1
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
2
|
Kajsikova M, Kajsik M, Bocanova L, Papayova K, Drahovska H, Bukovska G. Endolysin EN572-5 as an alternative to treat urinary tract infection caused by Streptococcus agalactiae. Appl Microbiol Biotechnol 2024; 108:79. [PMID: 38189950 PMCID: PMC10774192 DOI: 10.1007/s00253-023-12949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen causing urinary tract infection (UTI). Endolysin EN572-5 was identified in prophage KMB-572-E of the human isolate Streptococcus agalactiae KMB-572. The entire EN572-5 gene was cloned into an expression vector and the corresponding recombinant protein EN572-5 was expressed in Escherichia coli in a soluble form, isolated by affinity chromatography, and characterized. The isolated protein was highly active after 30 min incubation in a temperature range of - 20 °C to 37 °C and in a pH range of 5.5-8.0. The endolysin EN572-5 lytic activity was tested on different Streptococcus spp. and Lactobacillus spp. The enzyme lysed clinical GBS (n = 31/31) and different streptococci (n = 6/8), and also exhibited moderate lytic activity against UPEC (n = 4/4), but no lysis of beneficial vaginal lactobacilli (n = 4) was observed. The ability of EN572-5 to eliminate GBS during UTI was investigated using an in vitro model of UPSA. After the administration of 3 μM EN572-5, a nearly 3-log decrease of urine bacterial burden was detected within 3 h. To date, no studies have been published on the use of endolysins against S. agalactiae during UTI. KEY POINTS: • A lytic protein, EN572-5, from a prophage of a human GBS isolate has been identified. • This protein is easily produced, simple to prepare, and stable after lyophilization. • The bacteriolytic activity of EN572-5 was demonstrated for the first time in human urine.
Collapse
Affiliation(s)
- Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Michal Kajsik
- Comenius University Science Park, Ilkovicova 8, 841 04, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
3
|
Kandpal M, Baral B, Varshney N, Jain AK, Chatterji D, Meena AK, Pandey RK, Jha HC. Gut-brain axis interplay via STAT3 pathway: Implications of Helicobacter pylori derived secretome on inflammation and Alzheimer's disease. Virulence 2024; 15:2303853. [PMID: 38197252 PMCID: PMC10854367 DOI: 10.1080/21505594.2024.2303853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Helicobacter pylori is a pathogenic bacterium that causes gastritis and gastric carcinoma. Besides gastric complications its potential link with gut-brain axis disruption and neurological disorders has also been reported. The current study investigated the plausible role and its associated molecular mechanism underlying H. pylori mediated gut-brain axis disruption and neuroinflammation leading to neurological modalities like Alzheimer's disease (AD). We have chosen the antimicrobial resistant and susceptible H. pylori strains on the basis of broth dilution method. We have observed the increased inflammatory response exerted by H. pylori strains in the gastric as well as in the neuronal compartment after treatment with Helicobacter pylori derived condition media (HPCM). Further, elevated expression of STAT1, STAT3, and AD-associated proteins- APP and APOE4 was monitored in HPCM-treated neuronal and neuron-astrocyte co-cultured cells. Excessive ROS generation has been found in these cells. The HPCM treatment to LN229 causes astrogliosis, evidenced by increased glial fibrillary acidic protein. Our results indicate the association of STAT3 as an important regulator in the H. pylori-mediated pathogenesis in neuronal cells. Notably, the inhibition of STAT3 by its specific inhibitor, BP-1-102, reduced the expression of pSTAT3 and AD markers in neuronal compartment induced by HPCM. Thus, our study demonstrates that H. pylori infection exacerbates inflammation in AGS cells and modulates the activity of STAT3 regulatory molecules. H. pylori secretome could affect neurological compartments by promoting STAT3 activation and inducing the expression of AD-associated signature markers. Further, pSTAT-3 inhibition mitigates the H. pylori associated neuroinflammation and amyloid pathology.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Ajay Kumar Jain
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | - Debi Chatterji
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| |
Collapse
|
4
|
Romero-Rodríguez A, Ruíz-Villafán B, Sánchez S, Paredes-Sabja D. Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Microbiol Res 2024; 288:127870. [PMID: 39173554 DOI: 10.1016/j.micres.2024.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.
Collapse
Affiliation(s)
- A Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México 04510, Mexico.
| | - B Ruíz-Villafán
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - S Sánchez
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Soleimanpour S, Abavisani M, Khoshrou A, Sahebkar A. Probiotics for autism spectrum disorder: An updated systematic review and meta-analysis of effects on symptoms. J Psychiatr Res 2024; 179:92-104. [PMID: 39265200 DOI: 10.1016/j.jpsychires.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Recent researches highlighted the significant role of the gut-brain axis and gut microbiota in autism spectrum disorder (ASD), a neurobehavioral developmental disorder characterized by a variety of neuropsychiatric and gastrointestinal symptoms, suggesting that alterations in the gut microbiota may correlate with the severity of ASD symptoms. Therefore, this study was designed to conduct a comprehensive systematic review and meta-analysis of the effectiveness of probiotic interventions in ameliorating behavioral symptoms in individuals with ASD. METHODS This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. A comprehensive literature search was performed across multiple databases including the Cochrane Library, PubMed, Web of Science, and Google Scholar up until June 2024. Inclusion criteria encompassed published randomized clinical trials (RCTs), focusing on probiotic interventions and evaluating outcomes related to ASD behavior symptoms. The study utilized Cochrane's Risk of Bias 2 for bias assessment and applied random effect models with inverse variance method for statistical analysis, also addressing publication bias and conducting subgroup analyses through Begg's and Egger's tests to explore the effects of various factors on the outcomes. RESULTS Our meta-analysis, which looked at eight studies with a total of 318 samples from ASD patients aged 1.5-20 years, showed that the probiotic intervention group had significantly better behavioral symptoms compared to the control group. This was shown by a pooled standardized mean difference (SMD) of -0.38 (95% CI: 0.58 to -0.18, p < 0.01). Subgroup analyses revealed significant findings across a variety of factors: studies conducted in the European region showed a notable improvement with an SMD of -0.44 (95%CI: 0.72 to -0.15); interventions lasting longer than three months exhibited a significant improvement with an SMD of -0.43 (95%CI: 0.65 to -0.21); and studies focusing on both participants under and greater than 10 years found significant benefits with an SMDs of -0.37 and -0.40, respectively (95%CI: 0.65 to -0.09, and 95%CI: 0.69 to -0.11, respectively). Moreover, both multi-strain probiotics and single-strain interventions showed an overall significant improvement with a SMD of -0.53 (95%CI: 0.85 to -0.22) and -0.28 (95%CI: 0.54 to -0.02), respectively. Also, the analysis confirmed the low likelihood of publication bias and the robustness of these findings. CONCLUSION Our study highlighted the significant improvement in ASD behavioral symptoms through probiotic supplementation. The need for personalized treatment approaches and further research to confirm efficacy and safety of probiotics in ASD management is emphasized.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abavisani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Kar S, Kawser Z, Sridhar S, Mukta SA, Hasan N, Siddik AB, Habib MT, Slater DM, Earl AM, Worby CJ, Azad K, Shamsuzzaman SM, Tanni NN, Khan RT, Moonmoon M, Qadri F, Harris JB, LaRocque RC. High Prevalence of Carbapenem-resistant Klebsiella Pneumoniae in Fecal and Water Samples in Dhaka, Bangladesh. Open Forum Infect Dis 2024; 11:ofae612. [PMID: 39494455 PMCID: PMC11530955 DOI: 10.1093/ofid/ofae612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
We evaluated Klebsiella pneumoniae (Kp) gut carriage in healthy, unrelated adults and children living in separate households in Dhaka, Bangladesh. Average Kp prevalence in stool samples ranged from 61% in young children (15/25) to 81% in adults (21/26), with significantly higher abundance in adults (P = .03, t-test). Kp was also prevalent in household water (64%, 21/33) and standing water (85%, 23/27). The presence of Kp in household water was not strongly linked to stool Kp abundance among household members. Antimicrobial resistance was notable: 9% (6/69) of stool and 16% (7/44) of water isolates exhibited multidrug resistance. Carbapenem resistance was observed in 12% of stool isolates (8/69) and 14% of water isolates (6/44). These findings underscore the commonality of Kp in human and environmental reservoirs in Dhaka, Bangladesh, and highlight the emergence of drug-resistant Kp beyond healthcare settings.
