1
|
Sahu A, Pradhan D, Veer B, Kumar S, Singh R, Raza K, Rizvi MA, Jain AK, Verma S. In silico screening, synthesis, characterization and biological evaluation of novel anticancer agents as potential COX-2 inhibitors. Daru 2023; 31:119-133. [PMID: 37454036 PMCID: PMC10624798 DOI: 10.1007/s40199-023-00467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cyclooxygenase enzyme is frequently overexpressed in various types of cancer and found to play a crucial role in poor prognosis in cancer patients. In current research, we have reported the new COX-2 inhibitors for cancer treatment using computer-aided drug design and experimental validation. METHODS A total of 12,795 compounds from the different databases were used to screen against the COX-2 enzyme. It perceived three new compounds with better binding affinity to the enzyme. Afterwards, physicochemical properties and in silico bioactivity were assessed for efficacy, safety, and structural features required for binding. The molecules were synthesized and confirmed by spectroscopic techniques. Later on, molecules were evaluated for their anti-cancer activity using MCF-7, MDA-MB-231 and SiHa cancer cell lines. RESULTS Compound ZINC5921547 and ZINC48442590 (4a, and 4b) reduced the MCF-7, MDA-MB-231, and SiHa cells proliferation potently than parent compounds. The PG-E2 estimation shown, both compounds act through the COX-2 PGE2 axis. Compound 4a and 4b block the cell cycle at G1-S phase and induce cancer cell death. CONCLUSIONS We concluded that compounds 4a and 4b effectively promotes cancer cell death via COX-2 PGE2 axis, and further in vivo studies can be evaluated for development in both compounds as anticancer agents. The compilation of this information will help us to generate better outcome through robust computational methods. The high-quality experimental results may pave the way for identifying effective drug candidates for cancer treatment.
Collapse
Affiliation(s)
- Ankita Sahu
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- Indian Biological Data Center, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Babita Veer
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Sumit Kumar
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Moshahid A Rizvi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Saurabh Verma
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India.
| |
Collapse
|
2
|
Predarska I, Saoud M, Morgan I, Lönnecke P, Kaluđerović GN, Hey-Hawkins E. Triphenyltin(IV) Carboxylates with Exceptionally High Cytotoxicity against Different Breast Cancer Cell Lines. Biomolecules 2023; 13:biom13040595. [PMID: 37189343 DOI: 10.3390/biom13040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mechanisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized and characterized, namely [Ph3Sn(IND)] and [Ph3Sn(FBP)]. The crystal structure of [Ph3Sn(IND)] reveals penta-coordination of the central tin atom with almost perfect trigonal bipyramidal geometry with phenyl groups in the equatorial positions and two axially located oxygen atoms belonging to two distinct carboxylato (IND) ligands leading to formation of a coordination polymer with bridging carboxylato ligands. Employing MTT and CV probes, the antiproliferative effects of both organotin(IV) complexes, indomethacin, and flurbiprofen were evaluated on different breast carcinoma cells (BT-474, MDA-MB-468, MCF-7 and HCC1937). [Ph3Sn(IND)] and [Ph3Sn(FBP)], unlike the inactive ligand precursors, were found extremely active towards all examined cell lines, demonstrating IC50 concentrations in the range of 0.076–0.200 µM. Flow cytometry was employed to examine the mode of action showing that neither apoptotic nor autophagic mechanisms were triggered within the first 48 h of treatment. However, both tin(IV) complexes inhibited cell proliferation potentially related to the dramatic reduction in NO production, resulting from downregulation of nitric oxide synthase (iNOS) enzyme expression.
Collapse
|
3
|
Predarska I, Saoud M, Drača D, Morgan I, Komazec T, Eichhorn T, Mihajlović E, Dunđerović D, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E, Kaluđerović GN. Mesoporous Silica Nanoparticles Enhance the Anticancer Efficacy of Platinum(IV)-Phenolate Conjugates in Breast Cancer Cell Lines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3767. [PMID: 36364539 PMCID: PMC9659259 DOI: 10.3390/nano12213767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 05/15/2023]
Abstract
The main reasons for the limited clinical efficacy of the platinum(II)-based agent cisplatin include drug resistance and significant side effects. Due to their better stability, as well as the possibility to introduce biologically active ligands in their axial positions constructing multifunctional prodrugs, creating platinum(IV) complexes is a tempting strategy for addressing these limitations. Another strategy for developing chemotherapeutics with lower toxicity relies on the ability of nanoparticles to accumulate in greater quantities in tumor tissues through passive targeting. To combine the two approaches, three platinum(IV) conjugates based on a cisplatin scaffold containing in the axial positions derivatives of caffeic and ferulic acid were prepared and loaded into SBA-15 to produce the corresponding mesoporous silica nanoparticles (MSNs). The free platinum(IV) conjugates demonstrated higher or comparable activity with respect to cisplatin against different human breast cancer cell lines, while upon immobilization, superior antiproliferative activity with markedly increased cytotoxicity (more than 1000-fold lower IC50 values) compared to cisplatin was observed. Mechanistic investigations with the most potent conjugate, cisplatin-diacetyl caffeate (1), and the corresponding MSNs (SBA-15|1) in a 4T1 mouse breast cancer cell line showed that these compounds induce apoptotic cell death causing strong caspase activation. In vivo, in BALB/c mice, 1 and SBA-15|1 inhibited the tumor growth while decreasing the necrotic area and lowering the mitotic rate.
Collapse
Affiliation(s)
- Ivana Predarska
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Dijana Drača
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Teodora Komazec
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Ekatarina Mihajlović
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, dr Subotića 1, 11000 Belgrade, Serbia
| | - Sanja Mijatović
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Lee YK, Oh JS. Pharmacological Treatment for Neuroinflammation in Stress-Related Disorder. Biomedicines 2022; 10:biomedicines10102518. [PMID: 36289780 PMCID: PMC9599149 DOI: 10.3390/biomedicines10102518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
Stress is an organism’s response to a biological or psychological stressor, a method of responding to threats. The autonomic nervous system and hypothalamic–pituitary–adrenal axis (HPA axis) regulate adaptation to acute stress and secrete hormones and excitatory amino acids. This process can induce excessive inflammatory reactions to the central nervous system (CNS) by HPA axis, glutamate, renin-angiotensin system (RAS) etc., under persistent stress conditions, resulting in neuroinflammation. Therefore, in order to treat stress-related neuroinflammation, the improvement effects of several mechanisms of receptor antagonist and pharmacological anti-inflammation treatment were studied. The N-methyl-D-aspartate (NMDA) receptor antagonist, peroxisome proliferator-activated receptor agonist, angiotensin-converting enzyme inhibitor etc., effectively improved neuroinflammation. The interesting fact is that not only can direct anti-inflammation treatment improve neuroinflammation, but so can stress reduction or pharmacological antidepressants. The antidepressant treatments, including selective serotonin reuptake inhibitors (SSRI), also helped improve stress-related neuroinflammation. It presents the direction of future development of stress-related neuroinflammation drugs. Therefore, in this review, the mechanism of stress-related neuroinflammation and pharmacological treatment candidates for it were reviewed. In addition, treatment candidates that have not yet been verified but indicate possibilities were also reviewed.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji-Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun-Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yun-Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (Y.-K.L.); (J.-S.O.)
| | - Jae-Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (Y.-K.L.); (J.-S.O.)
| |
Collapse
|
5
|
Predarska I, Saoud M, Morgan I, Eichhorn T, Kaluđerović GN, Hey-Hawkins E. Cisplatin-cyclooxygenase inhibitor conjugates, free and immobilised in mesoporous silica SBA-15, prove highly potent against triple-negative MDA-MB-468 breast cancer cell line. Dalton Trans 2021; 51:857-869. [PMID: 34877948 DOI: 10.1039/d1dt03265h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For the development of anticancer drugs with higher activity and reduced toxicity, two approaches were combined: preparation of platinum(IV) complexes exhibiting higher stability compared to their platinum(II) counterparts and loading them into mesoporous silica SBA-15 with the aim to utilise the passive enhanced permeability and retention (EPR) effect of nanoparticles for accumulation in tumour tissues. Three conjugates based on a cisplatin scaffold bearing the anti-inflammatory drugs naproxen, ibuprofen or flurbiprofen in the axial positions (1, 2 and 3, respectively) were synthesised and loaded into SBA-15 to afford the mesoporous silica nanoparticles (MSNs) SBA-15|1, SBA-15|2 and SBA-15|3. Superior antiproliferative activity of both free and immobilised conjugates in a panel of four breast cancer cell lines (MDA-MB-468, HCC1937, MCF-7 and BT-474) with markedly increased cytotoxicity with respect to cisplatin was demonstrated. All compounds exhibit highest activity against the triple-negative cell line MDA-MB-468, with conjugate 1 being the most potent. However, against MCF-7 and BT-474 cell lines, the most notable improvement was found, with IC50 values up to 240-fold lower than cisplatin. Flow cytometry assays clearly show that all compounds induce apoptotic cell death elevating the levels of both early and late apoptotic cells. Furthermore, autophagy as well as formation of reactive oxygen species (ROS) and nitric oxide (NO) were elevated to a similar or greater extent than with cisplatin.
