E, Grandori R. Native mass spectrometry for the investigation of protein structural (dis)order. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140828. [PMID: 35926718 DOI: 10.1016/j.bbapap.2022.140828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A central challenge in structural biology is represented by dynamic and heterogeneous systems, as typically represented by proteins in solution, with the extreme case of intrinsically disordered proteins (IDPs) [1-3]. These proteins lack a specific three-dimensional structure and have poorly organized secondary structure. For these reasons, they escape structural characterization by conventional biophysical methods. The investigation of these systems requires description of conformational ensembles, rather than of unique, defined structures or bundles of largely superimposable structures. Mass spectrometry (MS) has become a central tool in this field, offering a variety of complementary approaches to generate structural information on either folded or disordered proteins [4-6]. Two main categories of methods can be recognized. On one side, conformation-dependent reactions (such as cross-linking, covalent labeling, H/D exchange) are exploited to label molecules in solution, followed by the characterization of the labeling products by denaturing MS [7-11]. On the other side, non-denaturing ("native") MS can be used to directly explore the different conformational components in terms of geometry and structural compactness [12-16]. All these approaches have in common the capability to conjugate protein structure investigation with the peculiar analytical power of MS measurements, offering the possibility of assessing species distributions for folding and binding equilibria and the combination of both. These methods can be combined with characterization of noncovalent complexes [17, 18] and post-translational modifications [19-23]. This review focuses on the application of native MS to protein structure and dynamics investigation, with a general methodological section, followed by examples on specific proteins from our laboratory.
Collapse
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Erika Ponzini
- Materials Science Department, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; COMiB Research Center, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
16
|
Specific electrolyte effects on hemoglobin in denaturing medium investigated through electro spray ionization mass spectrometry. J Inorg Biochem 2022; 234:111872. [DOI: 10.1016/j.jinorgbio.2022.111872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
|
17
|
Lusci G, Pivetta T, Carucci C, Parsons DF, Salis A, Monduzzi M. BSA fragmentation specifically induced by added electrolytes: An electrospray ionization mass spectrometry investigation. Colloids Surf B Biointerfaces 2022; 218:112726. [PMID: 35914467 DOI: 10.1016/j.colsurfb.2022.112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Biointerfaces are significantly affected by electrolytes according to the Hofmeister series. This work reports a systematic investigation on the effect of different metal chlorides, sodium and potassium bromides, iodides and thiocyanates, on the ESI/MS spectra of bovine serum albumin (BSA) in aqueous solution at pH = 2.7. The concentration of each salt was varied to maximize the quality of the ESI/MS spectrum, in terms of peak intensity and bell-shaped profile. The ESI/MS spectra of BSA in the absence and in the presence of salts showed a main protein pattern characterized by the expected mass of 66.5 kDa, except the case of BSA/RbCl (mass 65.3 kDa). In all systems we observed an additional pattern, characterized by at least three peaks with low intensity, whose deconvolution led to suggest the formation of a BSA fragment with a mass of 19.2 kDa. Only NaCl increased the intensity of the peaks of the main BSA pattern, while minimizing that of the fragment. NaCl addition seems to play a crucial role in stabilizing the BSA ionized interface against hydrolysis of peptide bonds, through different synergistic mechanisms. To quantify the observed specific electrolyte effects, two "Hofmeister" parameters (Hs and Ps) are proposed. They are obtained using the ratio of (BSA-Salt)/BSA peak intensities for both the BSA main pattern and for its fragment. SYNOPSIS: NaCl stabilizes BSA ion and almost prevents fragmentation due to denaturing pH.
Collapse
Affiliation(s)
- Gloria Lusci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Pivetta
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Cristina Carucci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Drew Francis Parsons
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Andrea Salis
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Maura Monduzzi
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
18
|
Sahin C, Østerlund EC, Österlund N, Costeira-Paulo J, Pedersen JN, Christiansen G, Nielsen J, Grønnemose AL, Amstrup SK, Tiwari MK, Rao RSP, Bjerrum MJ, Ilag LL, Davies MJ, Marklund EG, Pedersen JS, Landreh M, Møller IM, Jørgensen TJD, Otzen DE. Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization. J Am Chem Soc 2022; 144:11949-11954. [PMID: 35749730 PMCID: PMC9284551 DOI: 10.1021/jacs.2c03607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
α-Synuclein
(α-Syn) is an intrinsically disordered
protein which self-assembles into highly organized β-sheet structures
that accumulate in plaques in brains of Parkinson’s disease
patients. Oxidative stress influences α-Syn structure and self-assembly;
however, the basis for this remains unclear. Here we characterize
the chemical and physical effects of mild oxidation on monomeric α-Syn
and its aggregation. Using a combination of biophysical methods, small-angle
X-ray scattering, and native ion mobility mass spectrometry, we find
that oxidation leads to formation of intramolecular dityrosine cross-linkages
and a compaction of the α-Syn monomer by a factor of √2.
Oxidation-induced compaction is shown to inhibit ordered self-assembly
and amyloid formation by steric hindrance, suggesting an important
role of mild oxidation in preventing amyloid formation.