Collapse
Affiliation(s)
- Sanchita Kar
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | - Zannat Kawser
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | - Sushmita Sridhar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts USA
- Harvard Medical School, Boston, Massachusetts USA
| | | | - Neamul Hasan
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | - Abu Bakar Siddik
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | | | - Damien M Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts USA
- Harvard Medical School, Boston, Massachusetts USA
- Massachusetts General Hospital for Children, Boston, Massachusetts USA
| | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Colin J Worby
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | - Kasrina Azad
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | | | | | - Raisa Tasnia Khan
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
| | | | - Firdausi Qadri
- Institute for developing Science and Health initiatives, Dhaka, Bangladesh
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- Harvard Medical School, Boston, Massachusetts USA
- Massachusetts General Hospital for Children, Boston, Massachusetts USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts USA
- Harvard Medical School, Boston, Massachusetts USA
| |
Collapse
|
8
|
Gulliver EL, Di Simone SK, Chonwerawong M, Forster SC. Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing. Microb Biotechnol 2024; 17:e70041. [PMID: 39487814 PMCID: PMC11531172 DOI: 10.1111/1751-7915.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Sara K. Di Simone
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Ritchie Centre, HudsonInstitute of Medical ResearchMelbourneVictoriaAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
9
|
Fayet-Moore F, Robinson SR. A breath of fresh air: Perspectives on inhaled nutrients and bacteria to improve human health. Adv Nutr 2024:100333. [PMID: 39486624 DOI: 10.1016/j.advnut.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
We propose that the human respiratory system and olfactory pathways sequester airborne nutrients (vitamins, fatty acids and trace minerals) that are beneficial for health, which we term 'aeronutrients'. In addition, airborne bacteria, termed 'aeromicrobes', have the potential for positive health effects by improving species diversity in the microbiotas of the respiratory and gastrointestinal tracts. These concepts have implications for people living in urban areas or those who have limited access to nature, such as astronauts exposed for long periods to highly filtered air which may be depleted of aeronutrients and aeromicrobes. The possibility that fresh air contributes to human nutrition and health may stimulate a re-evaluation of guidelines pertaining to nutrition and access to natural environments, and will open new avenues of scientific enquiry.
Collapse
Affiliation(s)
- Flávia Fayet-Moore
- FOODiQ Global, Sydney, New South Wales, 2000, Australia; School of Environmental and Life Sciences, The University of Newcastle, Ourimbah 2258, Australia
| | - Stephen R Robinson
- School of Health & Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, Victoria, 3083, Australia; Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria, 3084, Australia.
| |
Collapse
|
10
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2024:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
12
|
Buytaers FE, Berger N, Van der Heyden J, Roosens NHC, De Keersmaecker SCJ. The potential of including the microbiome as biomarker in population-based health studies: methods and benefits. Front Public Health 2024; 12:1467121. [PMID: 39507669 PMCID: PMC11538166 DOI: 10.3389/fpubh.2024.1467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The key role of our microbiome in influencing our health status, and its relationship with our environment and lifestyle or health behaviors, have been shown in the last decades. Therefore, the human microbiome has the potential to act as a biomarker or indicator of health or exposure to health risks in the general population, if information on the microbiome can be collected in population-based health surveys or cohorts. It could then be associated with epidemiological participant data such as demographic, clinical or exposure profiles. However, to our knowledge, microbiome sampling has not yet been included as biological evidence of health or exposure to health risks in large population-based studies representative of the general population. In this mini-review, we first highlight some practical considerations for microbiome sampling and analysis that need to be considered in the context of a population study. We then present some examples of topics where the microbiome could be included as biological evidence in population-based health studies for the benefit of public health, and how this could be developed in the future. In doing so, we aim to highlight the benefits of having microbiome data available at the level of the general population, combined with epidemiological data from health surveys, and hence how microbiological data could be used in the future to assess human health. We also stress the challenges that remain to be overcome to allow the use of this microbiome data in order to improve proactive public health policies.
Collapse
|
13
|
Noori Goodarzi N, Khazani Asforooshani M, Shahbazi B, Rezaie Rahimi N, Badmasti F. Identification of novel drug targets for Helicobacter pylori: structure-based virtual screening of potential inhibitors against DAH7PS protein involved in the shikimate pathway. FRONTIERS IN BIOINFORMATICS 2024; 4:1482338. [PMID: 39493576 PMCID: PMC11527725 DOI: 10.3389/fbinf.2024.1482338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Background Helicobacter pylori, a bacterium associated with severe gastrointestinal diseases and malignancies, poses a significant challenge because of its increasing antibiotic resistance rates. This study aimed to identify potential drug targets and inhibitors against H. pylori using a structure-based virtual screening (SBVS) approach. Methods Core-proteome analysis of 132 H. pylori genomes was performed using the EDGAR database. Essential genes were identified and human and gut microbiota homolog proteins were excluded. The DAH7PS protein involved in the shikimate pathway was selected for the structure-based virtual screening (SBVS) approach. The tertiary structure of the protein was predicted through homology modeling (based on PDB ID: 5UXM). Molecular docking was performed to identify potential inhibitors of DAH7PS among StreptomeDB compounds using the AutoDock Vina tool. Molecular dynamics (MD) simulations assessed the stability of DAH7PS-ligand complexes. The complexes were further evaluated in terms of their binding affinity, Lipinski's Rule of Five, and ADMET properties. Results A total of 54 novel drug targets with desirable properties were identified. DAH7PS was selected for further investigation, and virtual screening of StreptomeDB compounds yielded 36 high-affinity binding of the ligands. Two small molecules, 6,8-Dihydroxyisocoumarin-3-carboxylic acid and Epicatechin, also showed favorable RO5 and ADMET properties. MD simulations confirmed the stability and reliability of DAH7PS-ligand complexes, indicating their potential as inhibitors. Conclusion This study identified 54 novel drug targets against H. pylori. The DAH7PS protein as a promising drug target was evaluated using a computer-aided drug design. 6,8-Dihydroxyisocoumarin-3-carboxylic acid and Epicatechin demonstrated desirable properties and stable interactions, highlighting their potential to inhibit DAH7PS as an essential protein. Undoubtedly, more experimental validations are needed to advance these findings into practical therapies for treating drug-resistant H. pylori.
Collapse
Affiliation(s)
- Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Khazani Asforooshani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Nayereh Rezaie Rahimi
- Department of environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Dean E, Xu J, Jones AYM, Vongsirinavarat M, Lomi C, Kumar P, Ngeh E, Storz MA. An unbiased, sustainable, evidence-informed Universal Food Guide: a timely template for national food guides. Nutr J 2024; 23:126. [PMID: 39425106 PMCID: PMC11487974 DOI: 10.1186/s12937-024-01018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Although national food guides are designed, ostensibly, to translate scientific evidence with respect to food, dietary patterns, and health, their development has increasingly become a corporate/political process as well as scientific one; often with corporate/political influences overriding science. Our aim was to construct an unbiased, sustainable, evidence-informed Universal Food Guide to serve as a template for countries to develop their unique guides, thereby, provide a valid resource for health professionals, health authorities, and the public. METHODS To address our aim, we conducted an integrative review of multiple evidence-informed sources (e.g., established databases, evidence syntheses, scholarly treatises, and policy documents) related to four areas: 1. Food guides' utility and conflicts of interest; 2. The evidence-based healthiest diet; 3. Constituents of the Universal Food Guide template; and 4. Implications for population health; regulation/governance; environment/climate/planetary health; and ethics. RESULTS The eating pattern that is healthiest for humans (i.e., most natural, and associated with maximal health across the life cycle; reduced non-communicable disease (NCD) risk; and minimal end-of-life illness) is whole food, low fat, plant-based, especially vegan, with the absence of ultra-processed food. Disparities in national food guide recommendations can be explained by factors other than science, specifically, corporate/political interests reflected in heavily government-subsidized, animal-sourced products; and trends toward dominance of daily consumption of processed/ultra-processed foods. Both trends have well-documented adverse consequences, i.e., NCDs and endangered environmental/planetary health. Commitment to an evidence-informed plant-based eating pattern, particularly vegan, will reduce risks/manifestations of NCDs; inform healthy food and nutrition policy regulation/governance; support sustainable environment/climate and planetary health; and is ethical with respect to 'best' evidence-based practice, and human and animal welfare. CONCLUSION The Universal Food Guide that serves as a template for national food guides is both urgent and timely given the well-documented health-harming influences that corporate stakeholders/politicians and advisory committees with conflicts of interest, exert on national food guides. Such influence contributes to the largely-preventable NCDs and environmental issues. Policy makers, health professionals, and the public need unbiased, scientific evidence as informed by the Universal Food Guide, to inform their recommendations and choices.
Collapse
Affiliation(s)
- Elizabeth Dean
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.
| | - Jia Xu
- Healing Without Medicine, Shenzhen, China
- Physicians Committee for Responsible Medicine, Washington, USA
| | - Alice Yee-Men Jones
- School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | | | | | - Pintu Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Etienne Ngeh
- Louis University Institute, Douala, Cameroon
- Research Organisation for Health Education and Rehabilitation, and Guideline International Network African Regional Community, Yaoundé, Cameroon
| | - Maximilian A Storz
- Department of Internal Medicine II, Centre for Complementary Medicine, Medical Center, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Gamboa J, Le GH, Wong S, Alteza EAI, Zachos KA, Teopiz KM, McIntyre RS. Impact of antidepressants on the composition of the gut microbiome: A systematic review and meta-analysis of in vivo studies. J Affect Disord 2024; 369:819-833. [PMID: 39424151 DOI: 10.1016/j.jad.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a growing body of evidence suggesting that antidepressant drugs (ADs) alter the gut microbiome of persons with depressive disorders. Herein, we aim to investigate the gut microbial profile of AD-treated animal models of depression (MoD) and persons with major depressive disorder (MDD). METHODS We conducted a systematic review and meta-analysis investigating the gut microbiome community-level diversity and relative abundance of microbial taxa in AD-treated animal MoD and persons with MDD. RESULTS 24 human studies (898 participants) and 48 animal studies (849 subjects) were identified. Nonsignificant differences in gut microbial richness were observed between AD-treated and nonmedicated animals and humans. Beta diversity analysis in animals shows that AD intake is linked to a distinct gut microbial profile, a result not observed in humans. Consistent depletion of the genera Faecalibacterium and Parasutterella, along with enrichment of Bifidobacterium, was observed in AD-treated persons with MDD. In AD-treated animals, AD intake was associated with depletion of Flavobacterium and Adlercreutzia, and enrichment of Parabacteroides. LIMITATIONS The studies in our review were heterogeneous in their participant population, dietary intake, type of ADs used, length and dosing of AD treatment, and frequency and time of fecal sample collection. CONCLUSION ADs are associated with some changes to the gut microbiome. Future studies should evaluate the gut microbiome profiles between depressive disorder diagnoses that may reveal potential differences and predictors of AD response, as well as new combinatorial therapeutics with agents (e.g., specific-strain probiotic adjunctive treatment) that can ameliorate micro-composition gut dysbiosis.