Collapse
Affiliation(s)
- Ivana Predarska
- Universität Leipzig, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany. .,Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany.
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany.
| | - Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany.
| | - Evamarie Hey-Hawkins
- Universität Leipzig, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
6
|
Ziaei E, Emami J, Rezazadeh M, Kazemi M. Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer. Anticancer Agents Med Chem 2021; 22:951-967. [PMID: 34382530 DOI: 10.2174/1871520621666210811111152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND using a combination of chemotherapeutic agents with novel drug delivery platforms to enhance the anticancer efficacy of the drug and minimizing the side effects, is very imperative for lung cancer treatments. OBJECTIVE The aim of the present study was to develop, characterize, and optimize porous poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles for simultaneous delivery of docetaxel (DTX) and celecoxib (CXB) through the pulmonary route for lung cancer. METHODS Drug-loaded porous microparticles were prepared by an emulsion solvent evaporation method. The impact of various processing and formulation variables including PLGA amount, dichloromethane volume, homogenization speed, polyvinyl alcohol volume and concentration were assessed on entrapment efficiency, mean release time, particle size, mass median aerodynamic diameter, fine particle fraction and geometric standard deviation using a two-level factorial design. An optimized formulation was prepared and evaluated in terms of size and morphology using a scanning electron microscope. RESULTS FTIR, DSC, and XRD analysis confirmed drug entrapment and revealed no drug-polymer chemical interaction. Cytotoxicity of DTX along with CXB against A549 cells was significantly enhanced compared to DTX and CXB alone and the combination of DTX and CXB showed the greatest synergistic effect at a 1/500 ratio. CONCLUSION In conclusion, the results of the present study suggest that encapsulation of DTX and CXB in porous PLGA microspheres with desirable features are feasible and their pulmonary co-administration would be a promising strategy for the effective and less toxic treatment of various lung cancers.
Collapse
Affiliation(s)
- Elham Ziaei
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Mahboubeh Rezazadeh
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Moloud Kazemi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
7
|
Ahmad I, Nasti TH, Rihan HM, Jimenez H, Elmets CA, Yusuf N. Toll-like receptor-4 deficiency inhibits ultraviolet radiation-induced tumor development by modulation of immune and inflammatory responses. Mol Carcinog 2020; 60:60-70. [PMID: 33283918 DOI: 10.1002/mc.23271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Ultraviolet (UV) B irradiation of the skin induces acute inflammation, as characterized by erythema, edema, and immunosuppression, and is subsequently linked to the progression of skin cancer. Toll-like receptor 4 (TLR4), a component of innate immunity, has been shown to play an important role in cancer. To elucidate the role of TLR4 in UVB-induced tumor development, TLR4-proficient (C3H/HeN) and TLR4-deficient (C3H/HeJ) mice were exposed to multiple doses of UVB radiation (200 mJ/cm2 ) for 40 weeks. Photocarcinogenesis was retarded in terms of tumor incidence, and tumor latency, in mice deficient in TLR4 compared with TLR4-proficient mice, whereas significantly greater numbers of tumors occurred in TLR4-proficient mice. There was significant upregulation of inflammatory markers like COX-2, PGE2 , S100A8, and S100A9 in the skin of TLR4-proficient mice than the skin of TLR4-deficient mice. Furthermore, we found that TLR4-proficient mice had a significantly higher number of Gr1+CD11b+ myeloid cells CD4+CD25+ regulatory T-cells than TLR4-deficient mice. Furthermore, the levels of interferon (IFN)-γ cytokine was increased and the levels of interleukin (IL)-4, IL-10, and IL-17 cytokines were decreased in serum, skin, and tumor lysates of TLR4-deficient mice in comparison with samples from TLR4-proficient mice. Together, our data indicate that TLR4-mediated inflammation may cause suppression of antitumor responses and trigger the development of UVB-induced skin cancers. Thus, strategies to inhibit TLR4-mediated immune suppression may allow us to develop preventive and therapeutic approaches for the management of UVB-induced cutaneous tumors.
Collapse
Affiliation(s)
- Israr Ahmad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tahseen H Nasti
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heba M Rihan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hugo Jimenez
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Bikle DD. The Vitamin D Receptor as Tumor Suppressor in Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:285-306. [PMID: 32918224 DOI: 10.1007/978-3-030-46227-7_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cutaneous malignancies including melanomas and keratinocyte carcinomas (KC) are the most common types of cancer, occurring at a rate of over one million per year in the United States. KC, which include both basal cell carcinomas and squamous cell carcinomas, are substantially more common than melanomas and form the subject of this chapter. Ultraviolet radiation (UVR), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. Keratinocytes are the major cell in the epidermis. These cells not only produce vitamin D but contain the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and express the receptor for this metabolite, the vitamin D receptor (VDR). This allows the cell to respond to the 1,25(OH)2D that it produces. Based on our own data and that reported in the literature, we conclude that vitamin D signaling in the skin suppresses UVR-induced epidermal tumor formation. In this chapter we focus on four mechanisms by which vitamin D signaling suppresses tumor formation. They are inhibition of proliferation/stimulation of differentiation with discussion of the roles of hedgehog, Wnt/β-catenin, and hyaluronan/CD44 pathways in mediating vitamin D regulation of proliferation/differentiation, regulation of the balance between oncogenic and tumor suppressor long noncoding RNAs, immune regulation, and promotion of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology, VA Medical Center and University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Overview of the Anticancer Profile of Avenanthramides from Oat. Int J Mol Sci 2019; 20:ijms20184536. [PMID: 31540249 PMCID: PMC6770293 DOI: 10.3390/ijms20184536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases.
Collapse
|
10
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
11
|
Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories. COSMETICS 2019. [DOI: 10.3390/cosmetics6010006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, inflammation also plays a key role in intrinsic aging. Inflammatory events in the skin lead to a reduction in collagen gene activity but an increase in activity of the genes for matrix metalloproteinases. Inflammation also alters proliferation rates of cells in all skin layers, causes thinning of the epidermis, a flattening of the dermo-epidermal junction, an increase in irregular pigment production, and, finally, an increased incidence of skin cancer. While a large number of inflammatory mediators, including IL-1, TNF-alpha and PGE-2, are responsible for many of these damaging effects, this review will focus primarily on the role of PGE-2 in aging. Levels of this hormone-like mediator increase quickly when skin is exposed to ultraviolet radiation (UVR), causing changes in genes needed for normal skin structure and function. Further, PGE-2 levels in the skin gradually increase with age, regardless of whether or not the skin is protected from UVR, and this smoldering inflammation causes continuous damage to the dermal matrix. Finally, and perhaps most importantly, PGE-2 is strongly linked to skin cancer. This review will focus on: (1) the role of inflammation, and particularly the role of PGE-2, in accelerating skin aging, and (2) current research on natural compounds that inhibit PGE-2 production and how these can be developed into topical products to retard or even reverse the aging process, and to prevent skin cancer.
Collapse
|
12
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
13
|
Current Disease-Targets for Oleocanthal as Promising Natural Therapeutic Agent. Int J Mol Sci 2018; 19:ijms19102899. [PMID: 30250008 PMCID: PMC6213726 DOI: 10.3390/ijms19102899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022] Open
Abstract
The broad number of health benefits which can be obtained from the long-term consumption of olive oil are attributed mainly to its phenolic fraction. Many olive oil phenolics have been studied deeply since their discovery due to their bioactivity properties, such as Hydroxytyrosol. Similarly, in the last decade, the special attention of researchers has been addressed to Oleocanthal (OC). This olive oil phenolic compound has recently emerged as a potential therapeutic agent against a variety of diseases, including cancer, inflammation, and neurodegenerative and cardiovascular diseases. Recently, different underlying mechanisms of OC against these diseases have been explored. This review summarizes the current literature on OC to date, and focuses on its promising bioactivities against different disease-targets.