Collapse
Affiliation(s)
- Cagla Sahin
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Eva Christina Østerlund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Joana Costeira-Paulo
- Department of Chemistry - BMC, BMC - Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, DK-9220 Aalborg Ø, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Anne Louise Grønnemose
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Søren Kirk Amstrup
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Manish K Tiwari
- Department Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - R Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangaluru-575018, Karnataka, India
| | - Morten Jannik Bjerrum
- Department Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Erik G Marklund
- Department of Chemistry - BMC, BMC - Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Solna, Sweden
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Palomino-Hernandez O, Santambrogio C, Rossetti G, Fernandez CO, Grandori R, Carloni P. Molecular Dynamics-Assisted Interpretation of Experimentally Determined Intrinsically Disordered Protein Conformational Components: The Case of Human α-Synuclein. J Phys Chem B 2022; 126:3632-3639. [PMID: 35543707 DOI: 10.1021/acs.jpcb.1c10954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mass spectrometry and single molecule force microscopy are two experimental approaches able to provide structural information on intrinsically disordered proteins (IDPs). These techniques allow the dissection of conformational ensembles in their main components, although at a low-resolution level. In this work, we interpret the results emerging from these experimental approaches on human alpha synuclein (AS) by analyzing a previously published 73 μs-long molecular-dynamics (MD) simulation of the protein in explicit solvent. We further compare MD-based predictions of single molecule Förster resonance energy transfer (smFRET) data of AS in solution with experimental data. The combined theoretical and experimental data provide a description of AS main conformational ensemble, shedding light into its intramolecular interactions and overall structural compactness. This analysis could be easily transferred to other IDPs.
Collapse
Affiliation(s)
- Oscar Palomino-Hernandez
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany.,Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.,Institute of Life Science, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Claudio O Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPI-NAT). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPI-NAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina S2002LRK Rosario, Argentina
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany.,Institute for Neuroscience and Medicine (INM-11) Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
20
|
Bianchi G, Mangiagalli M, Barbiroli A, Longhi S, Grandori R, Santambrogio C, Brocca S. Distribution of Charged Residues Affects the Average Size and Shape of Intrinsically Disordered Proteins. Biomolecules 2022; 12:biom12040561. [PMID: 35454150 PMCID: PMC9031945 DOI: 10.3390/biom12040561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are ensembles of interconverting conformers whose conformational properties are governed by several physico-chemical factors, including their amino acid composition and the arrangement of oppositely charged residues within the primary structure. In this work, we investigate the effects of charge patterning on the average compactness and shape of three model IDPs with different proline content. We model IDP ensemble conformations as ellipsoids, whose size and shape are calculated by combining data from size-exclusion chromatography and native mass spectrometry. For each model IDP, we analyzed the wild-type protein and two synthetic variants with permuted positions of charged residues, where positive and negative amino acids are either evenly distributed or segregated. We found that charge clustering induces remodeling of the conformational ensemble, promoting compaction and/or increasing spherical shape. Our data illustrate that the average shape and volume of the ensembles depend on the charge distribution. The potential effect of other factors, such as chain length, number of proline residues, and secondary structure content, is also discussed. This methodological approach is a straightforward way to model IDP average conformation and decipher the salient sequence attributes influencing IDP structural properties.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
| | - Alberto Barbiroli
- Departement of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy;
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 13288 Marseille, France;
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
- Correspondence: (C.S.); (S.B.); Tel.: +39-02-6448-3363 (C.S.); +39-02-6448-3518 (S.B.)
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (G.B.); (M.M.); (R.G.)
- Correspondence: (C.S.); (S.B.); Tel.: +39-02-6448-3363 (C.S.); +39-02-6448-3518 (S.B.)
| |
Collapse
|
21
|
Azegami N, Taguchi R, Suzuki N, Sakata Y, Konuma T, Akashi S. Native Mass Spectrometry of BRD4 Bromodomains Linked to a Long Disordered Region. Mass Spectrom (Tokyo) 2022; 11:A0110. [PMID: 36713808 PMCID: PMC9853951 DOI: 10.5702/massspectrometry.a0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The contribution of disordered regions to protein function and structure is a relatively new field of study and of particular significance as their function has been implicated in some human diseases. Our objective was to analyze various deletion mutants of the bromodomain-containing protein 4 (BRD4) using native mass spectrometry to characterize the gas-phase behavior of the disordered region connected to the folded domain. A protein with a single bromodomain but no long disordered linker displayed a narrow charge distribution at low charge states, suggesting a compact structure. In contrast, proteins containing one or two bromodomains connected to a long disordered region exhibited multimodal charge distributions, suggesting the presence of compact and elongated conformers. In the presence of a pan-BET-bromodomain inhibitor, JQ1, the protein-JQ1 complex ions had relatively small numbers of positive charges, corresponding to compact conformers. In contrast, the ions with extremely high charge states did not form a complex with JQ1. This suggests that all of the JQ1-bound BRD4 proteins in the gas phase are in a compact conformation, including the linker region, while the unbound forms are considerably elongated. Although these are gas-phase phenomena, it is possible that the long disordered linker connected to the bromodomain causes the denaturation of the folded domain, which, in turn, affects its JQ1 recognition.