Collapse
Affiliation(s)
- Jann Gamboa
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | | | - Kassandra A Zachos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada.
| |
Collapse
|
16
|
Aktaş A, Ekren BY, Yaşa B, Sezerman OU, Nakipoğlu Y. Investigation of the Impact of Antibiotic Administration on the Preterm Infants' Gut Microbiome Using Next-Generation Sequencing-Based 16S rRNA Gene Analysis. Antibiotics (Basel) 2024; 13:977. [PMID: 39452243 PMCID: PMC11505465 DOI: 10.3390/antibiotics13100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The human gut microbiota is an extensive population of microorganisms, and it shows significant variations between periods of optimal health and periods of illness. Vancomycin-resistant Enterococcus (VRE) and carbapenem-resistant Klebsiella pneumoniae (CRKP) are both pathogenic agents (BPAs) that can colonize in the gut after dysbiosis of microbiotal composition following antibiotic treatment. Methods: This study aimed to investigate the impact of antibiotics on the microbiotal composition of the gut. For this purpose, the first pass meconiums of 20 patients and the first rectal swabs containing BPAs of the same patients after antibiotic treatment were studied using next-generation sequencing-based 16S rRNA gene analysis. The V1-V9 region of 16S rRNA was sequenced with Oxford Nanopore. Results: Twenty-five phyla were detected in the meconiums, and 12 of them were absent after antibiotic treatment. The four most prevalent phyla in meconiums were Bacillota, Pseudomonadota, Bacteroidota, and Actinomycetota. Only the relative abundance of Pseudomonadota was increased, while a significant decrease was observed in the other three phyla (p < 0.05). A significant decrease was observed in alpha-diversity in rectal swabs containing BPAs versus meconiums (p = 0.00408), whereas an increased variance was observed in beta-diversity in all samples (p < 0.05). As a result of a LEfSe analysis, Pseudomonadota was found to have a higher relative abundance in rectal swabs, and Bacillota was significantly higher in the meconiums of the twins. Conclusions: Our study strongly verified the relationship between the administration of antibiotics, dysbiosis, and colonization of BPAs in the infants' gut microbiota. Further research would be beneficial and needed, comprising the natural development process of the infants' gut microbiota.
Collapse
Affiliation(s)
- Ahmet Aktaş
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Berkay Yekta Ekren
- Department of Biostatistics and Bioinformatics, Acıbadem MAA University, 34752 Istanbul, Türkiye
| | - Beril Yaşa
- Child Health and Diseases Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Acıbadem MAA University, 34752 Istanbul, Türkiye
| | - Yaşar Nakipoğlu
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| |
Collapse
|
17
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Arcay R, Barceló-Nicolau M, Suárez L, Martín L, Reigada R, Höring M, Liebisch G, Garrido C, Cabot G, Vílchez H, Cortés-Lara S, González de Herrero E, López-Causapé C, Oliver A, Barceló-Coblijn G, Mena A. Gut microbiome and plasma lipidome analysis reveals a specific impact of Clostridioides difficile infection on intestinal bacterial communities and sterol metabolism. mBio 2024; 15:e0134724. [PMID: 39189787 PMCID: PMC11481895 DOI: 10.1128/mbio.01347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Clostridioides difficile infection (CDI) causes alterations in the intestinal microbiota, frequently associated with changes in the gut metabolism of bile acids and cholesterol. In addition to the impact on microbiome composition and given the metabolic changes occurring during CDI, our work focuses on the importance to know the effects at the local and systemic levels, both during the infection and its treatment, by paying particular attention to plasma lipid metabolism due to its relationship with CDI pathogenesis. Specific changes, characterized by a loss of microbial richness and diversity and related to a reduction in short-chain acid-producing bacteria and an increase in bile salt hydrolase-producing bacteria, were observed in the gut microbiota of CDI patients, especially in those suffering from recurrent CDI (RCDI). However, gut microbiota showed its ability to restore itself after treatment, resembling healthy individuals, in those patients treated by fecal microbiome transfer (FMT), in contrast with those treated with antibiotics, and displaying increased levels of Eubacterium coprostanoligenes, a cholesterol-reducing anaerobe. Interestingly, changes in plasma lipidome revealed a global depletion in circulating lipids in CDI, with the largest impact on cholesteryl esters. CDI patients also showed a specific and consistent decrease in the levels of lipid species containing linoleic acid-an essential fatty acid-which were only partially recovered after antibiotic treatment. Analysis of the plasma lipidome reflects CDI impact on the gut microbiota and its metabolism, evidencing changes in sterol and fatty acid metabolism that are possibly related to specific alterations observed in gut microbial communities of CDI patients. IMPORTANCE There is increasing evidence about the influence the changes in microbiota and its metabolism has on numerous diseases and infections such as Clostridioides difficile infection (CDI). The knowledge of these changes at local and systemic levels can help us manage this infection to avoid recurrences and apply the best therapies, such as fecal microbiota transfer (FMT). This study shows a better restoration of the gut in FMT-treated patients than in antibiotic-treated patients, resembling healthy controls and showing increased levels of cholesterol-reducing bacteria. Furthermore, it evidences the CDI impact on plasma lipidome. We observed in CDI patients a global depletion in circulating lipids, particularly cholesteryl esters, and a specific decrease in linoleic acid-containing lipids, an essential fatty acid. Our observations could impact CDI management because the lipid content was only partially recovered after treatment, suggesting that continued nutritional support, aiming to restore healthy lipid levels, could be essential for a full recovery.
Collapse
Affiliation(s)
- Ricardo Arcay
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Maria Barceló-Nicolau
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Loreto Suárez
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Luisa Martín
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Rebeca Reigada
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Carmen Garrido
- Gastroenterology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Gabriel Cabot
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Helem Vílchez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Sara Cortés-Lara
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Elisa González de Herrero
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Carla López-Causapé
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Antonio Oliver
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Ana Mena
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| |
Collapse
|
19
|
Hashim NT, Babiker R, Rahman MM, Chaitanya NCSK, Mohammed R, Dasnadi SP, Gismalla BG. Gum Arabic as a potential candidate in quorum quenching and treatment of periodontal diseases. FRONTIERS IN ORAL HEALTH 2024; 5:1459254. [PMID: 39439926 PMCID: PMC11493777 DOI: 10.3389/froh.2024.1459254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Periodontal diseases are chronic inflammatory conditions influenced by bacterial biofilm formation and host immune responses, affecting millions worldwide. Traditional treatments like mechanical debridement and systemic antibiotics often face limitations, including biofilm resilience and antibiotic resistance. Gum Arabic (GA), a natural exudate from Acacia trees, presents a promising alternative with its anti-biofilm and anti-inflammatory properties. This review highlights the role of GA in periodontal therapy, particularly its ability to interfere with quorum sensing (QS) pathways, specifically the AI-2 signaling system used by key periodontal pathogens such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. By disrupting QS, GA inhibits biofilm formation, reduces bacterial virulence, and promotes a balanced oral microbiome. GA's prebiotic properties also encourage the growth of beneficial bacteria, enhancing the host's immune response while preserving the systemic microbiome. Clinical studies demonstrate GA's effectiveness as an adjunct in periodontal therapy, with significant reductions in plaque accumulation, gingival inflammation, and bleeding. This highlights GA's potential as a natural therapeutic agent, offering an effective, antibiotic-sparing option in managing periodontal disease. However, further research is warranted to fully establish GA's role in comprehensive periodontal care and its long-term benefits.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Mohammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Nallan C. S. K. Chaitanya
- Department of Oral Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Riham Mohammed
- Department of Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Shahistha Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
20
|
Sterle M, Habjan E, Piga M, Peršolja P, Durcik M, Dernovšek J, Szili P, Czikkely MS, Zidar N, Janez I, Pal C, Accetto T, Pardo LA, Kikelj D, Peterlin Mašič L, Tomašič T, Bitter W, Cotman AE, Speer A, Zega A. Development of narrow-spectrum topoisomerase-targeting antibacterials against mycobacteria. Eur J Med Chem 2024; 276:116693. [PMID: 39053193 DOI: 10.1016/j.ejmech.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
New 2-pyrrolamidobenzothiazole-based inhibitors of mycobacterial DNA gyrase were discovered. Among these, compounds 49 and 51, show excellent antibacterial activity against Mycobacterium tuberculosis and Mycobacterium abscessus with a notable preference for mycobacteria. Both compounds can penetrate infected macrophages and reduce intracellular M. tuberculosis load. Compound 51 is a potent inhibitor of DNA gyrase (M. tuberculosis DNA gyrase IC50 = 4.1 nM, Escherichia coli DNA gyrase IC50 of <10 nM), selective for bacterial topoisomerases. It displays low MIC90 values (M. tuberculosis: 0.63 μM; M. abscessus: 2.5 μM), showing specificity for mycobacteria, and no apparent toxicity. Compound 49 not only displays potent antimycobacterial activity (MIC90 values of 2.5 μM for M. tuberculosis and 0.63 μM for M. abscessus) and selectivity for mycobacteria but also exhibits favorable solubility (kinetic solubility = 55 μM) and plasma protein binding (with a fraction unbound of 2.9 % for human and 4.7 % for mouse). These findings underscore the potential of fine-tuning molecular properties to develop DNA gyrase B inhibitors that specifically target the mycobacterial chemical space, mitigating the risk of resistance development in non-target pathogens and minimizing harm to the microbiome.