Collapse
|
14
|
Mirzoeva S, Tong X, Bridgeman BB, Plebanek MP, Volpert OV. Apigenin Inhibits UVB-Induced Skin Carcinogenesis: The Role of Thrombospondin-1 as an Anti-Inflammatory Factor. Neoplasia 2018; 20:930-942. [PMID: 30118999 PMCID: PMC6098219 DOI: 10.1016/j.neo.2018.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/30/2023]
Abstract
We have previously demonstrated that apigenin promotes the expression of antiangiogenic protein thrombospondin-1 (TSP1) via a mechanism driven by mRNA-binding protein HuR. Here, we generated a novel mouse model with whole-body THBS-1 gene knockout on SKH-1 genetic background, which allows studies of UVB-induced acute skin damage and carcinogenesis and tests TSP1 involvement in apigenin's anticancer effects. Apigenin significantly inhibited UVB-induced carcinogenesis in the wild-type (WT) animals but not in TSP1 KO (TKO) mice, suggesting that TSP1 is a critical component of apigenin's chemopreventive function in UVB-induced skin cancer. Importantly, TKO mice presented with the elevated cutaneous inflammation at baseline, which was manifested by increased inflammatory infiltrates (neutrophils and macrophages) and elevated levels of the two key inflammatory cytokines, IL-6 and IL-12. In agreement, maintaining normal TSP1 expression in the UVB-irradiated skin of WT mice using topical apigenin application caused a marked decrease of circulating inflammatory cytokines. Finally, TKO mice showed an altered population dynamics of the bone marrow myeloid progenitor cells (CD11b+), with dramatic expansion of the population of neutrophil progenitors (Ly6ClowLy6Ghigh) compared to the WT control. Our results indicate that the cutaneous tumor suppressor TSP1 is a critical mediator of the in vivo anticancer effect of apigenin in skin, specifically of its anti-inflammatory action.
Collapse
Affiliation(s)
- Salida Mirzoeva
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Xin Tong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
| | - Bryan B Bridgeman
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michael P Plebanek
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Olga V Volpert
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054
| |
Collapse
|
15
|
Ahmad I, Guroji P, DeBrot AH, Manapragada PP, Katiyar SK, Elmets CA, Yusuf N. Loss of INK4a/Arf gene enhances ultraviolet radiation-induced cutaneous tumor development. Exp Dermatol 2017; 26:1018-1025. [PMID: 28418604 DOI: 10.1111/exd.13356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
The CDKN2A locus encodes for tumor suppressor genes p16INK4a and p14Arf which are frequently inactivated in human skin tumors. The purpose of this study was to determine the relationship between loss of INK4a/Arf activity and inflammation in the development of ultraviolet (UV) radiation-induced skin tumors. Panels of INK4a/Arf-/- mice and wild-type (WT) mice were treated with a single dose of UVB (200 mJ/cm2 ). For long-term studies, these mice were irradiated with UVB (200 mJ/cm2 ) three times weekly for 30 weeks. At the end of the experiment, tissues were harvested from mice and assayed for inflammatory biomarkers and cytokines. A single dose of UVB resulted in a significant increase in reactive oxygen species (ROS) and 8-dihydroxyguanosine (8-oxo-dG) lesions in INK4a/Arf-/- mice compared to WT mice. When subjected to chronic UVB, we found that 100% of INK4a/Arf-/- mice had tumors, whereas there were no tumors in WT controls after 24 weeks of UVB exposure. The increase in tumor development correlated with a significant increase in nuclear factor (NF)-κB, cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2 ) and its receptors both in UVB-exposed skin and in the tumors. A significant increase was seen in inflammatory cytokines in skin samples of INK4a/Arf-/- mice following treatment with chronic UVB radiation. Furthermore, significantly more CD11b+ Gr1+ myeloid cells were present in UVB-exposed INK4a/Arf-/- mice compared to WT mice. Our data indicate that by targeting UVB-induced inflammation, it may be possible to prevent UVB-induced skin tumors in individuals that carry CDKN2A mutation.
Collapse
Affiliation(s)
- Israr Ahmad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amanda H DeBrot
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Padma P Manapragada
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Veteran Affairs Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Veteran Affairs Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Veteran Affairs Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Yang DH, Ryu YM, Lee SM, Jeong JY, Yoon SM, Ye BD, Byeon JS, Yang SK, Myung SJ. 15-Hydroxyprostaglandin dehydrogenase as a marker in colon carcinogenesis: analysis of the prostaglandin pathway in human colonic tissue. Intest Res 2017; 15:75-82. [PMID: 28239316 PMCID: PMC5323311 DOI: 10.5217/ir.2017.15.1.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Cyclooxygenase-2 (COX-2), 15-hydroxyprostaglandin dehydrogenase (15-PGDH), and microsomal prostaglandin E synthase-1 (mPGEs-1) regulate prostaglandin E2 (PGE2) expression and are involved in colon carcinogenesis. We investigated the expression of PGE2 and its regulating genes in sporadic human colon tumors and matched normal tissues. Methods Twenty colonic adenomas and 27 colonic adenocarcinomas were evaluated. COX-2 and 15-PGDH expression was quantified by real-time polymerase chain reaction. The expression of PGE2 and mPGEs-1 was measured using enzyme-linked immunosorbent assay and Western blotting, respectively. Results The expression of COX-2, mPGEs-1, and PGE2 did not differ between the adenomas and matched distant normal tissues. 15-PGDH expression was lower in adenomas than in the matched normal colonic tissues (P<0.001). In adenocarcinomas, mPGEs-1 and PGE2 expression was significantly higher (P<0.001 and P=0.020, respectively), and COX-2 expression did not differ from that in normal tissues (P=0.207). 15-PGDH expression was significantly lower in the normal colonic mucosa from adenocarcinoma patients than in the normal mucosa from adenoma patients (P=0.018). Conclusions Early inactivation of 15-PGDH, followed by activation of COX-2 and mPGEs-1, contributes to PGE2 production, leading to colon carcinogenesis. 15-PGDH might be a novel candidate marker for early detection of field defects in colon carcinogenesis.
Collapse
Affiliation(s)
- Dong-Hoon Yang
- Department of Gastroenteroloy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Mi Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Yong Jeong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soon Man Yoon
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Byong Duk Ye
- Department of Gastroenteroloy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Sik Byeon
- Department of Gastroenteroloy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenteroloy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Jae Myung
- Department of Gastroenteroloy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Anti-cancer activity and potential mechanism of a novel aspirin derivative. Eur J Pharmacol 2016; 791:137-146. [PMID: 27565221 DOI: 10.1016/j.ejphar.2016.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022]
Abstract
Aspirin has been used in the treatment and chemoprevention of many malignant cancers. The mechanism of its anti-cancer activity mainly involves the inhibition of cyclooxygenase-2 (COX-2). However, the application of aspirin is limited by the serious gastric mucosal damage that accompanies its usage. We have previously reported the preparation of a novel aspirin derivative that we named Ca-Asp, and showed that it causes less damage to gastric mucosa of rat and inhibits the expression of COX-2 to higher degree than Asp. However, the anti-cancer effect and mechanism of Ca-Asp was not demonstrated. In this study, the anti-cancer effect of Ca-Asp was investigated and compared with those of Asp and Hydroxyapatite (Hap) at the cell level. The results showed that treatment of SGC-7901 cells (human gastric cancer cell line) with 200-400μg/ml Ca-Asp resulted in significant reduction in cell viability, compared to treatment with either Asp or Hap, and at a higher concentration (500μg/ml). Subsequent investigation into the possible underlying mechanism showed that Ca-Asp induced apoptosis and caused cell cycle arrest at the G1 phase. Ca-Asp also up-regulated the levels of caspase-3 and p53, but down regulated the level of cyclin D1, NF-κB, COX-2 and PGE2. Furthermore, simultaneous treatment of SGC-7901 cells with Ca-Asp and exogenous PGE2 reduced the anti-proliferative effect of Ca-Asp on the cells. Taken together, the results suggested that Ca-Asp might act as a potential anti-cancer drug, and that its suppression of PGE2 production might constitute an important part of its anti-cancer activity.