Collapse
Affiliation(s)
- Nanako Azegami
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Rina Taguchi
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Noa Suzuki
- School of Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Yusuke Sakata
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,School of Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,Correspondence to: Tsuyoshi Konuma, Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan, e-mail:
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,School of Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan,Correspondence to: Satoko Akashi, Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan, e-mail:
| |
Collapse
|
22
|
Heo CE, Kim M, Son MK, Hyun DG, Heo SW, Kim HI. Ion Mobility Mass Spectrometry Analysis of Oxygen Affinity-Associated Structural Changes in Hemoglobin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2528-2535. [PMID: 34463503 DOI: 10.1021/jasms.1c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hemoglobin (Hb) is a major oxygen-transporting protein with allosteric properties reflected in the structural changes that accompany binding of O2. Glycated hemoglobin (GHb), which is a minor component of human red cell hemolysate, is generated by a nonenzymatic reaction between glucose and hemoglobin. Due to the long lifetime of human erythrocytes (∼120 days), GHb is widely used as a reliable biomarker for monitoring long-term glucose control in diabetic patients. Although the structure of GHb differs from that of Hb, structural changes relating to the oxygen affinity of these proteins remain incompletely understood. In this study, the oxygen-binding kinetics of Hb and GHb are evaluated, and their structural dynamics are investigated using solution small-angle X-ray scattering (SAXS), electrospray ionization mass spectrometry equipped with ion mobility spectrometry (ESI-IM-MS), and molecular dynamic (MD) simulations to understand the impact of structural alteration on their oxygen-binding properties. Our results show that the oxygen-binding kinetics of GHb are diminished relative to those of Hb. ESI-IM-MS reveals structural differences between Hb and GHb, which indicate the preference of GHb for a more compact structure in the gas phase relative to Hb. MD simulations also reveal an enhancement of intramolecular interactions upon glycation of Hb. Therefore, the more rigid structure of GHb makes the conformational changes that facilitate oxygen capture more difficult creating a delay in the oxygen-binding process. Our multiple biophysical approaches provide a better understanding of the allosteric properties of hemoglobin that are reflected in the structural alterations accompanying oxygen binding.
Collapse
Affiliation(s)
- Chae Eun Heo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Minji Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Sung Woo Heo
- Inorganic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
23
|
Mashmoushi N, Juhász DR, Coughlan NJA, Schneider BB, Le Blanc JCY, Guna M, Ziegler BE, Campbell JL, Hopkins WS. UVPD Spectroscopy of Differential Mobility-Selected Prototropic Isomers of Rivaroxaban. J Phys Chem A 2021; 125:8187-8195. [PMID: 34432451 DOI: 10.1021/acs.jpca.1c05564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two ion populations of protonated Rivaroxaban, [C19H18ClN3O5S + H]+, are separated under pure N2 conditions using differential mobility spectrometry prior to characterization in a hybrid triple quadrupole linear ion trap mass spectrometer. These populations are attributed to bare protonated Rivaroxaban and to a proton-bound Rivaroxaban-ammonia complex, which dissociates prior to mass-selecting the parent ion. Ultraviolet photodissociation (UVPD) and collision-induced dissociation (CID) studies indicate that both protonated Rivaroxaban ion populations are comprised of the computed global minimum prototropic isomer. Two ion populations are also observed when the collision environment is modified with 1.5% (v/v) acetonitrile. In this case, the protonated Rivaroxaban ion populations are produced by the dissociation of the ammonium complex and by the dissociation of a proton-bound Rivaroxaban-acetonitrile complex prior to mass selection. Again, both populations exhibit a similar CID behavior; however, UVPD spectra indicate that the two ion populations are associated with different prototropic isomers. The experimentally acquired spectra are compared with computed spectra and are assigned to two prototropic isomers that exhibit proton sharing between distal oxygen centers.
Collapse
Affiliation(s)
- Nour Mashmoushi
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Daniel R Juhász
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Neville J A Coughlan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | | - Mircea Guna
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - Blake E Ziegler
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada.,Bedrock Scientific, Milton, Ontario L6T 6J9, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada.,Centre for Eye and Vision Research, New Territories 999077, Hong Kong
| |
Collapse
|
24
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
25
|
Gondelaud F, Bouakil M, Le Fèvre A, Miele AE, Chirot F, Duclos B, Liwo A, Ricard-Blum S. Extended disorder at the cell surface: The conformational landscape of the ectodomains of syndecans. Matrix Biol Plus 2021; 12:100081. [PMID: 34505054 PMCID: PMC8416954 DOI: 10.1016/j.mbplus.2021.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/26/2022] Open
Abstract
Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.