Collapse
Affiliation(s)
- Maša Sterle
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Martina Piga
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Peter Peršolja
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Marton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary; Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, HU-6722, Hungary; Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged, HU-6722, Hungary
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Ilaš Janez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Csaba Pal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Tomaž Accetto
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Groblje 3, 1230, Domžale, Slovenia
| | - Luis A Pardo
- Max Planck Institute for Multidisciplinary Sciences, Oncophysiology, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Andrej Emanuel Cotman
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
21
|
Silk ET, Bayer SB, Foster M, Roy NC, Taylor MW, Vatanen T, Gearry RB. Advancing microbiome research in Māori populations: insights from recent literature exploring the gut microbiomes of underrepresented and Indigenous peoples. mSystems 2024:e0090924. [PMID: 39365053 DOI: 10.1128/msystems.00909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The gut microbiome plays vital roles in human health, including mediating metabolism, immunity, and the gut-brain axis. Many ethnicities remain underrepresented in gut microbiome research, with significant variation between Indigenous and non-Indigenous peoples due to dietary, socioeconomic, health, and urbanization differences. Although research regarding the microbiomes of Indigenous peoples is increasing, Māori microbiome literature is lacking despite widespread inequities that Māori populations face. These inequities likely contribute to gut microbiome differences that exacerbate negative health outcomes. Characterizing the gut microbiomes of underrepresented populations is necessary to inform efforts to address health inequities. However, for microbiome research to be culturally responsible and meaningful, study design must improve to better protect the rights and interests of Indigenous peoples. Here, we discuss barriers to Indigenous participation in research and the role disparities may play in shaping the gut microbiomes of Indigenous peoples, with a particular focus on implications for Māori and areas for improvement.
Collapse
Affiliation(s)
- Ella T Silk
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Simone B Bayer
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Meika Foster
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Edible Research, Ohoka, New Zealand
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Michael W Taylor
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
22
|
Chen B, Wang Y, Shen S, Zhong W, Lu H, Pan Y. Lattice Defects and Electronic Modulation of Flower-Like Zn 3In 2S 6 Promote Photocatalytic Degradation of Multiple Antibiotics. SMALL METHODS 2024; 8:e2301598. [PMID: 38168900 DOI: 10.1002/smtd.202301598] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Photocatalysis is an effective technique to remove antibiotic residues from aquatic environments. Typical metal sulfides like Zn3In2S6 have been applied to a wide range of photocatalytic applications. However, there are currently no readily accessible methods to increase its antibiotic-degrading activity. Here, a facile hydrothermal approach is developed for the preparation of flower-like Zn3In2S6 with tunable sulfur lattice defects. Photogenerated carriers can be separated and transferred more easily when there is an adequate amount of lattice defects. Moreover, lattice defect-induced electronic modulation enhances light utilization and adsorption properties. The modified Zn3In2S6 demonstrates outstanding photocatalytic degradation activity for levofloxacin, ofloxacin, and tetracycline. This work sheds light on exploring metal sulfides with sulfur lattice defects for enhancing photocatalytic activity.
Collapse
Affiliation(s)
- Baofu Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yichao Wang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Shijie Shen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Wenwu Zhong
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Hongsheng Lu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yin Pan
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| |
Collapse
|
23
|
He T, Hu X, Mi J, Hu H, Wang H, Qi X, Gao L, Zhang Y, Liu C, Wang S, Chen Y, Wang X, Yang G, Gao Y, Cui H. Ligilactobacillus salivarius XP132 with antibacterial and immunomodulatory activities inhibits horizontal and vertical transmission of Salmonella Pullorum in chickens. Poult Sci 2024; 103:104086. [PMID: 39098298 PMCID: PMC11342773 DOI: 10.1016/j.psj.2024.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Probiotics are increasingly recognized for their capacity to combat pathogenic bacteria. In this study, we isolated a strain of Ligilactobacillus salivarius XP132 from the gut microbiota of healthy chickens. This strain exhibited resistance to low pH and bile salts, auto-aggregation capabilities, and the ability to co-aggregate with pathogenic Salmonella. The in vitro antibacterial activity of Ligilactobacillus salivarius XP132 was tested using an Oxford cup antibacterial test, and the results showed that Ligilactobacillus salivarius XP132 exhibited broad-spectrum antibacterial activity, with especially strong antibacterial activity against Salmonella. In animal experiments with white feather broilers and specific-pathogens-free (SPF) chickens, we orally administered 1 × 109 CFU XP132 live bacteria per chicken per day, and detected the content of Salmonella in the liver, spleen, intestinal contents, and eggs of the chickens by RT-qPCR. Oral administration of Lactobacillus salivarius XP132 group significantly reduced the levels of Salmonella in chicken liver, spleen, intestinal contents and eggs, and the oral administration of Ligilactobacillus salivarius XP132 significantly inhibited the horizontal and vertical transmission of Salmonella in SPF chickens and white-feathered broilers. After oral administration of XP132, the production of chicken serum anti-infective cytokine IFN-γ was also significantly up-regulated, thereby enhancing the host's ability to resist infection. In addition, the production of various serum inflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α, was down-regulated, leading to significant amelioration of the inflammatory response induced by S. Pullorum in chickens. These findings suggest that Ligilactobacillus salivarius XP132 possesses potent antibacterial and immunomodulatory properties that effectively prevent both horizontal and vertical transmission of Salmonella Pullorum, highlighting its potential as a valuable tool for the prevention and control of Salmonella disease.
Collapse
Affiliation(s)
- Tana He
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xinyun Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jielan Mi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongjiao Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Rijkx MEP, Schiebroek EJM, Hommes JE, van Kuijk SM, Heuts E, van Mens S, Piatkowski A. The efficacy of prolonged antibiotic prophylaxis in total breast reconstruction with Autologous Fat Transfer (AFT): A retrospective cohort study. J Plast Reconstr Aesthet Surg 2024; 97:221-229. [PMID: 39168031 DOI: 10.1016/j.bjps.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Autologous fat transfer (AFT) is increasingly adopted as another total breast reconstruction option. The aim of this study was to investigate the efficacy of prolonged antibiotic treatment on the onset of surgical site infections (SSIs) in patients treated with AFT for total breast reconstruction. METHODS This retrospective cohort study was conducted on patients who received AFT for total breast reconstruction, with antibiotic prophylaxis during their (multiple) AFT procedure(s) from 9 December 2020 to 10 October 2023. Patients were divided into 2 groups according to their prophylactic antibiotic regimen. The primary outcome was analyzed, including the cumulative incidence, the relative risk (RR), the absolute risk reduction (ARR), and the number needed to treat (NNT). For the secondary outcome, a multilevel logistic regression analysis was performed. RESULTS Seven hundred sixty-five surgeries in 205 patients were analyzed. Six hundred twenty-four surgeries on 168 patients had perioperative antibiotic prophylaxis in combination with postoperative antibiotic prophylaxis administered (group 1). One hundred forty-one surgeries on 37 patients had only perioperative antibiotic prophylaxis administered (group 2). The RR was 0.68 (95% confidence interval [CI]; 0.14-3.31) of a SSI when receiving peri- and postoperative antibiotic prophylaxis in comparison with treatment with only perioperative prophylaxis. The ARR was 0.46% (95% CI; -1.40 to 2.32) with a NNT of 219 patients. CONCLUSION Prolonged antibiotic prophylaxis is ineffective for patients who receive total breast reconstruction with AFT. This study showed no statistically significant difference in SSIs of the reconstructed breast after receiving prolonged antibiotic treatment in comparison with single-shot perioperative antibiotic prophylaxis.