Collapse
|
18
|
Is aspirin use associated with a decreased risk of ovarian cancer? A systematic review and meta-analysis of observational studies with dose-response analysis. Gynecol Oncol 2016; 142:368-77. [DOI: 10.1016/j.ygyno.2016.04.543] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 01/11/2023]
|
19
|
K-Ras and cyclooxygenase-2 coactivation augments intraductal papillary mucinous neoplasm and Notch1 mimicking human pancreas lesions. Sci Rep 2016; 6:29455. [PMID: 27381829 PMCID: PMC4933934 DOI: 10.1038/srep29455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/17/2016] [Indexed: 12/15/2022] Open
Abstract
Mutational activation of K-Ras is an initiating event of pancreatic ductal adenocarcinomas (PDAC) that may develop either from pancreatic intraepithelial neoplasia (PanIN) or intraductal papillary mucinous neoplasms (IPMN). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is causally related to pancreatic carcinogenesis. Here, we deciphered the impact of COX-2, a key modulator of inflammation, in concert with active mutant K-RasG12D on tumor burden and gene expression signature using compound mutant mouse lines. Concomitant activation of COX-2 and K-RasG12D accelerated the progression of pancreatic intraepithelial lesions predominantly with a cystic papillary phenotype resembling human IPMN. Transcriptomes derived from laser capture microdissected preneoplastic lesions of single and compound mutants revealed a signature that was significantly enriched in Notch1 signaling components. In vitro, Notch1 signaling was COX-2-dependent. In line with these findings, human IPMN stratified into intestinal, gastric and pancreatobillary types displayed Notch1 immunosignals with high prevalence, especially in the gastric lesions. In conclusion, a yet unknown link between activated Ras, protumorigenic COX-2 and Notch1 in IPMN onset was unraveled.
Collapse
|
20
|
Millanta F, Andreani G, Rocchigiani G, Lorenzi D, Poli A. Correlation Between Cyclo-oxygenase-2 and Vascular Endothelial Growth Factor Expression in Canine and Feline Squamous Cell Carcinomas. J Comp Pathol 2016; 154:297-303. [PMID: 27012907 DOI: 10.1016/j.jcpa.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Overexpression of cyclo-oxygenase (COX)-2 is involved in tumour growth and spread by modulating the production of angiogenic factors such as vascular endothelial growth factor (VEGF). Expression of COX-2 and VEGF was investigated immunohistochemically in 51 canine and feline cutaneous and non-cutaneous squamous cell carcinomas (SCCs) and the correlation between expression of these molecules and clinicopathological variables was evaluated. COX-2 and VEGF expression was not observed in normal skin keratinocytes. COX-2 overexpression occurred in 53% and 61% of the canine and feline SCCs, respectively. The expression of both markers was higher in cutaneous compared with non-cutaneous SCCs. In both species COX-2 and VEGF expression was correlated with the progression of the disease, but not with the presence of lymphatic invasion, tumour grading or tumour classification in the cutaneous tumours. Further study will be required to understand the role of the COX-2 pathway in angiogenesis in SCC.
Collapse
Affiliation(s)
- F Millanta
- Department of Veterinary Sciences, University of Pisa, Italy
| | - G Andreani
- Department of Veterinary Sciences, University of Pisa, Italy
| | - G Rocchigiani
- Department of Veterinary Sciences, University of Pisa, Italy
| | - D Lorenzi
- Department of Veterinary Sciences, University of Pisa, Italy
| | - A Poli
- Department of Veterinary Sciences, University of Pisa, Italy.
| |
Collapse
|
21
|
Burke MT, Isbel N, Barraclough KA, Jung JW, Wells JW, Staatz CE. Genetics and nonmelanoma skin cancer in kidney transplant recipients. Pharmacogenomics 2016; 16:161-72. [PMID: 25616102 DOI: 10.2217/pgs.14.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kidney transplant recipients (KTRs) have a 65- to 250-fold greater risk than the general population of developing nonmelanoma skin cancer. Immunosuppressive drugs combined with traditional risk factors such as UV radiation exposure are the main modifiable risk factors for skin cancer development in transplant recipients. Genetic variation affecting immunosuppressive drug pharmacokinetics and pharmacodynamics has been associated with other transplant complications and may contribute to differences in skin cancer rates between KTRs. Genetic polymorphisms in genes encoding the prednisolone receptor, GST enzyme, MC1R, MTHFR enzyme and COX-2 enzyme have been shown to increase the risk of nonmelanoma skin cancer in KTRs. Genetic association studies may improve our understanding of how genetic variation affects skin cancer risk and potentially guide immunosuppressive treatment and skin cancer screening in at risk individuals.
Collapse
Affiliation(s)
- Michael T Burke
- Department of Nephrology, University of Queensland at the Princess Alexandra Hospital, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
23
|
Correlation of 15-prostagladin dehydrogenase expression with clinicopathological factors and survival rate in gastric adenocarcinoma. Int J Surg 2015; 13:96-101. [PMID: 25704623 DOI: 10.1016/j.ijsu.2014.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The prostaglandin (PG) E2 level, which is associated with oncogenesis, progression and metastasis in various types of cancer, is determined by reciprocal regulation of 15-prostaglandin dehydrogenase (15-PGDH) and cyclooxygenase-2. This study investigated 15-PGDH expression in gastric adenocarcinoma, the associations between 15-PGDH expression and clinicopathological factors, and the correlation between 15-PGDH expression and the 5-year gastric-cancer-specific survival rate (5-year GCSS). METHODS From 175 patients who underwent gastrectomy, we obtained biopsies of gastric adenocarcinoma tissues and adjacent normal tissues for preparation as formalin-fixed, paraffin-embedded specimens and conducted an immunohistochemical analysis. RESULTS 15-PGDH expression was low in 65.1% of cases. 15-PGDH expression showed no relationship with age or gender, but was significantly correlated with the pathologic type, T stage, N stage, TNM stage, positive lymph node metastasis, metastasis to a larger quantity of lymph nodes, positive lymphatic invasion, positive vascular invasion, positive perineural invasion, and palliative gastrectomy. The 5-year GCSS of the low-expression group was 77.19% and a lower level of 15-PGDH expression correlated to a lower 5-year GCSS. 15-PGDH expression significantly influenced the 5-year GCSS on univariate but not multivariate analysis. CONCLUSION Our findings indicate that 15-PGDH expression was low in gastric adenocarcinoma and was correlated with the clinicopathological factors associated with prognosis and a more advanced stage of gastric adenocarcinoma. Also, 15-PGDH expression was significantly associated with the 5-year GCSS, but was not an independent prognostic factor thereof.
Collapse
|
24
|
Maresca V, Flori E, Picardo M. Skin phototype: a new perspective. Pigment Cell Melanoma Res 2015; 28:378-89. [DOI: 10.1111/pcmr.12365] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Vittoria Maresca
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| |
Collapse
|
25
|
Song NR, Kim JE, Park JS, Kim JR, Kang H, Lee E, Kang YG, Son JE, Seo SG, Heo YS, Lee KW. Licochalcone A, a polyphenol present in licorice, suppresses UV-induced COX-2 expression by targeting PI3K, MEK1, and B-Raf. Int J Mol Sci 2015; 16:4453-70. [PMID: 25710724 PMCID: PMC4394430 DOI: 10.3390/ijms16034453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 12/02/2022] Open
Abstract
Licorice is a traditional botanical medicine, and has historically been commonly prescribed in Asia to treat various diseases. Glycyrrhizin (Gc), a triterpene compound, is the most abundant phytochemical constituent of licorice. However, high intake or long-term consumption of Gc has been associated with a number of side effects, including hypertension. However, the presence of alternative bioactive compounds in licorice with anti-carcinogenic effects has long been suspected. Licochalcone A (LicoA) is a prominent member of the chalcone family and can be isolated from licorice root. To date, there have been no reported studies on the suppressive effect of LicoA against solar ultraviolet (sUV)-induced cyclooxygenase (COX)-2 expression and the potential molecular mechanisms involved. Here, we show that LicoA, a major chalcone compound of licorice, effectively inhibits sUV-induced COX-2 expression and prostaglandin E2 PGE2 generation through the inhibition of activator protein 1 AP-1 transcriptional activity, with an effect that is notably more potent than Gc. Western blotting analysis shows that LicoA suppresses sUV-induced phosphorylation of Akt/ mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinases (ERK)1/2/p90 ribosomal protein S6 kinase (RSK) in HaCaT cells. Moreover, LicoA directly suppresses the activity of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK)1, and B-Raf, but not Raf-1 in cell-free assays, indicating that PI3K, MEK1, and B-Raf are direct molecular targets of LicoA. We also found that LicoA binds to PI3K and B-Raf in an ATP-competitive manner, although LicoA does not appear to compete with ATP for binding with MEK1. Collectively, these results provide insight into the biological action of LicoA, which may have potential for development as a skin cancer chemopreventive agent.