Collapse
Key Words
- CCS, collision cross section
- CD, circular dichroism
- CSD, charge state distribution
- Cell-matrix interactions
- Conformations
- DLS, dynamic light scattering
- DTT, dithiothreitol
- ED, ectodomain
- ESI-IM-MS, electrospray ionization - ion mobility - mass spectrometry
- ESI-MS, electrospray ionization - mass spectrometry
- GAG, glycosaminoglycan
- IDP, intrinsically disordered protein
- Intrinsically disordered proteins
- MoRF, molecular recognition feature
- PAGE, polyacrylamide gel electrophoresis
- PMG, pre-molten globule
- RC, random-coil
- SASA, solvent accessible surface area
- SAXS, small angle X-ray scattering
- SDC, syndecan
- SDS, sodium dodecyl sulfate
- SEC, size exclusion chromatography
- Syndecans
- TFE, trifluoroethanol
Collapse
Affiliation(s)
- Frank Gondelaud
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Mathilde Bouakil
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Aurélien Le Fèvre
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Adriana Erica Miele
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Fabien Chirot
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Bertrand Duclos
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Adam Liwo
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| |
Collapse
|
26
|
Yang W, Tu Z, McClements DJ, Kaltashov IA. A systematic assessment of structural heterogeneity and IgG/IgE-binding of ovalbumin. Food Funct 2021; 12:8130-8140. [PMID: 34287434 DOI: 10.1039/d0fo02980g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ovalbumin (OVA), one of the major allergens in hen egg, exhibits extensive structural heterogeneity due to a range of post-translational modifications (PTMs). However, analyzing the structural heterogeneity of native OVA is challenging, and the relationship between heterogeneity and IgG/IgE-binding of OVA remains unclear. In this work, ion exchange chromatography (IXC) with salt gradient elution and on-line detection by native electrospray ionization mass spectrometry (ESI MS) was used to assess the structural heterogeneity of OVA, while inhibition-ELISA was used to assess the IgG/IgE binding characteristics of OVA. Over 130 different OVA proteoforms (including glycan-free species and 32 pairs of isobaric species) were identified. Proteoforms with acetylation, phosphorylation, oxidation and succinimide modifications had reduced IgG/IgE binding capacities, whereas those with few structural modifications had higher IgG/IgE binding capacities. OVA isoforms with a sialic acid-containing glycan modification had the highest IgG/IgE binding capacity. Our results demonstrate that on-line native IXC/MS with salt gradient elution can be used for rapid assessment of the structural heterogeneity of proteins. An improved understanding of the relationship between IgG/IgE binding capacity and OVA structure provides a basis for developing biotechnology or food processing methods for reducing protein allergenicity reduction.
Collapse
Affiliation(s)
- Wenhua Yang
- College of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, People's Republic of China.
| | | | | | | |
Collapse
|
27
|
Sutton JM, El Zahar NM, Bartlett MG. Oligonucleotide Anion Adduct Formation Using Negative Ion Electrospray Ion-Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:497-508. [PMID: 33476148 DOI: 10.1021/jasms.0c00380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Improving the mobile phase of electrospray oligonucleotides has been a major focus in the field of oligonucleotides. These improved mobile phases should reduce the charge state envelope of oligonucleotides coupled with electrospray ionization, which is key to reducing spectral complexity and increasing sensitivity. Traditional mobile phase compositions with fluorinated alcohol and alkylamine, like hexafluoroisopropanol (HFIP) and triethylamine (TEA), have a large amount of cationic adduction and many charge states. Utilizing different fluorinated alcohol and alkylamine combinations, like nonafluoro-tert-butyl alcohol (NFTB) and octylamine (OA), can selectively reduce the charge states analyzed. Other classes of biomolecules have been analyzed with anionic salts to stabilize complexes, increase the molecular peak detection, and even provide unique structural information about these molecules; however, there have been no studies using anionic salts with oligonucleotides. Our experiments systematically study the stability and binding of ammonium anionic salt. We show that anions selectively bind low charge states of these oligonucleotides. Ion-mobility measurements are made to determine the collision cross section (CCS) of these oligonucleotides with anion adduction. We utilize both a nucleic acid exact hard sphere simulation (EHSS) calibration and a protein calibration. We are able to show that NFTB/OA is a good choice for the study of oligonucleotides with reduced charge states for the binding of anionic salts and the determination of CCS using ion mobility.
Collapse
Affiliation(s)
- J Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 West Green Street, Athens, Georgia 30602-2352, United States
| | - Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 West Green Street, Athens, Georgia 30602-2352, United States
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai Governorate 46612, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 West Green Street, Athens, Georgia 30602-2352, United States
| |
Collapse
|
28
|
Bellamy‐Carter J, O'Grady L, Passmore M, Jenner M, Oldham NJ. Decoding Protein Gas‐Phase Stability with Alanine Scanning and Collision‐Induced Unfolding Ion Mobility Mass Spectrometry. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/anse.202000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Louisa O'Grady
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Munro Passmore
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Matthew Jenner
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Neil J. Oldham
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
29
|
Moons R, Konijnenberg A, Mensch C, Van Elzen R, Johannessen C, Maudsley S, Lambeir AM, Sobott F. Metal ions shape α-synuclein. Sci Rep 2020; 10:16293. [PMID: 33004902 PMCID: PMC7529799 DOI: 10.1038/s41598-020-73207-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein is an intrinsically disordered protein that can self-aggregate and plays a major role in Parkinson's disease (PD). Elevated levels of certain metal ions are found in protein aggregates in neurons of people suffering from PD, and environmental exposure has also been linked with neurodegeneration. Importantly, cellular interactions with metal ions, particularly Ca2+, have recently been reported as key for α-synuclein's physiological function at the pre-synapse. Here we study effects of metal ion interaction with α-synuclein at the molecular level, observing changes in the conformational behaviour of monomers, with a possible link to aggregation pathways and toxicity. Using native nano-electrospray ionisation ion mobility-mass spectrometry (nESI-IM-MS), we characterize the heterogeneous interactions of alkali, alkaline earth, transition and other metal ions and their global structural effects on α-synuclein. Different binding stoichiometries found upon titration with metal ions correlate with their specific binding affinity and capacity. Subtle conformational effects seen for singly charged metals differ profoundly from binding of multiply charged ions, often leading to overall compaction of the protein depending on the preferred binding sites. This study illustrates specific effects of metal coordination, and the associated electrostatic charge patterns, on the complex structural space of the intrinsically disordered protein α-synuclein.