Collapse
Affiliation(s)
- Maud E P Rijkx
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center+, P.O. box 5800, 6202 AZ Maastricht, the Netherlands; NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, P.O. Box 616, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | - Emmy J M Schiebroek
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center+, P.O. box 5800, 6202 AZ Maastricht, the Netherlands
| | - Juliette E Hommes
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center+, P.O. box 5800, 6202 AZ Maastricht, the Netherlands; NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, P.O. Box 616, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Sander Mj van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Center, 6229 HX Maastricht, the Netherlands
| | - Esther Heuts
- Department of General Surgery, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; GROW Research Institute for Oncology and Reproduction, P.O. Box 616, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Suzan van Mens
- Department of Medical Microbiology, Infectious Disease and Infection Prevention, Maastricht University Medical Center+, P.O. box 5800, 6202 AZ Maastricht, the Netherlands
| | - Andrzej Piatkowski
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center+, P.O. box 5800, 6202 AZ Maastricht, the Netherlands; NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, P.O. Box 616, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
25
|
Taramian S, Joukar F, Maroufizadeh S, Hassanipour S, Sheida F, Mansour‐Ghanaei F. Association between body mass index and urinary tract infections: A cross-sectional investigation of the PERSIAN Guilan cohort study. Obes Sci Pract 2024; 10:e70013. [PMID: 39429540 PMCID: PMC11490256 DOI: 10.1002/osp4.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction There is a relationship between excess body weight and the risk of a number of infectious diseases, including urinary tract infections (UTIs). This study aimed to investigate the correlation between body mass index (BMI) and UTIs among Prospective Epidemiological Research Studies of the Iranian Adults (PERSIAN) Guilan Cohort Study (PGCS) population. Methods This cross-sectional study was conducted on 10,520 individuals aged 35-70 years from PGCS. The demographical data and clinical characteristics of the participants were recorded. Microscopic examination of the urine samples was performed to detect the presence of bacteria or white blood cells (WBC) as indicators of infection. UTI was defined as the presence of bacteria in the urine (Few, moderate, and many) and a value of ≥10 WBC/high power field (HPF) by light microscopy. Results The prevalence of UTIs in this study was 8.8%, with a higher incidence in females compared to males (12.2% vs. 4.7%, p < 0.001). Among participants, the prevalence of UTIs across different weight categories was as follows: underweight/normal weight, 7.1%; overweight, 8.1%; and obesity, 10.9%. According to the unadjusted model, subjects with obesity were at significantly higher odds for UTIs than subjects with underweight/normal BMI (OR = 1.62, 95% CI: 1.35-1.93, p < 0.001). However, this association was no longer significant after adjusting for demographic and clinical variables. Conclusion The findings of this study provide evidence supporting a higher prevalence of UTIs among individuals with obesity.
Collapse
Affiliation(s)
- Sonbol Taramian
- School of MedicineRazi HospitalGuilan University of Medical SciencesRashtIran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research CenterGuilan University of Medical SciencesRashtIran
| | - Saman Maroufizadeh
- Department of Biostatistics and EpidemiologySchool of HealthGuilan University of Medical SciencesRashtIran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research CenterGuilan University of Medical SciencesRashtIran
| | - Fateme Sheida
- Gastrointestinal and Liver Diseases Research CenterGuilan University of Medical SciencesRashtIran
| | - Fariborz Mansour‐Ghanaei
- Gastrointestinal and Liver Diseases Research CenterGuilan University of Medical SciencesRashtIran
| |
Collapse
|
26
|
Chowdhury SS, Tahsin P, Xu Y, Mosaddek ASM, Muhamadali H, Goodacre R. Trends in Antimicrobial Resistance of Uropathogens Isolated from Urinary Tract Infections in a Tertiary Care Hospital in Dhaka, Bangladesh. Antibiotics (Basel) 2024; 13:925. [PMID: 39452192 PMCID: PMC11505449 DOI: 10.3390/antibiotics13100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Urinary tract infection (UTI) is a prevalent microbial infection in medical practise, leading to significant patient morbidity and increased treatment costs, particularly in developing countries. This retrospective study, conducted at a tertiary care hospital in Dhaka, Bangladesh, aims to examine the antimicrobial resistance (AMR) patterns of uropathogens and evaluate whether these patterns are influenced by demographic factors such as gender, age, or patient status. Methods: Standard microbiological techniques were used to identify uropathogens, and AMR patterns were determined using the Kirby-Bauer disc diffusion method. Results: Out of 6549 urine samples, 1001 cultures were positive. The infection was more prevalent in females compared to males. The incidence of UTIs in children aged 0-10 years accounted for 12.59% of the total cases, with this age group also exhibiting the highest rate of polymicrobial infections. Among the bacterial uropathogens, 71.19% of isolates were multidrug resistant (MDR) and 84.27% were resistant to at least one antibiotic. Escherichia coli (n = 544, 73.90% MDR) and Klebsiella species (n = 143, 48.95% MDR) were the most common Gram-negative uropathogens, while Enterococcus species (n = 78, 94.87% MDR) was the predominant Gram-positive isolate in this study. Our results indicate that most uropathogens showed resistance against ceftazidime, followed by cefuroxime, trimethoprim-sulfamethoxazole, amoxicillin-clavulanate, and netilmicin. Moderate levels of resistance were observed against ciprofloxacin, levofloxacin, aztreonam, and cefpodoxime. Conclusions: Amikacin was observed to be effective against Gram-negative uropathogens, whereas cefixime was more active against Gram-positive microorganisms, such as Enterococcus species. Moreover, a principal coordinate analysis (PCoA) depicted no significant influence of gender, patient status, or age on AMR patterns. For the continued usefulness of most antibiotics, periodic analysis of the AMR patterns of uropathogens can help assess the rise of MDR bacteria, and therefore guide the selection of appropriate antibiotic treatment strategies.
Collapse
Affiliation(s)
- Sara Sadia Chowdhury
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (Y.X.); (H.M.); (R.G.)
| | - Promi Tahsin
- Department of Pharmacology, Uttara Adhunik Medical College (UAMC), Sonargaon Janapath, Uttara, Dhaka 1230, Bangladesh (A.S.M.M.)
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (Y.X.); (H.M.); (R.G.)
| | - Abu Syed Md. Mosaddek
- Department of Pharmacology, Uttara Adhunik Medical College (UAMC), Sonargaon Janapath, Uttara, Dhaka 1230, Bangladesh (A.S.M.M.)
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (Y.X.); (H.M.); (R.G.)
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (Y.X.); (H.M.); (R.G.)
| |
Collapse
|
27
|
Modiri O, Fisher J, Ebriani J, Kim J. Pairing probiotics with antibiotics: current practices among Mohs surgeons. Arch Dermatol Res 2024; 316:635. [PMID: 39312012 DOI: 10.1007/s00403-024-03401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/18/2024] [Accepted: 09/14/2024] [Indexed: 10/27/2024]
Affiliation(s)
- Omeed Modiri
- Division of Dermatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan Fisher
- Division of Dermatology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joseph Ebriani
- Division of Dermatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jenny Kim
- Division of Dermatology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
28
|
Suh JW, Jeong YJ, Ahn HG, Kim JY, Sohn JW, Yoon YK. Epidemiologic characteristics and risk factors of Clostridioides difficile infection in patients with active tuberculosis in the Republic of Korea: a nationwide population-based study. J Hosp Infect 2024; 154:1-8. [PMID: 39278268 DOI: 10.1016/j.jhin.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND The relationship between anti-tuberculosis (TB) agents and Clostridioides difficile infection (CDI) remains unclear. This study aimed to investigate the epidemiological characteristics and risk factors for CDI in patients with TB. METHODS This nationwide, population-based cohort study was conducted in the Republic of Korea (ROK) between January 2018 and December 2022. Data were extracted from the National Health Insurance Service-National Health Information Database. The risk factors for CDI in patients with TB were identified through multi-variate logistic regression analysis using a 1:4 greedy matching method based on age and sex. RESULTS During the study period, CDI developed in 2901 of the 131,950 patients with TB who were prescribed anti-TB agents. The incidence of CDI in patients with TB has increased annually in the ROK from 12.31/1000 in 2018 to 33.51/1000 in 2022. Oral metronidazole (81.94%) was the most common first-line treatment for CDI. The in-hospital mortality rate of patients with concomitant CDI and TB was 9.9%, compared with 6.9% in those with TB alone (P<0.0001). Multi-variate logistic regression analysis found intensive care unit admission, Charlson Comorbidity Index ≥3, antibiotic exposure, standard regimen, multi-drug-resistant TB and extrapulmonary TB to be significant risk factors for development of CDI in patients with TB. CONCLUSION CDI is uncommon in patients with TB, but it results in a significantly increased mortality rate. Patients being treated for TB should be monitored carefully for the development of CDI. Further clinical research is warranted to identify effective interventions for preventing and controlling CDI during TB treatment.
Collapse
Affiliation(s)
- J W Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea; Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Y J Jeong
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - H G Ahn
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - J Y Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea; Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - J W Sohn
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea; Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea
| | - Y K Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea; Institute of Emerging Infectious Diseases, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Tomičić Z, Šarić L, Tomičić R. Novel Insights in the Application of Probiotic Yeast Saccharomyces boulardii in Dairy Products and Health Promotion. Foods 2024; 13:2866. [PMID: 39335795 PMCID: PMC11431368 DOI: 10.3390/foods13182866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Probiotic organisms are increasingly being incorporated into foods in order to develop products to prevent and reduce many diseases. Saccharomyces boulardii, a probiotic yeast with unique properties, such as viability over a wide pH range, antibiotic resistance, and the ability to reach a steady state, has an advantage over bacterial probiotics. The present review highlights the potential application of S. boulardii in functional fermented dairy products and the genetic engineering of this probiotic microorganism as a therapeutic agent for the treatment of various infectious diseases. It was found that probiotic yeast stimulates the growth of lactic acid bacteria in dairy products, creating favorable conditions and positively affecting the product's sensory characteristics. Moreover, its viability of more than 106 cfu/mL at the end of the yogurt shelf life confirms its probiotic effect. On the other hand, there is a growing interest in the design of probiotic strains to improve their characteristics and fill existing gaps in their spectrum of action such as the inhibition of some bacterial toxins, as well as anti-inflammatory and immunomodulatory effects. The strengthening of immune functions and effective therapies against various diseases by S. boulardii was confirmed. However, considering this yeast species' potential, further research is necessary to accurately determine the functional properties in terms of incorporation into food matrices and from the aspect of health and well-being claims.