Collapse
Affiliation(s)
- Nu Ry Song
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
| | - Jong-Eun Kim
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
| | - Jun Seong Park
- Skin Research Institute, Amorepacific R&D Center, Yongin, 446-829, Korea.
| | - Jong Rhan Kim
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
| | - Heerim Kang
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
| | - Eunjung Lee
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
- Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam 463-746, Korea.
| | - Young-Gyu Kang
- Skin Research Institute, Amorepacific R&D Center, Yongin, 446-829, Korea.
| | - Joe Eun Son
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
| | - Sang Gwon Seo
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
| | - Yong Seok Heo
- Department of Chemistry, Konkuk University, Seoul, 143-701, Korea.
| | - Ki Won Lee
- WCU Biomodulation Major, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443-270, Korea.
| |
Collapse
|
26
|
Krishan S, Richardson DR, Sahni S. Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Mol Pharmacol 2014; 87:363-77. [DOI: 10.1124/mol.114.095810] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Chung MH, Kim DH, Na HK, Kim JH, Kim HN, Haegeman G, Surh YJ. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat Res 2014; 768:74-83. [PMID: 24742714 DOI: 10.1016/j.mrfmmm.2014.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.
Collapse
Affiliation(s)
- Myung-Hoon Chung
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Jung-Hwan Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ha-Na Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Young-Joon Surh
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
28
|
Leonurine Exerts Anti-Inflammatory Effect by Regulating Inflammatory Signaling Pathways and Cytokines in LPS-Induced Mouse Mastitis. Inflammation 2014; 38:79-88. [DOI: 10.1007/s10753-014-0009-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Jeong JK, Chang HK, Park KY. Doenjang prepared with mixed starter cultures attenuates azoxymethane and dextran sulfate sodium-induced colitis-associated colon carcinogenesis in mice. J Carcinog 2014; 13:9. [PMID: 25191137 PMCID: PMC4141357 DOI: 10.4103/1477-3163.137699] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/20/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUNDS Doenjang is traditional Korean fermented soybean paste and widely known for its various health benefits including anticancer effect. In this study, we manufactured doenjang with the grain-type meju using probiotic mixed starter cultures of Aspegillus oryzae, Bacillus subtilis-SKm, and Lactococcus lactis-GAm to improve the qualities and beneficial properties of doenjang. MATERIALS AND METHODS The inhibitory effects of the doenjang prepared with the grain-type meju using mixed starter cultures were investigated in azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced colon carcinogenesis mice model. AOM and DSS colon carcinogenesis was induced in female C57BL/6 mice, and doenjang was orally administered for 4 weeks. Body weight, colon length, and colon weight of mice were determined, and colonic tissues were histologically evaluated. The serum levels of proinflammatory cytokines as well as the expression of inflammation- and apoptosis-related genes in colonic tissue were also analyzed. RESULTS Administration of the doenjang using probiotic mixed starter cultures ameliorated the symptoms of colon cancer, and reduced the incidence of neoplasia, and reduced the levels of serum proinflammatory cytokines such as interleukin-6, and tumor necrosis factor-α and inducible nitric oxide synthase and cycloooxygenase-2 expression levels in colonic tissue. In addition, it increased Bax and reduced Bcl-2 expression levels and increased p21 and p53 expression in the colonic tissues. CONCLUSION These findings indicate that the doenjang attenuated colon carcinogenesis induced by AOM and DSS by ameliorating the symptoms of colon cancer, reducing the occurrence of neoplasia, regulating proinflammatory cytokine levels, and controlling the expressions of inflammation- and apoptosis-related genes in the colonic tissue.
Collapse
Affiliation(s)
- Ji-Kang Jeong
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Hee-Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Busan 602-702, Korea
| | - Kun-Young Park
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
30
|
Aspirin may prevent cholangiocarcinoma: a case-control study from the United kingdom. Dig Dis Sci 2014; 59:1567-72. [PMID: 24535250 DOI: 10.1007/s10620-014-3056-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The proliferation of cholangiocarcinoma cells is suppressed in cell culture by nonsteroidal antiinflammatory drugs (NSAIDs) through the inhibition of cyclo-oxygenase-2 enzyme and also by statins which decrease the production of mediators of the cell cycle. AIMS To investigate whether there is an inverse association between NSAIDs, including aspirin, and the development of cholangiocarcinoma and, for the first time in a Western population, between statin use and the development of cholangiocarcinoma. METHODS This epidemiological study had a case-control design in which cases of cholangiocarcinoma diagnosed in Norwich between 2004 and 2010 and in Leicester in 2007 were identified from clinical databases. Controls were patients with basal cell carcinomas treated in the respective dermatology departments. The case notes of all subjects were reviewed to confirm diagnoses and obtain information on medication use. The data were analyzed using unconditional logistic regression to calculate odds ratios (OR) with 95 % confidence intervals (CI). RESULTS In total, 81 cases of cholangiocarcinoma and 275 controls were identified. For all cases there was radiological evidence of cancer and 86 % of the cases involved the extrahepatic biliary system. Aspirin use was inversely associated with the development of cholangiocarcinoma (OR 0.45, 95 % CI 0.22-0.92), but there were no significant associations between the development of cholangiocarcinoma and NSAIDs (OR 0.39; 95 % CI 0.11-1.42) or statins (OR 0.58; 95 % CI 0.28-1.19). CONCLUSIONS The epidemiological data from this study support the biological evidence for aspirin having a protective effect against the development of cholangiocarcinoma. Aspirin use should be measured in future etiological studies and assessed as a chemoprevention agent in those at high risk of developing this type of cancer.
Collapse
|
31
|
Abstract
The PGE2 pathway is important in inflammation-driven diseases and specific targeting of the inducible mPGES-1 is warranted due to the cardiovascular problems associated with the long-term use of COX-2 inhibitors. This review focuses on patents issued on methods of measuring mPGES-1 activity, on drugs targeting mPGES-1 and on other modulators of free extracellular PGE2 concentration. Perspectives and conclusions regarding the status of these drugs are also presented. Importantly, no selective inhibitors targeting mPGES-1 have been identified and, despite the high number of published patents, none of these drugs have yet made it to clinical trials.
Collapse
|
32
|
Abstract
The PRKAA1 gene encodes the catalytic α-subunit of 5′ AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor that maintains energy homeostasis within the cell and is activated when the AMP/ATP ratio increases. When activated, AMPK increases catabolic processes that increase ATP synthesis and inhibit anabolic processes that require ATP. Additionally, AMPK also plays a role in activating autophagy and inhibiting energy consuming processes, such as cellular growth and proliferation. Due to its role in energy metabolism, it could act as a potential target of many therapeutic drugs that could be useful in the treatment of several diseases, for example, diabetes. Moreover, AMPK has been shown to be involved in inhibiting tumour growth and metastasis, and has also been implicated in the pathology of neurodegenerative and cardiac disorders. Hence, a better understanding of AMPK and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target.