Collapse
Affiliation(s)
- Rani Moons
- Biomolecular and Analytical Mass Spectrometry Group, University of Antwerp, Antwerp, Belgium.,Receptor Biology Laboratory, University of Antwerp, Antwerp, Belgium
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry Group, University of Antwerp, Antwerp, Belgium
| | - Carl Mensch
- Molecular Spectroscopy Group, University of Antwerp, Antwerp, Belgium.,Flemish Supercomputer Centre, Antwerp, Belgium
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | | | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, University of Antwerp, Antwerp, Belgium. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK. .,School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
30
|
Zoppi C, Nocentini A, Supuran CT, Pratesi A, Messori L. Native mass spectrometry of human carbonic anhydrase I and its inhibitor complexes. J Biol Inorg Chem 2020; 25:979-993. [PMID: 32926233 PMCID: PMC7584553 DOI: 10.1007/s00775-020-01818-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/30/2020] [Indexed: 02/03/2023]
Abstract
Abstract Native mass spectrometry is a potent technique to study and characterize biomacromolecules in their native state. Here, we have applied this method to explore the solution chemistry of human carbonic anhydrase I (hCA I) and its interactions with four different inhibitors, namely three sulfonamide inhibitors (AAZ, MZA, SLC-0111) and the dithiocarbamate derivative of morpholine (DTC). Through high-resolution ESI-Q-TOF measurements, the native state of hCA I and the binding of the above inhibitors were characterized in the molecular detail. Native mass spectrometry was also exploited to assess the direct competition in solution among the various inhibitors in relation to their affinity constants. Additional studies were conducted on the interaction of hCA I with the metallodrug auranofin, under various solution and instrumental conditions. Auranofin is a selective reagent for solvent-accessible free cysteine residues, and its reactivity was analyzed also in the presence of CA inhibitors. Overall, our investigation reveals that native mass spectrometry represents an excellent tool to characterize the solution behavior of carbonic anhydrase. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00775-020-01818-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlotta Zoppi
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy.
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
31
|
Aliyari E, Konermann L. Formation of Gaseous Proteins via the Ion Evaporation Model (IEM) in Electrospray Mass Spectrometry. Anal Chem 2020; 92:10807-10814. [DOI: 10.1021/acs.analchem.0c02290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
32
|
Österlund N, Lundqvist M, Ilag LL, Gräslund A, Emanuelsson C. Amyloid-β oligomers are captured by the DNAJB6 chaperone: Direct detection of interactions that can prevent primary nucleation. J Biol Chem 2020; 295:8135-8144. [PMID: 32350108 PMCID: PMC7294096 DOI: 10.1074/jbc.ra120.013459] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
A human molecular chaperone protein, DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6), efficiently inhibits amyloid aggregation. This inhibition depends on a unique motif with conserved serine and threonine (S/T) residues that have a high capacity for hydrogen bonding. Global analysis of kinetics data has previously shown that DNAJB6 especially inhibits the primary nucleation pathways. These observations indicated that DNAJB6 achieves this remarkably effective and sub-stoichiometric inhibition by interacting not with the monomeric unfolded conformations of the amyloid-β symbol (Aβ) peptide but with aggregated species. However, these pre-nucleation oligomeric aggregates are transient and difficult to study experimentally. Here, we employed a native MS-based approach to directly detect oligomeric forms of Aβ formed in solution. We found that WT DNAJB6 considerably reduces the signals from the various forms of Aβ (1–40) oligomers, whereas a mutational DNAJB6 variant in which the S/T residues have been substituted with alanines does not. We also detected signals that appeared to represent DNAJB6 dimers and trimers to which varying amounts of Aβ are bound. These data provide direct experimental evidence that it is the oligomeric forms of Aβ that are captured by DNAJB6 in a manner which depends on the S/T residues. We conclude that, in agreement with the previously observed decrease in primary nucleation rate, strong binding of Aβ oligomers to DNAJB6 inhibits the formation of amyloid nuclei.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | |
Collapse
|
33
|
Wu H, Zhang R, Zhang W, Hong J, Xiang Y, Xu W. Rapid 3-dimensional shape determination of globular proteins by mobility capillary electrophoresis and native mass spectrometry. Chem Sci 2020; 11:4758-4765. [PMID: 34122932 PMCID: PMC8159243 DOI: 10.1039/d0sc01965h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Established high-throughput proteomics methods provide limited information on the stereostructures of proteins. Traditional technologies for protein structure determination typically require laborious steps and cannot be performed in a high-throughput fashion. Here, we report a new medium throughput method by combining mobility capillary electrophoresis (MCE) and native mass spectrometry (MS) for the 3-dimensional (3D) shape determination of globular proteins in the liquid phase, which provides both the geometric structure and molecular mass information of proteins. A theory was established to correlate the ion hydrodynamic radius and charge state distribution in the native mass spectrum with protein geometrical parameters, through which a low-resolution structure (shape) of the protein could be determined. Our test data of 11 different globular proteins showed that this approach allows us to determine the shapes of individual proteins, protein complexes and proteins in a mixture, and to monitor protein conformational changes. Besides providing complementary protein structure information and having mixture analysis capability, this MCE and native MS based method is fast in speed and low in sample consumption, making it potentially applicable in top–down proteomics and structural biology for intact globular protein or protein complex analysis. Using native mass spectrometry and mobility capillary electrophoresis, the ellipsoid dimensions of globular proteins or protein complexes could be measured efficiently.![]()