Collapse
Affiliation(s)
- Zorica Tomičić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
30
|
Abukhalil AD, Barakat SA, Mansour A, Al-Shami N, Naseef H. ESKAPE Pathogens: Antimicrobial Resistance Patterns, Risk Factors, and Outcomes a Retrospective Cross-Sectional Study of Hospitalized Patients in Palestine. Infect Drug Resist 2024; 17:3813-3823. [PMID: 39247758 PMCID: PMC11380491 DOI: 10.2147/idr.s471645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Background Antimicrobial resistance to ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp). remains a major challenge in hospital settings. Objective This study aimed to determine the ESKAPE antimicrobial resistance patterns and associated factors with multi-drug resistance strains among hospitalized patients in a single tertiary care medical hospital in Palestine. Methods A single-center retrospective cross-sectional study was conducted by reviewing patients' electronic medical records and laboratory results from November 1, 2021, to November 30, 2022, at the Palestine Medical Complex in Palestine. The study included patients aged > 18 years who had been infected with ESKAPE pathogens 48 hours after hospital admission. Results This study included 231 patients, of whom 90.5% had MDR infections. In total, 331 clinical samples of ESKAPE pathogens were identified. A. baumannii was the most prevalent MDR pathogen (95.6%) with Carbapenem-resistant exceeding 95%, followed by K. pneumoniae (83.8%) with extended-spectrum cephalosporin resistance exceeding 90%, S. aureus (68.2) with 85% oxacillin-resistance, E. faecium (40%) with 20% vancomycin resistance, P. aeruginosa (22.6%) with 30% carbapenem resistance. Furthermore, emergent colistin resistance has been observed in A. baumannii, K. pneumoniae, and P. aerogenesis. Risk factors for MDR infection included age (p< 0.035), department (p< 0.001), and invasive procedures such as IUC (p< 0.001), CVC (p< 0.000), and MV (p< 0.008). Patients diagnosed with MDR bacteria had increased 30-day mortality (p< 0.001). Conclusion The findings of this study show alarming MDR among hospitalized patients infected with ESKAPE pathogens, with resistance to first-line antimicrobial agents and emerging resistance to colistin, minimizing treatment options. Healthcare providers and the Ministry of Health must take steps, adopt policies to prevent antimicrobial resistance, adhere to infection control guidelines, implement antimicrobial stewardship programs to prevent and limit the growing health crisis, and support research to discover new treatment options.
Collapse
Affiliation(s)
- Abdallah Damin Abukhalil
- Department of Pharmacy, Faculty of Pharmacy, Nursing, and Health Professions, Birzeit University, Birzeit, West Bank, State of Palestine
| | - Sally Amer Barakat
- Department of Pharmacy, Faculty of Pharmacy, Nursing, and Health Professions, Birzeit University, Birzeit, West Bank, State of Palestine
| | - Aseel Mansour
- Department of Pharmacy, Faculty of Pharmacy, Nursing, and Health Professions, Birzeit University, Birzeit, West Bank, State of Palestine
| | - Ni'meh Al-Shami
- Department of Pharmacy, Faculty of Pharmacy, Nursing, and Health Professions, Birzeit University, Birzeit, West Bank, State of Palestine
| | - Hani Naseef
- Department of Pharmacy, Faculty of Pharmacy, Nursing, and Health Professions, Birzeit University, Birzeit, West Bank, State of Palestine
| |
Collapse
|
31
|
Yusri S, Elbattawy W, Zaaya S, Mokhtar M, Ramzy A, Fawzy El-Sayed KM. Modified minimally invasive surgical technique with clindamycin-augmented or non-augmented platelet-rich fibrin in periodontal regeneration: A randomized clinical trial. J Periodontal Res 2024. [PMID: 39224058 DOI: 10.1111/jre.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
AIM Injectable platelet-rich fibrin (I-PRF), a second-generation platelet concentrate, is widely used to enhance soft and hard tissue healing alone or in combination with biomaterials, relying on its harboring of various pivotal growth/differentiation factors. This randomized trial assessed the effect of clindamycin (CLN) augmented injectable platelet-rich fibrin (I-PRF) with modified minimally invasive surgical technique (M-MIST) versus I-PRF alone with M-MIST on the clinical and radiographic parameters in the management of periodontal intra-bony defects in patients with stage-III grade B periodontitis. METHODS This is a 9-month parallel-grouped, two arm, double-blinded, randomized controlled trial (RCT) that included 28 patients (n = 28) with stage-III grade B periodontitis, who were allocated randomly to test- (CLN/I-PRF + M-MIST, 50 μL of CLN per 1 mL of I-PRF; n = 14) or control-group (I-PRF + M-MIST; n = 14). Clinical attachment level (CAL; primary outcome), probing depth (PD), gingival margin level (GML), plaque index (PI), and gingival index (GI) were recorded at baseline, 3, 6, and 9 months, whereas radiographic parameters radiographic linear defect depth (RLDD), and radiographic defect area (RDA) were recorded at baseline, 6, and 9 months. The CLN release kinetics from the I-PRF were further characterized. RESULTS Compared to baseline, both groups independently demonstrated significant improvements in CAL, PD, GML, GI, PI, RLDD and BDA at 3, 6 and 9 months (p < .05). A significant reduction in CAL measurements was noticeable in the CLN/I-PRF + M-MIST and I-PRF + M-MIST group independently over time (p < .05). CLN/I-PRF + M-MIST showed significantly lower CAL than PRF + M-MIST group at baseline, after three as well as 9 months (p < .05). Intergroup comparisons at 9 months demonstrated that CAL-gain was non-significant between groups (p > .05), GI significantly lower in CLN/I-PRF + M-MIST, whereas PD-reduction significantly higher I-PRF + M-MIST group (p < .05). CLN was steadily released for the I-PRF for up to 48 h, with a peak concentration at 24 h, which then gradually declined till the seventh day. CONCLUSIONS I-PRF with M-MIST provided significant clinical and radiographic improvement up to 9 months postoperatively in stage-III grade B periodontitis. CLN, at the applied concentration and release duration, does not appear to further positively impact these observed I-PRF effects.
Collapse
Affiliation(s)
- Sarah Yusri
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Weam Elbattawy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Salma Zaaya
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Maha Mokhtar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Asmaa Ramzy
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
- Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
33
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuza Nazmul
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jinggang Lan
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Michiko K Oyoshi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Chatterjee S, Leach ST, Lui K, Mishra A. Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context. Semin Cell Dev Biol 2024; 161-162:22-30. [PMID: 38564842 DOI: 10.1016/j.semcdb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.
Collapse
Affiliation(s)
- Soumi Chatterjee
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
| | - Steven T Leach
- Discipline Paediatrics, School of Clinical Medicine, University of New South Wales, Sydney 2052, Australia
| | - Kei Lui
- Department of Newborn Care, Royal Hospital for Women and Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Archita Mishra
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
35
|
Guardamagna M, Meyer ML, Berciano-Guerrero MÁ, Mesas-Ruiz A, Cobo-Dols M, Perez-Ruiz E, Cantero Gonzalez A, Lavado-Valenzuela R, Barragán I, Oliver J, Garrido-Aranda A, Alvarez M, Rueda-Dominguez A, Queipo-Ortuño MI, Alba Conejo E, Benitez JC. Oncogene-addicted solid tumors and microbiome-lung cancer as a main character: a narrative review. Transl Lung Cancer Res 2024; 13:2050-2066. [PMID: 39263011 PMCID: PMC11384476 DOI: 10.21037/tlcr-24-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Background and Objective Lung cancer stands as the main cause of cancer-related deaths worldwide. With the advent of immunotherapy and the discovery of targetable oncogenic driver genes, although prognosis has changed in the last few years, survival rates remain dismal for most patients. This emphasizes the urgent need for new strategies that could enhance treatment in precision medicine. The role of the microbiota in carcinogenesis constitutes an evolving landscape of which little is known. It has been suggested these microorganisms may influence in responses, resistance, and adverse effects to cancer treatments, particularly to immune checkpoint blockers. However, evidence on the impact of microbiota composition in oncogene-addicted tumors is lacking. This review aims to provide an overview of the relationship between microbiota, daily habits, the immune system, and oncogene-addicted tumors, focusing on lung cancer. Methods A PubMed and Google Scholar search from 2013 to 2024 was conducted. Relevant articles were reviewed in order to guide our research and generate hypothesis of clinical applicability. Key Content and Findings Microbiota is recognized to participate in immune reprogramming, fostering inflammatory, immunosuppressive, or anti-tumor responses. Therefore, identifying the microbiota that impact response to treatment and modulating its composition by interventions such as dietary modifications, probiotics or antibiotics, could potentially yield better outcomes for cancer patients. Additionally, targeted therapies that modulate molecular signaling pathways may impact both immunity and microbiota. Understanding this intricate interplay could unveil new therapeutic strategies. Conclusions By comprehending how microbiota may influence efficacy of targeted therapies, even though current evidence is scarce, we may generate interesting hypotheses that could improve clinical practice.