Collapse
|
33
|
Emami J, Pourmashhadi A, Sadeghi H, Varshosaz J, Hamishehkar H. Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm Dev Technol 2014; 20:791-800. [PMID: 24841045 DOI: 10.3109/10837450.2014.920360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of the present study was to develop, evaluate and optimize a polymeric nanoparticle (NP) system containing Cxb for pulmonary delivery of Cxb in the treatment of lung cancer. NPs were prepared by the emulsion solvent diffusion and evaporation method using poly(D, L lactideglycolide) (PLGA). The size of NPs ranged from 153 to 192 nm and was affected by PLGA content, surfactant concentration and organic phase volume. Zeta potential of NPs (-4.5 to -8.6 mV) was more affected by PLGA content and organic phase volume. PLGA content was also the most effective factor on the entrapment efficiency and release rate of Cxb from NPs. The optimum formulation which obtained with 5 mg Cxb, 25 mg PLGA, 0.5% surfactant, 2.5% organic volume and 15 000 rpm showed release of Cxb within 30 h. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass medium aerodynamic diameter, geometric standard deviation of 70.3%, 1.46% and 3.38%, respectively. Our results provide evidence for the potential of PLGA NPs for delivery of Cxb through inhalation as means to alleviate the cardiovascular risk of Cxb administration.
Collapse
Affiliation(s)
- Jaber Emami
- a Department of Pharmaceutics , School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Research Center, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Aida Pourmashhadi
- a Department of Pharmaceutics , School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Research Center, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Hojat Sadeghi
- b Department of Medicinal Chemistry , School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences , Isfahan , Iran and
| | - Jaleh Varshosaz
- a Department of Pharmaceutics , School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Research Center, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Hamed Hamishehkar
- c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
34
|
Millanta F, Asproni P, Canale A, Citi S, Poli A. COX-2, mPGES-1 and EP2 receptor immunohistochemical expression in canine and feline malignant mammary tumours. Vet Comp Oncol 2014; 14:270-80. [PMID: 24824420 DOI: 10.1111/vco.12096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG) signalling is involved in human and animal cancer development. PG E2 (PGE2 ) tumour-promoting activity has been confirmed and its production is controlled by Cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1). Evidence suggests that mPGES-1 and COX-2 contribute to carcinogenesis through the EP2 receptor. The aim of our study was to detect by immunohistochemistry COX-2, mPGES-1 and EP2 receptor expression in canine (n = 46) and feline (n = 50) mammary tumours and in mammary non-neoplastic tissues. COX-2 positivity was observed in 83% canine and 81% feline mammary carcinomas, mPGES-1 in 75% canine and 66% feline mammary carcinomas and the EP2 receptor expression was observed in 89% canine and 54% feline carcinomas. The frequency of COX-2, EP2 receptor and mPGES-1 expression was significantly higher in carcinomas than in non-neoplastic tissues and adenomas. COX-2, mPGES-1 and EP2 receptor expression was strongly associated. These findings support a role of the COX-2/PGE2 pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- F Millanta
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - P Asproni
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - A Canale
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - S Citi
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - A Poli
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Abstract
The negative association of the latitude where people live and the incidence of non cutaneous cancer in that population in North America have been demonstrated in many studies for many types of cancer. Since the intensity of UVB exposure decreases with increasing latitude, and UVB exposure provides the mechanism for vitamin D production in the skin, the hypothesis that increased vitamin D provides protection against the development of cancer has been proposed. This hypothesis has been tested in a substantial number of prospective and case control studies and in a few randomized clinical trials (RTC) assessing whether either vitamin D intake or serum levels of 25 hydroxyvitamin D (25OHD) correlate (inversely) with cancer development. Most of the studies have focused on colorectal, breast, and prostate cancer. The results have been mixed. The most compelling data for a beneficial relationship between vitamin D intake or serum 25OHD levels and cancer have been obtained for colorectal cancer. The bulk of the evidence also favors a beneficial relationship for breast cancer, but the benefit of vitamin D for prostate and skin cancer in clinical populations has been difficult to demonstrate. RTCs in general have been flawed in execution or too small to provide compelling evidence one way or the other. In contrast, animal studies have been quite consistent in their demonstration that vitamin D and/or its active metabolite 1,25 dihydroxyvitamin D (1,25(OH)2D) can prevent the development and/or treat a variety of cancers in a variety of animal models. Furthermore, 1,25(OH)2D has been shown to impact a number of cellular mechanisms that would be expected to underlie its anticancer effects. Thus, there is a dilemma-animal and cellular studies strongly support a role for vitamin D in the prevention and treatment of cancer, but the clinical studies for most cancers have not yet delivered compelling evidence that the promise from preclinical studies has been fulfilled in the clinic.
Collapse
Affiliation(s)
- Daniel D Bikle
- Endocrine Research Unit, Departments of Medicine and Dermatology, VA Medical Center and University of California San Francisco, 4150 Clement St (111N), San Francisco, CA, 94121, USA,
| |
Collapse
|
36
|
Lin Y, Cui M, Xu T, Yu W, Zhang L. Silencing of cyclooxygenase-2 inhibits the growth, invasion and migration of ovarian cancer cells. Mol Med Rep 2014; 9:2499-504. [PMID: 24718658 DOI: 10.3892/mmr.2014.2131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/10/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of downregulating cyclooxygenase‑2 (COX‑2) expression on the growth of human ovarian cancer cells. The COX‑2‑specific small interfering RNA (siRNA) plasmid vector was constructed and then transfected into ovarian cancer cells. The expression of COX‑2 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation, apoptosis, cell cycle distribution and cell migration were assessed following knockdown of COX‑2 by RNA interference (RNAi). Western blot analysis was used to identify differentially expressed angiogenesis- and cell cycle‑associated proteins in cells with silenced COX‑2. The expression levels of COX‑2 in ovarian cancer cells transfected with siRNA were decreased, leading to a significant inhibition of ovarian cancer cell proliferation, migration and invasion. Western blot analysis revealed that silencing of COX‑2 may inhibit vascular endothelial growth factor, matrix metalloproteinase (MMP)‑2 and MMP‑9 protein expression. In conclusion, the present study demonstrated that RNAi can effectively silence COX‑2 gene expression and inhibit the growth of ovarian cancer cells, which indicates that there is a potential of targeting COX‑2 as a novel gene therapy approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yang Lin
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Manhua Cui
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tianmin Xu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wei Yu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Lihui Zhang
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
37
|
Rasool S, Rasool V, Naqvi T, Ganai BA, Shah BA. Genetic unraveling of colorectal cancer. Tumour Biol 2014; 35:5067-82. [PMID: 24573608 DOI: 10.1007/s13277-014-1713-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common disease in both men and women (being the third most common cancer in men and the second most common among women) and thus represents an important and serious public health issue, especially in the western world. Although it is a well-established fact that cancers of the large intestine produce symptoms relatively earlier at a stage that can be easily cured by resection, a large number of people lose their lives to this deadly disease each year. Recent times have seen an important change in the incidence of colorectal cancer in different parts of the world. The etiology of colorectal cancer is multifactorial and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. Exhaustive efforts have been made out in the direction of unraveling the role of various environmental factors, gene mutations, and polymorphisms worldwide (as well as in Kashmir-"a valley of gastrointestinal cancers") that have got a role to play in the development of this disease so that antitumor drugs could be developed against this cancer, first, and, finally, the responsiveness or resistance to these agents could be understood for combating this global issue.