Collapse
Affiliation(s)
- Haimei Wu
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Rongkai Zhang
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Wenjing Zhang
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Jie Hong
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| | - Ye Xiang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University Beijng China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian Dist Beijing China
| |
Collapse
|
34
|
Sever AIM, Konermann L. Gas Phase Protein Folding Triggered by Proton Stripping Generates Inside-Out Structures: A Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:3667-3677. [DOI: 10.1021/acs.jpcb.0c01934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander I. M. Sever
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
35
|
Wang CR, Bubner ER, Jovcevski B, Mittal P, Pukala TL. Interrogating the higher order structures of snake venom proteins using an integrated mass spectrometric approach. J Proteomics 2020; 216:103680. [PMID: 32028038 DOI: 10.1016/j.jprot.2020.103680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
Abstract
Snake venoms contain complex mixtures of proteins vital for the survival of venomous snakes. Aligned with their diverse pharmacological activities, the protein compositions of snake venoms are highly variable, and efforts to characterise the primary structures of such proteins are ongoing. Additionally, a significant knowledge gap exists in terms of the higher-order protein structures which modulate venom potency, posing a challenge for successful therapeutic applications. Here we use a multifaceted mass spectrometry approach to characterise proteins from venoms of Collett's snake Pseudechis colletti and the puff adder Bitis arietans. Following chromatographic fractionation and bottom-up proteomics analysis, native mass spectrometry identified, among other components, a non-covalent l-amino acid oxidase dimer in the P. colletti venom and a C-type lectin tetramer in the B. arietans venom. Furthermore, a covalently-linked phospholipase A2 (PLA2) dimer was identified in P. colletti venom, from which the PLA2 species were shown to adopt compact geometries using ion mobility measurements. Interestingly, we show that the dimeric PLA2 possesses greater bioactivity than the monomeric PLA2s. This work contributes to ongoing efforts cataloguing components of snake venoms, and notably, emphasises the importance of understanding higher-order venom protein interactions and the utility of a combined mass spectrometric approach for this task. SIGNIFICANCE: The protein constituents of snake venoms represent a sophisticated cocktail of biologically active molecules ideally suited for further exploration in drug design and development. Despite ongoing efforts to characterise the diverse protein components of such venoms there is still much work required in this area, particularly in moving from simply describing the protein primary sequence to providing an understanding of quaternary structure. The combined proteomic and native mass spectrometry workflow utilised here gives new insights into higher order protein structures in selected snake venoms, and can underpin further investigation into the protein interactions which govern snake venom specificity and potency.
Collapse
Affiliation(s)
- C Ruth Wang
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Emily R Bubner
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, University of Adelaide, Adelaide 5005, Australia
| | - Tara L Pukala
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
36
|
Raznikov VV, Raznikova MO. Characterization of the Structural Forms of Biomolecules Based on the Decomposition and Separation of the Charge-State Distributions of Their Ions. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819130112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Depicting Conformational Ensembles of α-Synuclein by Single Molecule Force Spectroscopy and Native Mass Spectroscopy. Int J Mol Sci 2019; 20:ijms20205181. [PMID: 31635031 PMCID: PMC6829300 DOI: 10.3390/ijms20205181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Description of heterogeneous molecular ensembles, such as intrinsically disordered proteins, represents a challenge in structural biology and an urgent question posed by biochemistry to interpret many physiologically important, regulatory mechanisms. Single-molecule techniques can provide a unique contribution to this field. This work applies single molecule force spectroscopy to probe conformational properties of α-synuclein in solution and its conformational changes induced by ligand binding. The goal is to compare data from such an approach with those obtained by native mass spectrometry. These two orthogonal, biophysical methods are found to deliver a complex picture, in which monomeric α-synuclein in solution spontaneously populates compact and partially compacted states, which are differently stabilized by binding to aggregation inhibitors, such as dopamine and epigallocatechin-3-gallate. Analyses by circular dichroism and Fourier-transform infrared spectroscopy show that these transitions do not involve formation of secondary structure. This comparative analysis provides support to structural interpretation of charge-state distributions obtained by native mass spectrometry and helps, in turn, defining the conformational components detected by single molecule force spectroscopy.