Collapse
Affiliation(s)
- Mora Guardamagna
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Medicine and Dermatology, Medical School University of Málaga, Campus Teatinos, Málaga, Spain
- Department of Cancer Medicine, Institute Gustave Roussy, Villejuif, France
| | - May-Lucie Meyer
- The Tisch Cancer Institute, Mount Sinai Hospital, New York, NY, USA
| | - Miguel Ángel Berciano-Guerrero
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Medicine and Dermatology, Medical School University of Málaga, Campus Teatinos, Málaga, Spain
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Andres Mesas-Ruiz
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Manuel Cobo-Dols
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Medical Oncology Department, Regional University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Elisabeth Perez-Ruiz
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Medical Oncology Department, Regional University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Alexandra Cantero Gonzalez
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Medical Oncology Department, Regional University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Rocío Lavado-Valenzuela
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Cancer Molecular Biology Laboratory, CIMES, Malaga, Spain
| | - Isabel Barragán
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Javier Oliver
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Alicia Garrido-Aranda
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Cancer Molecular Biology Laboratory, CIMES, Malaga, Spain
| | - Martina Alvarez
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Cancer Molecular Biology Laboratory, CIMES, Malaga, Spain
| | - Antonio Rueda-Dominguez
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Medicine and Dermatology, Medical School University of Málaga, Campus Teatinos, Málaga, Spain
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Surgical Specialties, Biochemical and Immunology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Emilio Alba Conejo
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Medicine and Dermatology, Medical School University of Málaga, Campus Teatinos, Málaga, Spain
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose Carlos Benitez
- Medical Oncology Department, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Group of Translational Research in Cancer Immunotherapy, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
36
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
37
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
38
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
39
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
40
|
Herrera-Quintana L, Vázquez-Lorente H, Hinojosa-Nogueira D, Plaza-Diaz J. Relationship between Infant Feeding and the Microbiome: Implications for Allergies and Food Intolerances. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1030. [PMID: 39201963 PMCID: PMC11353207 DOI: 10.3390/children11081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Childhood is a critical period for immune system development, which is greatly influenced by the gut microbiome. Likewise, a number of factors affect the gut microbiome composition and diversity, including breastfeeding, formula feeding, and solid foods introduction. In this regard, several studies have previously demonstrated that breastfeeding promotes a favorable microbiome. In contrast, formula feeding and the early incorporation of certain solid foods may adversely affect microbiome development. Additionally, there is increasing evidence that disruptions in the early microbiome can lead to allergic conditions and food intolerances. Thus, developing strategies to promote optimal infant nutrition requires an understanding of the relationship between infant nutrition and long-term health. The present review aims to examine the relationship between infant feeding practices and the microbiome, as well as its implications on allergies and food intolerances in infants. Moreover, this study synthesizes existing evidence on how different eating habits influence the microbiome. It highlights their implications for the prevention of allergies and food intolerances. In conclusion, introducing allergenic solid foods before six months, alongside breastfeeding, may significantly reduce allergies and food intolerances risks, being also associated with variations in gut microbiome and related complications.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria), 29590 Málaga, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
41
|
Bejcek A, Ancha A, Lewis M, Beaver R, Tecson K, Bomar J, Johnson C. Antibiotic use and risk of Clostridioides difficile infection in patients with inflammatory bowel disease. J Gastroenterol Hepatol 2024. [PMID: 39148287 DOI: 10.1111/jgh.16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND AIM Patients with inflammatory bowel disease (IBD) have an increased risk of Clostridioides difficile infection (CDI) compared with those without IBD, which is worsened with antibiotic usage. While prior studies have shown a correlation between CDI development and certain classes of antibiotics, the IBD population has not been well represented. This study evaluates the rates of CDI with outpatient antibiotic use in patients with IBD. METHODS We conducted a retrospective cohort study composed of patients with IBD and compared the incidence of CDI in patients who received an outpatient prescription for antibiotics (6694 patients) against those without prescriptions (6025 patients) from 2014 to 2020 at our institution. We compared CDI rates based on nine antibiotic classes: penicillins, cephalosporins, sulfonamides, tetracyclines, macrolides, quinolones, clindamycin, metronidazole, and nitrofurantoin. RESULTS The risk of CDI was low (0.7%) but significantly higher for those with antibiotic exposure (0.9% vs 0.5%, P = 0.005) and had a positive correlation with a smoking history. The increased risk of CDI in the IBD population was attributable to the clindamycin and metronidazole classes (odds ratio = 4.7, 95% confidence interval: 1.9-11.9, P = 0.001; odds ratio = 3.6, 95% confidence interval: 2.1-6.2, P < 0.0001, respectively). CONCLUSIONS The use of clindamycin or metronidazole prescribed in an outpatient setting was associated with a statistically significant increased risk of CDI in patients with IBD. Although the association between clindamycin and CDI is a well-established and common finding, the association between metronidazole and CDI is unique in this study.
Collapse
Affiliation(s)
- Alexis Bejcek
- Division of Gastroenterology, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Anupama Ancha
- Division of Internal Medicine, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Megan Lewis
- Division of Gastroenterology, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Ryan Beaver
- Division of Infectious Diseases, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
| | - Kristen Tecson
- Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, Texas, USA
| | - Jaccallene Bomar
- Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, Texas, USA
| | - Christopher Johnson
- Division of Gastroenterology, Department of Medicine, Baylor Scott & White Medical Center, Temple, Texas, USA
- Department of Medicine, Baylor College of Medicine, Temple, Texas, USA
| |
Collapse
|
42
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
43
|
Corbu VM, Georgescu AM, Marinas IC, Pericleanu R, Mogos DV, Dumbravă AȘ, Marinescu L, Pecete I, Vassu-Dimov T, Czobor Barbu I, Csutak O, Ficai D, Gheorghe-Barbu I. Phenotypic and Genotypic Characterization of Resistance and Virulence Markers in Candida spp. Isolated from Community-Acquired Infections in Bucharest, and the Impact of AgNPs on the Highly Resistant Isolates. J Fungi (Basel) 2024; 10:563. [PMID: 39194889 DOI: 10.3390/jof10080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND This study aimed to determine, at the phenotypic and molecular levels, resistance and virulence markers in Candida spp. isolated from community-acquired infections in Bucharest outpatients during 2021, and to demonstrate the efficiency of alternative solutions against them based on silver nanoparticles (AgNPs). METHODS A total of 62 Candida spp. strains were isolated from dermatomycoses and identified using chromogenic culture media and MALDI-TOF MS, and then investigated for their antimicrobial resistance and virulence markers (VMs), as well as for metabolic enzymes using enzymatic tests for the expression of soluble virulence factors, their biofilm formation and adherence capacity on HeLa cells, and PCR assays for the detection of virulence markers and the antimicrobial activity of alternative solutions based on AgNPs. RESULTS Of the total of 62 strains, 45.16% were Candida parapsilosis; 29.03% Candida albicans; 9.67% Candida guilliermondii; 3.22% Candida lusitaniae, Candia pararugosa, and Candida tropicalis; and 1.66% Candida kefyr, Candida famata, Candida haemulonii, and Candida metapsilosis. Aesculin hydrolysis, caseinase, and amylase production were detected in the analyzed strains. The strains exhibited different indices of adherence to HeLa cells and were positive in decreasing frequency order for the LIP1, HWP1, and ALS1,3 genes (C. tropicalis/C. albicans). An inhibitory effect on microbial growth, adherence capacity, and on the production of virulence factors was obtained using AgNPs. CONCLUSIONS The obtained results in C. albicans and Candida non-albicans circulating in Bucharest outpatients were characterized by moderate-to-high potential to produce VMs, necessitating epidemiological surveillance measures to minimize the chances of severe invasive infections.
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ana-Maria Georgescu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | | | - Radu Pericleanu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Denisa Vasilica Mogos
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania
| | - Tatiana Vassu-Dimov
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| |
Collapse
|
44
|
Martins TJ, Parisi C, Pinto JG, Brambilla IDPR, Melilli B, Aleo D, Ferreira-Strixino J, Sortino S. Simultaneous photoactivation of a fluoroquinolone antibiotic and nitric oxide with fluorescence reporting. J Mater Chem B 2024; 12:7626-7634. [PMID: 39005154 DOI: 10.1039/d4tb01291g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The achievement of smart pharmaceuticals whose bioactivity can be spatiotemporally controlled by light stimuli is known as photopharmacology, an emerging area aimed at improving the therapeutic outcome and minimizing side effects. This is especially attractive for antibiotics, for which the inevitable development of multidrug resistance and the dwindling of new clinically approved drugs represent the main drawbacks. Here, we show that nitrosation of the fluoroquinolone norfloxacin (NF), a broad-spectrum antibiotic, leads to the nitrosated bioconjugate NF-NO, which is inactive at the typical minimum inhibitory concentration of NF. Irradiation of NF-NO with visible blue light triggers the simultaneous release of NF and nitric oxide (NO). The photouncaging process is accompanied by the revival of the typical fluorescence emission of NF, quenched in NF-NO, which acts as an optical reporter. This permits the real-time monitoring of the photouncaging process, even within bacteria cells where antibacterial activity is switched on exclusively upon light irradiation. The mechanism of photorelease seems to occur through a two-step hopping electron transfer mediated by the lowest triplet state of NF-NO and the phosphate buffer ions or aminoacids such as tyrosine. Considering the well-known role of NO as an "unconventional" antibacterial, the NF-NO conjugate may represent a potential bimodal antibacterial weapon activatable on demand with high spatio-temporal control.