Collapse
Affiliation(s)
- Sabha Rasool
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | | | | | | | | |
Collapse
|
38
|
Zhang Q, Meng X, Zheng G, Chen G, Pang R, Hua T, Yang S. Antitumor activity of celecoxib, a selective cyclooxygenase-2 inhibitor, in medullary thyroid carcinoma. Mol Med Rep 2013; 9:768-72. [PMID: 24346019 DOI: 10.3892/mmr.2013.1869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to investigate the mechanisms of the antitumor effect of celecoxib (CXB) in the treatment of human medullary thyroid carcinoma (MTC). Human MTC TT cells were cultured with different concentrations (0, 20, 40, 60 µmol/l) of CXB following 0-72 h in vitro. An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay was used to determine the growth inhibition of MTC in vitro. Flow cytometry was performed to analyze the cell cycle of TT cells. Levels of prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assay (ELISA) method. The expression profile of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) was measured by western blot analysis. In the present study, it was identified that CXB inhibited TT cell proliferation and induced apoptosis in a dose- and time-dependent manner. The cell cycle was arrested at G0/G1 and the percentage of cells in S phase was markedly decreased. The expression levels of PGE2 were inhibited by CXB. CXB effectively downregulated the expression of COX-2 and VEGF in a dose- and time-dependent manner. These data demonstrated that CXB inhibited the proliferation of MTC TT cells in vitro and thus may be effective as an antitumor therapy for human MTC.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xianying Meng
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guibin Zheng
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang Chen
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Renzhu Pang
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tebo Hua
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuai Yang
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
39
|
van den Top JGB, Harkema L, Ensink JM, Barneveld A, Martens A, van de Lest CHA, van Weeren PR, Gröne A. Expression of cyclo-oxygenases-1 and -2, and microsomal prostaglandin E synthase-1 in penile and preputial papillomas and squamous cell carcinomas in the horse. Equine Vet J 2013; 46:618-24. [PMID: 23879794 DOI: 10.1111/evj.12144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Penile and preputial papilloma and squamous cell carcinoma (SCC) are commonly diagnosed in horses. Papillomas have the potential to progress to potentially lethal SCC. Knowledge of pathogenetic mechanisms may help in prevention and definition of treatment targets. STUDY DESIGN Retrospective study using archived material. OBJECTIVES To determine the expression of cyclo-oxygenase 1 (COX-1), cyclo-oxygenase 2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) in penile and preputial normal tissue, papilloma and SCC in horses, and whether expression of these enzymes is influenced by degree of inflammation and differentiation grade. METHODS Tumour differentiation grade, degree of inflammation and COX-1, COX-2 and mPGES-1 expression in 75 formalin-fixed paraffin embedded samples of penile and preputial papilloma and SCC of 68 horses were investigated by histopathology and immunohistochemistry. RESULTS Inflammation was more prominent in SCC compared with papilloma. No correlation between expression of COX-1 or COX-2 and inflammation was found. Expression of mPGES-1 was weakly correlated with inflammation. Expression of COX-1, COX-2 and mPGES-1 was found in 42.6%, 50.7% and 96.0% of lesions respectively, but less than 1% of cells were immunopositive for COX-1 and COX-2 in 59.4% and 84.2% of cases respectively. Expression of COX-1 was moderately negatively correlated with differentiation grade, COX-2 was not correlated and mPGES-1 was poorly negatively correlated. CONCLUSIONS Expression of COX-1 and COX-2 in penile and preputial SCC in the horse is poor and COX inhibitors may thus be of little value for prevention or treatment. Microsomal PGES-1 is more prominently expressed in well-differentiated tissue compared with poorly differentiated tissue. Further research on the role of mPGES-1 in carcinogenesis is needed to assess its potential use as a treatment target. Knowledge of arachidonic pathway enzyme expression and their role in equine penile and preputial carcinogenesis may help in developing preventive and therapeutic strategies.
Collapse
Affiliation(s)
- J G B van den Top
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Elsherbiny ME, Emara M, Godbout R. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog Lipid Res 2013; 52:562-70. [PMID: 23981365 DOI: 10.1016/j.plipres.2013.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-6:ω-3 ratio is dramatically increased in malignant glioma, suggesting deregulation of fundamental lipid homeostasis in brain tumor tissue. The migratory properties of malignant glioma cells can be modified by altering the ratio of AA:DHA in growth medium, with increased migration observed in AA-rich medium. This fatty acid-dependent effect on cell migration is dependent on expression of the brain fatty acid binding protein (FABP7) previously shown to bind DHA and AA. Increased levels of enzymes involved in eicosanoid production in FABP7-positive malignant glioma cells suggest that FABP7 is an important modulator of AA metabolism. We provide evidence that increased production of eicosanoids in FABP7-positive malignant glioma growing in an AA-rich environment contributes to tumor infiltration in the brain. We discuss pathways and molecules that may underlie FABP7/AA-mediated promotion of cell migration and FABP7/DHA-mediated inhibition of cell migration in malignant glioma.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|
41
|
Chen Z, Liu M, Liu X, Huang S, Li L, Song B, Li H, Ren Q, Hu Z, Zhou Y, Qiao L. COX-2 regulates E-cadherin expression through the NF-κB/Snail signaling pathway in gastric cancer. Int J Mol Med 2013; 32:93-100. [PMID: 23670240 DOI: 10.3892/ijmm.2013.1376] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) participates in cancer invasion and metastasis by decreasing the expression of E-cadherin. However, the molecular mechanisms through which COX-2 regulates E-cadherin expression and function have not yet been fully elucidated. The aim of this study was to investigate the possible molecular mechanisms through which COX-2 regulates E-cadherin expression in gastric cancer. The mRNA and protein expression of COX-2, nuclear factor-κB (NF-κB), Snail and E-cadherin was detected in gastric cancer cells by quantitative PCR and western blot analysis, respectively. The expression of these genes was also detected in healthy gastric mucosa and gastric cancer tissues by immunohistochemistry. We detected various levels of COX-2, nuclear factor-κB (NF-κB), Snail and E-cadherin expression in the normal gastric mucosa and cancer tissues; however, the expression patterns differed: the increased expression of COX-2, NF-κB and Snail was observed in the gastric cancer tissues, whereas there was a considerable reduction in E-cadherin expression in the cancer tissues compared to the normal gastric mucosa. The expression patterns of COX-2, NF-κB and Snail were similar. The increased expression of COX-2 in the gastric cancer tissues closely correlated with the increased expression of NF-κB and Snail, but inversely correlated with the expression of E-cadherin. Treatment of the SGC7901 cells (which express high levels of COX-2) with celecoxib, a COX-2 inhibitor, not only led to a marked dose- and time-dependent decrease in the expression of COX-2, NF-κB and Snail, but also led to a significant increase in the expression of E-cadherin, and this was associated with a reduction in cell invasion. By contrast, the same treatment did not alter the expression of these genes in another gastric cancer cell line, MGC803 (which barely expresses COX-2). These data suggest that COX-2 regulates the expression of E-cadherin through the NF-κB and Snail signaling pathway in gastric cancer.
Collapse
Affiliation(s)
- Zhaofeng Chen
- Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Han ME, Oh SO. Gastric stem cells and gastric cancer stem cells. Anat Cell Biol 2013; 46:8-18. [PMID: 23560232 PMCID: PMC3615616 DOI: 10.5115/acb.2013.46.1.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 12/16/2022] Open
Abstract
The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal evolution hypothesis, only cancer stem cells can initiate tumor formation, self-renew, and differentiate into various kinds of daughter cells. Because gastric cancer can originate from gastric stem cells and their self-renewal mechanism can be used by gastric cancer stem cells, we review here how critical signaling pathways, including hedgehog, Wnt, Notch, epidermal growth factor, and bone morphogenetic protein signaling, may regulate the self-renewal and differentiation of gastric stem cells and gastric cancer stem cells. In addition, the precancerous change of the gastric epithelium and the status of isolating gastric cancer stem cells from patients are reviewed.
Collapse
Affiliation(s)
- Myoung-Eun Han
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea. ; Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Korea
| | | |
Collapse
|
43
|
DeCicco-Skinner KL, Nolan SJ, Deshpande MM, Trovato EL, Dempsey TA, Wiest JS. Altered prostanoid signaling contributes to increased skin tumorigenesis in Tpl2 knockout mice. PLoS One 2013; 8:e56212. [PMID: 23457529 PMCID: PMC3574127 DOI: 10.1371/journal.pone.0056212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Squamous cell carcinoma is the second most common form of skin cancer with the incidence expected to double over the next 20 years. Inflammation is believed to be a critical component in skin cancer progression. Therefore, understanding genes involved in the regulation of inflammatory pathways is vital to the design of targeted therapies. Numerous studies show cyclooxygenases (COXs) play an essential role in inflammation-associated cancers. Tpl2 (MAP3K8) is a protein kinase in the MAP Kinase signal transduction cascade. Previous research using a two-stage skin carcinogenesis model revealed that Tpl2−/− mice have significantly higher tumor incidence and inflammatory response than wild-type (WT) controls. The current study investigates whether cyclooxygenase-2 (COX-2) and COX-2- regulated prostaglandins and prostaglandin receptors drive the highly tumorigenic state of Tpl2−/− mice by investigating the relationship between Tpl2 and COX-2. Keratinocytes from newborn WT or Tpl2−/− mice were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for various times over 24 hours. Western analysis revealed significant differences in COX-2 and COX-2 dependent prostanoids and prostanoid receptors. Additionally, in vivo experiments confirmed that COX-2 and COX-2 downstream factors were elevated in TPA-treated Tpl2−/− skin, as well as in papillomas from Tpl2−/− mice. Use of the selective COX-2 inhibitor Celecoxib showed the increased tumorigenesis in the Tpl2−/− mice to primarily be mediated through COX-2. These experiments illustrate COX-2 induction in the absence of Tpl2 may be responsible for the increased tumorigenesis found in Tpl2−/− mice. Defining the relationship between Tpl2 and COX-2 may lead to new ways to downregulate COX-2 through the modulation of Tpl2.