Collapse
|
38
|
Kaldmäe M, Österlund N, Lianoudaki D, Sahin C, Bergman P, Nyman T, Kronqvist N, Ilag LL, Allison TM, Marklund EG, Landreh M. Gas-Phase Collisions with Trimethylamine-N-Oxide Enable Activation-Controlled Protein Ion Charge Reduction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1385-1388. [PMID: 31286443 PMCID: PMC6669196 DOI: 10.1007/s13361-019-02177-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 05/19/2023]
Abstract
Modulating protein ion charge is a useful tool for the study of protein folding and interactions by electrospray ionization mass spectrometry. Here, we investigate activation-dependent charge reduction of protein ions with the chemical chaperone trimethylamine-N-oxide (TMAO). Based on experiments carried out on proteins ranging from 4.5 to 35 kDa, we find that when combined with collisional activation, TMAO removes approximately 60% of the charges acquired under native conditions. Ion mobility measurements furthermore show that TMAO-mediated charge reduction produces the same end charge state and arrival time distributions for native-like and denatured protein ions. Our results suggest that gas-phase collisions between the protein ions and TMAO result in proton transfer, in line with previous findings for dimethyl- and trimethylamine. By adjusting the energy of the collisions experienced by the ions, it is possible to control the degree of charge reduction, making TMAO a highly dynamic charge reducer that opens new avenues for manipulating protein charge states in ESI-MS and for investigating the relationship between protein charge and conformation. ᅟ.
Collapse
Affiliation(s)
- Margit Kaldmäe
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Danai Lianoudaki
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Cagla Sahin
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 86, Huddinge, Sweden
| | - Tomas Nyman
- Protein Science Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Nina Kronqvist
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 751 23, Uppsala, Sweden
| | - Michael Landreh
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
39
|
Schramm A, Bignon C, Brocca S, Grandori R, Santambrogio C, Longhi S. An arsenal of methods for the experimental characterization of intrinsically disordered proteins - How to choose and combine them? Arch Biochem Biophys 2019; 676:108055. [PMID: 31356778 DOI: 10.1016/j.abb.2019.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs. Finally, we present recent developments that have enabled assessment of structural disorder in living cells, and discuss the currently available methods to model IDPs as conformational ensembles.
Collapse
Affiliation(s)
- Antoine Schramm
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Christophe Bignon
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France.
| |
Collapse
|
40
|
Sun Z, Wang X. Thermodynamics of Helix formation in small peptides of varying lengthin vacuo, implicit solvent and explicit solvent: Comparison between AMBER force fields. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helix formation is of great significance in protein folding. The helix-forming tendencies of amino acids are accumulated along the sequence to determine the helix-forming tendency of peptides. Computer simulation can be used to model this process in atomic details and give structural insights. In the current work, we employ equilibrate-state free energy simulation to systematically study the folding/unfolding thermodynamics of a series of mutated peptides. Two AMBER force fields including AMBER99SB and AMBER14SB are compared. The new 14SB force field uses refitted torsion parameters compared with 99SB and they share the same atomic charge scheme. We find that in vacuo the helix formation is mutation dependent, which reflects the different helix propensities of different amino acids. In general, there are helix formers, helix indifferent groups and helix breakers. The helical structure becomes more favored when the length of the sequence becomes longer, which arises from the formation of additional backbone hydrogen bonds in the lengthened sequence. Therefore, the helix indifferent groups and helix breakers will become helix formers in long sequences. Also, protonation-dependent helix formation is observed for ionizable groups. In 14SB, the helical structures are more stable than in 99SB and differences can be observed in their grouping schemes, especially in the helix indifferent group. In solvents, all mutations are helix indifferent due to protein–solvent interactions. The decrease in the number of backbone hydrogen bonds is the same with the increase in the number of protein–water hydrogen bonds. The 14SB in explicit solvent is able to capture the free energy minima in the helical state while 14SB in implicit solvent, 99SB in explicit solvent and 99SB in implicit solvent cannot. The helix propensities calculated under 14SB agree with the corresponding experimental values, while the 99SB results obviously deviate from the references. Hence, implicit solvent models are unable to correctly describe the thermodynamics even for the simple helix formation in isolated peptides. Well-developed force fields and explicit solvents are needed to correctly describe the protein dynamics. Aside from the free energy, differences in conformational ensemble under different force fields in different solvent models are observed. The numbers of hydrogen bonds formed under different force fields agree and they are mostly determined by the solvent model.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Institute of Computational Science, Universitàdella Svizzeraitaliana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
| |
Collapse
|
41
|
Liu L, Dong X, Liu Y, Österlund N, Gräslund A, Carloni P, Li J. Role of hydrophobic residues for the gaseous formation of helical motifs. Chem Commun (Camb) 2019; 55:5147-5150. [PMID: 30977489 DOI: 10.1039/c9cc01898k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The secondary structure content of proteins and their complexes may change significantly on passing from aqueous solution to the gas phase (as in mass spectrometry experiments). In this work, we investigate the impact of hydrophobic residues on the formation of the secondary structure of a real protein complex in the gas phase. We focus on a well-studied protein complex, the amyloid-β (1-40) dimer (2Aβ). Molecular dynamics simulations reproduce the results of ion mobility-mass spectrometry experiments. In addition, a helix (not present in the solution) is identified involving 19FFAED23, consistent with infrared spectroscopy data on an Aβ segment. Our simulations further point to the role of hydrophobic residues in the formation of helical motifs - hydrophobic sidechains "shield" helices from being approached by residues that carry hydrogen bond sites. In particular, two hydrophobic phenylalanine residues, F19 and F20, play an important role for the helix, which is induced in the gas phase in spite of the presence of two carboxyl-containing residues.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Fuzhou University, 350002 Fuzhou, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Khristenko N, Amato J, Livet S, Pagano B, Randazzo A, Gabelica V. Native Ion Mobility Mass Spectrometry: When Gas-Phase Ion Structures Depend on the Electrospray Charging Process. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1069-1081. [PMID: 30924079 DOI: 10.1007/s13361-019-02152-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Ion mobility spectrometry (IMS) has become popular to characterize biomolecule folding. Numerous studies have shown that proteins that are folded in solution remain folded in the gas phase, whereas proteins that are unfolded in solution adopt more extended conformations in the gas phase. Here, we discuss how general this tenet is. We studied single-stranded DNAs (human telomeric cytosine-rich sequences with CCCTAA repeats), which fold into an intercalated motif (i-motif) structure in a pH-dependent manner, thanks to the formation of C-H+-C base pairs. As i-motif formation is favored at low ionic strength, we could investigate the ESI-IMS-MS behavior of i-motif structures at pH ~ 5.5 over a wide range of ammonium acetate concentrations (15 to 100 mM). The control experiments consisted of either the same sequence at pH ~ 7.5, wherein the sequence is unfolded, or sequence variants that cannot form i-motifs (CTCTAA repeats). The surprising results came from the control experiments. We found that the ionic strength of the solution had a greater effect on the compactness of the gas-phase structures than the solution folding state. This means that electrosprayed ions keep a memory of the charging process, which is influenced by the electrolyte concentration. We discuss these results in light of the analyte partitioning between the droplet interior and the droplet surface, which in turn influences the probability of being ionized via a charged residue-type pathway or a chain extrusion-type pathway.