Collapse
Affiliation(s)
- Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| | - Juliana Guerra Pinto
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | | | | | - Danilo Aleo
- MEDIVIS S.r.l., Tremestieri Etneo, 95030 Catania, Italy
| | - Juliana Ferreira-Strixino
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125, Italy.
| |
Collapse
|
45
|
Gao W, Liu X, Zhang S, Wang J, Qiu B, Shao J, Huang W, Huang Y, Yao M, Tang LL. Alterations in gut microbiota and inflammatory cytokines after administration of antibiotics in mice. Microbiol Spectr 2024; 12:e0309523. [PMID: 38899904 PMCID: PMC11302321 DOI: 10.1128/spectrum.03095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/13/2024] [Indexed: 06/21/2024] Open
Abstract
Antibiotics are widely used to treat bacterial infection and reduce the mortality rate, while antibiotic overuse can cause gut microbiota dysbiosis. The impact of antibiotics on gut microbiota is not fully understood. In our study, four commonly used antibiotics (ceftazidime, cefoperazone-sulbactam, imipenem-cilastatin, and moxifloxacin) were given subcutaneously to mice, and their impacts on the gut microbiota composition and serum cytokine levels were evaluated through 16S rRNA analysis and a multiplex immunoassay. Antibiotic treatment markedly reduced gut microbiota diversity and changed gut microbiota composition. Antibiotic treatment significantly increased and decreased the abundance of Firmicutes and Bacteroidota, respectively. The antibiotic treatments increased the abundance of opportunistic pathogens such as Enterococcus and decreased that of Lachnospiraceae and Muribaculaceae. For moxifloxacin, the significantly high abundance of Enterococcus and Klebsiella was observed after 14 and 21 days of treatment. However, a relatively low abundance of opportunistic pathogens was found after 14 days of imipenem-cilastatin treatment. Additionally, the serum levels of various pro-inflammatory cytokines, such as IL-1β, IL-12 (p70), and IL-17, significantly increased after 21 days of antibiotic treatments. Overall, these results provide a guide for rational use of antibiotics in clinical settings: short-term use of moxifloxacin is recommended with regard to gut microbiota health, and the 14-day use of imipenem-cilastatin may have a less severe impact than other antibiotics.IMPORTANCEAntibiotic treatments are directly associated with changes in gut microbiota and are effective against both pathogens and beneficial bacteria. Gut microbiota dysbiosis induced by antibiotic treatment could increase the risk of some diseases. Therefore, an adequate understanding of gut microbiota changes after antibiotic use is crucial. In this study, we investigated the effects of continuous treatment with antibiotics on gut microbiota, serum cytokines, and intestinal inflammatory response. Our results suggest that short-term use of moxifloxacin is recommended, and the 14-day use of imipenem-cilastatin may have a less severe effect on gut microbiota health than cefoperazone-sulbactam. These results provide useful guidance on the rational use of antibiotics with regard to gut microbiota health.
Collapse
Affiliation(s)
- Wang Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingyu Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingxia Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junhua Shao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Weixin Huang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shaoxing Tongchuang Biotechnology Co., Ltd, Shaoxing, China
| | - Yilun Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Mingfei Yao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling-Ling Tang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| |
Collapse
|
46
|
Liu Y, Wang J, Zheng H, Xin J, Zhong Z, Liu H, Fu H, Zhou Z, Qiu X, Peng G. Multi-functional properties of lactic acid bacteria strains derived from canine feces. Front Vet Sci 2024; 11:1404580. [PMID: 39161461 PMCID: PMC11330878 DOI: 10.3389/fvets.2024.1404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Probiotics, especially Lactic Acid Bacteria (LAB), can promote the health of host animals in a variety of ways, such as regulating intestinal flora and stimulating the host's immune system. Methods In this study, 206 LAB strains were isolated from 48 canine fecal samples. Eleven LAB strains were selected based on growth performance, acid and bile salt resistance. The 11 candidates underwent comprehensive evaluation for probiotic properties, including antipathogenic activity, adhesion, safety, antioxidant capacity, and metabolites. Results The results of the antipathogenic activity tests showed that 11 LAB strains exhibited strong inhibitory effect and co-aggregation ability against four target pathogens (E. coli, Staphylococcus aureus, Salmonella braenderup, and Pseudomonas aeruginosa). The results of the adhesion test showed that the 11 LAB strains had high cell surface hydrophobicity, self-aggregation ability, biofilm-forming ability and adhesion ability to the Caco-2 cells. Among them, Lactobacillus acidophilus (L177) showed strong activity in various adhesion experiments. Safety tests showed that 11 LAB strains are sensitive to most antibiotics, with L102, L171, and L177 having the highest sensitivity rate at 85.71%, and no hemolysis occurred in all strains. Antioxidant test results showed that all strains showed good H2O2 tolerance, high scavenging capacity for 1, 1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). In addition, 11 LAB strains can produce high levels of metabolites including exopolysaccharide (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion This study provides a thorough characterization of canine-derived LAB strains, highlighting their multifunctional potential as probiotics. The diverse capabilities of the strains make them promising candidates for canine dietary supplements, offering a holistic approach to canine health. Further research should validate their efficacy in vivo to ensure their practical application.
Collapse
Affiliation(s)
- Yunjiang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiali Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohong Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group Co., Ltd., Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
47
|
Miller EA, Amato R, Ponder JB, Bueno I. Survey of antimicrobial and probiotic use practices in wildlife rehabilitation in the United States. PLoS One 2024; 19:e0308261. [PMID: 39088546 PMCID: PMC11293748 DOI: 10.1371/journal.pone.0308261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024] Open
Abstract
Antimicrobial resistance is a global health concern. As such, there have been increased efforts to monitor and standardize antimicrobial prescribing practices in humans and domestic animals. In contrast, there is relatively little known about specific prescribing practices in wild animals despite the wide use of antimicrobials and other microbial interventions, such as probiotics to treat captive wildlife. Therefore, the goal of this study was to examine current antimicrobial and probiotic use from a cross-section of wildlife rehabilitation facilities in the United States. An anonymous electronic survey was sent to 105 United States permitted wildlife facilities to collect information about admissions, current antimicrobial and probiotic use practices, and current staff knowledge and attitudes surrounding antimicrobial resistance and probiotic effectiveness. Respondents from over 50% of facilities participated in the survey (54/105), including 45 facilities that treated birds. All facilities reported using antimicrobials, including some from groups considered critically important for human medicine, for a wide range of medical conditions and prophylaxis. Among antibiotics, enrofloxacin and amoxicillin-clavulanic acid were the most commonly used. Antifungals were not as widespread, but itraconazole was the most commonly used. Over 75% of respondents said that their facilities would benefit from having standardized antimicrobial guidelines in place. Probiotics were also used in more than 50% of facilities, but there was notable disparity in opinions regarding their efficacy. The results of this survey are a first step towards understanding antimicrobial and probiotic use practices in the treatment of captive wildlife and developing an antimicrobial stewardship program for wildlife rehabilitation.
Collapse
Affiliation(s)
- Elizabeth A. Miller
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Rachel Amato
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Julia B. Ponder
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Irene Bueno
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| |
Collapse
|
48
|
Martínez SR, Caverzan M, Ibarra LE, Aiassa V, Bohl L, Porporatto C, Gómez ML, Chesta CA, Palacios RE. Light-activated conjugated polymer nanoparticles to defeat pathogens associated with bovine mastitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112971. [PMID: 38955081 DOI: 10.1016/j.jphotobiol.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Collapse
Affiliation(s)
- Sol R Martínez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Matías Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - María L Gómez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Rodrigo E Palacios
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
49
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
50
|
Llor C, Frimodt-Møller N, Miravitlles M, Kahlmeter G, Bjerrum L. Optimising antibiotic exposure by customising the duration of treatment for respiratory tract infections based on patient needs in primary care. EClinicalMedicine 2024; 74:102723. [PMID: 39070175 PMCID: PMC11278592 DOI: 10.1016/j.eclinm.2024.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Primary care antimicrobial stewardship programs have limited success in reducing antibiotic use, prompting the search for new strategies. Convincing general practitioners to resist antibiotic prescription amid uncertainty or patient demands usually poses a significant challenge. Despite common practice, standard durations for common infections lack support from clinical studies. Contrary to common belief, extending antibiotic treatment beyond the resolution of symptoms does not seem to prevent or reduce antimicrobial resistance. Shortening the duration of antibiotic therapy has shown to be effective in mitigating the spread of resistance, particularly in cases of pneumonia. Recent hospital randomised trials suggest that ending antibiotic courses by day three for most lower respiratory tract infections is effective and safe. While community studies are scarce, it is likely that these shorter, tailored courses to meet patients' needs would also be effective and safe in primary care. Therefore, primary care studies should investigate the outcomes of advising patients to discontinue antibiotic treatment upon symptom resolution. Implementing patient-centred, customised treatment durations, rather than fixed courses, is crucial for meeting individual patient needs.
Collapse
Affiliation(s)
- Carl Llor
- University Institute in Primary Care Research Jordi Gol, Catalan Institute of Health, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Research Unit for General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias, Barcelona, Spain
| | - Gunnar Kahlmeter
- Department of Clinical Microbiology, Central Hospital, EUCAST Development Laboratory, Växjö, Sweden
| | - Lars Bjerrum
- Section and Research Unit of General Practice, Department of Public Health, University of Copenhagen, Denmark
| |
Collapse
|