Collapse
|
44
|
Allaj V, Guo C, Nie D. Non-steroid anti-inflammatory drugs, prostaglandins, and cancer. Cell Biosci 2013; 3:8. [PMID: 23388178 PMCID: PMC3599181 DOI: 10.1186/2045-3701-3-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023] Open
Abstract
Fatty acids are involved in multiple pathways and play a pivotal role in health. Eicosanoids, derived from arachidonic acid, have received extensive attention in the field of cancer research. Following release from the phospholipid membrane, arachidonic acid can be metabolized into different classes of eicosanoids through cyclooxygenases, lipoxygenases, or p450 epoxygenase pathways. Non-steroid anti-inflammatory drugs (NSAIDs) are widely consumed as analgesics to relieve minor aches and pains, as antipyretics to reduce fever, and as anti-inflammatory medications. Most NSAIDs are nonselective inhibitors of cyclooxygenases, the rate limiting enzymes in the formation of prostaglandins. Long term use of some NSAIDs has been linked with reduced incidence and mortality in many cancers. In this review, we appraise the biological activities of prostanoids and their cognate receptors in the context of cancer biology. The existing literature supports that these lipid mediators are involved to a great extent in the occurrence and progression of cancer.
Collapse
Affiliation(s)
- Viola Allaj
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794, USA.
| | | | | |
Collapse
|
45
|
Sengupta A, Lichti UF, Carlson BA, Cataisson C, Ryscavage AO, Mikulec C, Conrad M, Fischer SM, Hatfield DL, Yuspa SH. Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2. J Invest Dermatol 2013; 133:1731-41. [PMID: 23364477 PMCID: PMC3652900 DOI: 10.1038/jid.2013.52] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development and caused premature death. In the current study we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin while GPx4 loss in epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal lifespan. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4 knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and COX-2 levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Mast cells are well known as principle effector cells of type I hypersensitivity responses. Beyond this role in allergic disease, these cells are now appreciated as playing an important role in many inflammatory conditions. This review summarizes the support for mast cell involvement in resisting bacterial infection, exacerbating autoimmunity and atherosclerosis, and promoting cancer progression. A commonality in these conditions is the ability of mast cells to elicit migration of many cell types, often through the production of inflammatory cytokines such as tumor necrosis factor. However, recent data also demonstrates that mast cells can suppress the immune response through interleukin-10 production. The data encourage those working in this field to expand their view of how mast cells contribute to immune homeostasis.
Collapse
|
47
|
Dai ZJ, Ma XB, Kang HF, Gao J, Min WL, Guan HT, Diao Y, Lu WF, Wang XJ. Antitumor activity of the selective cyclooxygenase-2 inhibitor, celecoxib, on breast cancer in Vitro and in Vivo. Cancer Cell Int 2012; 12:53. [PMID: 23249419 PMCID: PMC3558357 DOI: 10.1186/1475-2867-12-53] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/18/2012] [Indexed: 11/29/2022] Open
Abstract
Background Cyclooxygenase-2(COX-2) promotes carcinogenesis, tumor proliferation, angiogenesis, prevention of apoptosis, and immunosuppression. Meanwhile, COX-2 over-expression has been associated with tumor behavior and prognosis in several cancers. This study investigated the antitumor effects of the selective COX-2 inhibitor, Celecoxib, on breast cancer in vitro and in vivo. Methods Human breast cancer MCF-7 and MDA-MB-231 cells were cultured with different concentration (10, 20, 40 μmol/L) of celecoxib after 0-96 hours in vitro. MTT assay was used to determine the growth inhibition of breast cancer cells in vitro. The expression of COX-2 on mRNA was measured by real-time quantitive PCR analysis. Flow cytometry was performed to analyze the cell cycle of MCF-7 cells. Levels of PGE2 were measured by ELISA method. The in vivo therapeutic effects of celecoxib were determined using rat breast cancer chemically induced by 7,12-dimethylben anthracene (DMBA). Results The inhibition of proliferation of both MCF-7 and MDA-MB-231 cells in vitro by celecoxib was observerd in time and dose dependent manner. Celecoxib effectively down-regulated the expression of COX-2. The cell cycle was arrested at G0/G1, and rate of cells in S phase was obviously decreased. Levels of PGE2 were inhibited by Celecoxib. The tumor incidence rate of the celecoxib group was lower than that of the control group. In addition, the tumor latency period of the celecoxib group was longer than that of the control group. Conclusions Celecoxib inhibited the proliferation of breast cancer cell lines in vitro, and prevented the occurrence of rat breast cancer chemically induced by DMBA. Therefore, celecoxib exhibits an antitumor activity and seems to be effective in anti-tumor therapy.
Collapse
Affiliation(s)
- Zhi-Jun Dai
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiao-Bin Ma
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hua-Feng Kang
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Gao
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wei-Li Min
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hai-Tao Guan
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan Diao
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wang-Feng Lu
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xi-Jing Wang
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
48
|
Abstract
Bone marrow (BM) cells depend on their niche for growth and survival. However, the genes modulated by niche stimuli have not been discriminated yet. For this purpose, we investigated BM aspirations from patients with various hematological malignancies. Each aspirate was fractionated, and the various samples were fixed at different time points and analyzed by microarray. Identification of niche-modulated genes relied on sustained change in expression following loss of niche regulation. Compared with the reference (‘authentic') samples, which were fixed immediately following aspiration, the BM samples fixed after longer stay out-of-niche acquired numerous changes in gene-expression profile (GEP). The overall genes modulated included a common subset of functionally diverse genes displaying prompt and sustained ‘switch' in expression irrespective of the tumor type. Interestingly, the ‘switch' in GEP was reversible and turned ‘off-and-on' again in culture conditions, resuming cell–cell–matrix contact versus respread into suspension, respectively. Moreover, the resuming of contact prolonged the survival of tumor cells out-of-niche, and the regression of the ‘contactless switch' was followed by induction of a new set of genes, this time mainly encoding extracellular proteins including angiogenic factors and extracellular matrix proteins. Our data set, being unique in authentic expression design, uncovered niche-modulated and niche-modulating genes capable of controlling homing, expansion and angiogenesis.
Collapse
|
49
|
Metabolomic analysis of the effects of edible dry beans (Phaseolus vulgaris L.) on tissue lipid metabolism and carcinogenesis in rats. Br J Nutr 2012; 108 Suppl 1:S155-65. [PMID: 22916811 DOI: 10.1017/s0007114512000827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metabolite profiling using liquid chromatography-time-of-flight MS was undertaken to identify candidate metabolic processes that account for dry bean effects on disease risk with a specific focus on the development of breast cancer. Normal mammary gland and mammary carcinomas from previously reported experiments were evaluated. Principal component analysis (PCA) of mass spectral data revealed that tissue of both types from control-fed v. bean-fed rats could be distinguished by their metabolomic profiles. Candidate ion identification using MassTRIX analysis software revealed that alterations in eicosanoid, fatty acid, TAG and steroid metabolism partially accounted for the differences observed in both PCA. In addition, evidence was obtained consistent with the hypothesis that the varying inhibitory effects on mammary carcinogenesis of genetically distinct dry bean types were mirrored by differential patterns of lipid metabolites in mammary carcinoma. The use of MassTRIX provided links for metabolite profile enrichment with metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes. Implicated pathways included a linkage between diacylglycerol and protein kinase C and eicosanoid metabolites and inducible cyclo-oxygenase-2 and/or eicosanoid degradation mediated via 15-PG dehydrogenase. These pathways have been reported to be misregulated during the development of cancer. The differences observed between control-fed and bean-fed rats in lipid metabolism require validation using targeted analytical methods and detailed analyses of how bean bioactive food components regulate genes that control lipid biosynthesis, interconversion and catabolism.
Collapse
|
50
|
The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem Pharmacol 2012; 84:1113-22. [DOI: 10.1016/j.bcp.2012.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022]
|