Collapse
Affiliation(s)
- Nina Khristenko
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Sandrine Livet
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Valérie Gabelica
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607, Pessac, France.
| |
Collapse
|
43
|
Baerenfaenger M, Meyer B. Simultaneous characterization of SNPs and N-glycans from multiple glycosylation sites of intact β-2-glycoprotein-1 (B2GP1) by ESI-qTOF-MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:556-564. [DOI: 10.1016/j.bbapap.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
|
44
|
Zheng Q, Ruan X, Tian Y, Hu J, Wan N, Lu W, Xu X, Wang G, Hao H, Ye H. Ligand-protein target screening from cell matrices using reactive desorption electrospray ionization-mass spectrometry via a native-denatured exchange approach. Analyst 2019; 144:512-520. [PMID: 30489587 DOI: 10.1039/c8an01708e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Native mass spectrometry has been recognized as a powerful tool for probing interactions between small molecules, such as drugs and natural products, and target proteins. However, the presence of heterogeneous proteins and metabolites in real biological systems can alter the conformations of target proteins or compete with candidate ligands, thus necessitating a method for measuring binding stoichiometries in matrices aside from the extensively used pure/recombinant protein systems. Furthermore, some small molecule-protein interactions have a transient and low-affinity nature and thus can be mis-assigned as nonspecific binding complexes that are often formed during the native ESI process. A native-denatured exchange (NDX) approach was recently developed using a reactive desorption electrospray ionization-mass spectrometer (DESI-MS) setup to screen specific interacting partners. The method works by gradually increasing the composition of denaturing solvents contained in the DESI spray and thus conferring a switch from a native to denatured ionization environment. This change impairs three-dimensional structures of target proteins and disrupts specific ligand-protein interactions, leading to decreased holo/apo ratios. In contrast, ligand-protein complexes exhibiting different trends are assigned as nonspecific interactions. Herein, we applied the NDX approach to probe specific ligand-protein interactions in biological matrices. We first used mixtures of model ligands and proteins to examine the use of reactive DESI-MS in recognizing ligand-target binding in mixtures. Subsequently, we used the NDX approach to analyze binding affinity curves of ligands to target proteins spiked in cell lysates with the aid of size exclusion chromatography and demonstrated its use in probing specific ligand-protein interactions from cell matrices.
Collapse
Affiliation(s)
- Qiuling Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Peters I, Metwally H, Konermann L. Mechanism of Electrospray Supercharging for Unfolded Proteins: Solvent-Mediated Stabilization of Protonated Sites During Chain Ejection. Anal Chem 2019; 91:6943-6952. [DOI: 10.1021/acs.analchem.9b01470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Insa Peters
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
46
|
Ivanova B, Spiteller M. Stochastic dynamic electrospray ionization mass spectrometric diffusion parameters and 3D structural analysis of coordination species of copper(II) ion with glycylhomopentapeptide and its dimeric associates. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Bakhtiari M, Konermann L. Protein Ions Generated by Native Electrospray Ionization: Comparison of Gas Phase, Solution, and Crystal Structures. J Phys Chem B 2019; 123:1784-1796. [DOI: 10.1021/acs.jpcb.8b12173] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maryam Bakhtiari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
48
|
Poltash ML, McCabe JW, Patrick JW, Laganowsky A, Russell DH. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:192-198. [PMID: 29796735 PMCID: PMC6251776 DOI: 10.1007/s13361-018-1976-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/08/2023]
Abstract
As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael L Poltash
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - John W Patrick
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
49
|
Konermann L, Metwally H, Duez Q, Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 2019; 144:6157-6171. [DOI: 10.1039/c9an01201j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular dynamics simulations have uncovered mechanistic details of the protein ESI process under various experimental conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Haidy Metwally
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Quentin Duez
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Insa Peters
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
50
|
Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent. J Mol Model 2018; 25:3. [DOI: 10.1007/s00894-018-3886-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|