1
|
Choudhury C, Egleton JE, Butcher NJ, Russell AJ, Minchin RF. Small Molecule Inhibitors of Arylamine N-Acetyltransferase 1 Attenuate Cellular Respiration. ACS Pharmacol Transl Sci 2024; 7:2326-2332. [PMID: 39144569 PMCID: PMC11320739 DOI: 10.1021/acsptsci.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Arylamine N-acetyltransferase 1 (NAT1) expression has been shown to attenuate mitochondrial function, suggesting it is a promising drug target in diseases of mitochondrial dysfunction. Here, several second-generation naphthoquinones have been investigated as small molecule inhibitors of NAT1. The results show that the compounds inhibit both in vitro and in whole cells. A lead compound (Cmp350) was further investigated for its ability to alter mitochondrial metabolism in MDA-MB-231 cells. At concentrations that inhibited NAT1 by over 85%, no overt toxicity was observed. Moreover, the inhibitor decreased basal respiration and reserve respiratory capacity without affecting ATP production. Cells treated with Cmp350 were almost exclusively dependent on glucose as a fuel source. We postulate that Cmp350 is an excellent lead compound for the development of NAT1-targeted inhibitors as both experimental tools and therapeutics in the treatment of hypermetabolic diseases such as amyotrophic lateral sclerosis, cancer cachexia, and sepsis.
Collapse
Affiliation(s)
- Chandra Choudhury
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, 4069 Queensland Australia
| | - James E. Egleton
- Department
of Chemistry, University of Oxford, 12A Mansfield Road, Oxford OX1 3TA, U.K.
| | - Neville J. Butcher
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, 4069 Queensland Australia
| | - Angela J. Russell
- Department
of Chemistry, University of Oxford, 12A Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT Oxford, U.K.
| | - Rodney F. Minchin
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, 4069 Queensland Australia
| |
Collapse
|
2
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Tiwari PK, Ko TH, Dubey R, Chouhan M, Tsai LW, Singh HN, Chaubey KK, Dayal D, Chiang CW, Kumar S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics. Front Mol Biosci 2023; 10:1214489. [PMID: 37469704 PMCID: PMC10352522 DOI: 10.3389/fmolb.2023.1214489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a third-generation genome editing method that has revolutionized the world with its high throughput results. It has been used in the treatment of various biological diseases and infections. Various bacteria and other prokaryotes such as archaea also have CRISPR/Cas9 systems to guard themselves against bacteriophage. Reportedly, CRISPR/Cas9-based strategy may inhibit the growth and development of triple-negative breast cancer (TNBC) via targeting the potentially altered resistance genes, transcription, and epigenetic regulation. These therapeutic activities could help with the complex issues such as drug resistance which is observed even in TNBC. Currently, various methods have been utilized for the delivery of CRISPR/Cas9 into the targeted cell such as physical (microinjection, electroporation, and hydrodynamic mode), viral (adeno-associated virus and lentivirus), and non-viral (liposomes and lipid nano-particles). Although different models have been developed to investigate the molecular causes of TNBC, but the lack of sensitive and targeted delivery methods for in-vivo genome editing tools limits their clinical application. Therefore, based on the available evidences, this review comprehensively highlighted the advancement, challenges limitations, and prospects of CRISPR/Cas9 for the treatment of TNBC. We also underscored how integrating artificial intelligence and machine learning could improve CRISPR/Cas9 strategies in TNBC therapy.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tin-Hsien Ko
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei City, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York, NY, United States
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Hong KU, Tagnedji AH, Doll MA, Walls KM, Hein DW. Upregulation of cytidine deaminase in NAT1 knockout breast cancer cells. J Cancer Res Clin Oncol 2023; 149:5047-5060. [PMID: 36329350 PMCID: PMC10193532 DOI: 10.1007/s00432-022-04436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Arylamine N-acetyltransferase 1 (NAT1), a phase II metabolic enzyme, is frequently upregulated in breast cancer. Inhibition or depletion of NAT1 leads to growth retardation in breast cancer cells in vitro and in vivo. A previous metabolomics study of MDA-MB-231 breast cancer cells suggests that NAT1 deletion leads to a defect in de novo pyrimidine biosynthesis. In the present study, we observed that NAT1 deletion results in upregulation of cytidine deaminase (CDA), which is involved in the pyrimidine salvage pathway, in multiple breast cancer cell lines (MDA-MB-231, MCF-7 and ZR-75-1). We hypothesized that NAT1 KO MDA-MB-231 cells show differential sensitivity to drugs that either inhibit cellular pyrimidine homeostasis or are metabolized by CDA. METHODS The cells were treated with (1) inhibitors of dihydroorotate dehydrogenase or CDA (e.g., teriflunomide and tetrahydrouridine); (2) pyrimidine/nucleoside analogs (e.g., gemcitabine and 5-azacytidine); and (3) naturally occurring, modified cytidines (e.g., 5-formyl-2'-deoxycytidine; 5fdC). RESULTS Although NAT1 KO cells failed to show differential sensitivity to nucleoside analogs that are metabolized by CDA, they were markedly more sensitive to 5fdC which induces DNA damage in the presence of high CDA activity. Co-treatment with 5fdC and a CDA inhibitor, tetrahydrouridine, abrogated the increase in 5fdC cytotoxicity in NAT1 KO cells, suggesting that the increased sensitivity of NAT1 KO cells to 5fdC is dependent on their increased CDA activity. CONCLUSIONS The present findings suggest a novel therapeutic strategy to treat breast cancer with elevated NAT1 expression. For instance, NAT1 inhibition may be combined with cytotoxic nucleosides (e.g., 5fdC) for breast cancer treatment.
Collapse
Affiliation(s)
- Kyung U Hong
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Afi H Tagnedji
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kennedy M Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
5
|
Wise JTF, Yin X, Ma X, Zhang X, Hein DW. Stable Isotope Tracing Reveals an Altered Fate of Glucose in N-Acetyltransferase 1 Knockout Breast Cancer Cells. Genes (Basel) 2023; 14:genes14040843. [PMID: 37107601 PMCID: PMC10137864 DOI: 10.3390/genes14040843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer death. Recent studies found that arylamine N-acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer, further suggesting NAT1 could be a potential therapeutic target for breast cancer. Previous publications have established that NAT1 knockout (KO) in breast cancer cell lines leads to growth reduction both in vitro and in vivo and metabolic changes. These reports suggest that NAT1 contributes to the energy metabolism of breast cancer cells. Proteomic analysis and non-targeted metabolomics suggested that NAT1 KO may change the fate of glucose as it relates to the TCA/KREB cycle of the mitochondria of breast cancer cells. In this current study, we used [U-13C]-glucose stable isotope resolved metabolomics to determine the effect of NAT1 KO on the metabolic profile of MDA-MB-231 breast cancer cells. We incubated breast cancer cells (MDA-MB-231 cells) and NAT1 Crispr KO cells (KO#2 and KO#5) with [U-13C]-glucose for 24 h. Tracer incubation polar metabolites from the cells were extracted and analyzed by 2DLC-MS, and metabolite differences were compared between the parental and NAT1 KO cells. Differences consistent between the two KO cells were considered changes due to the loss of NAT1. The data revealed decreases in the 13C enrichment of TCA/Krebs cycle intermediates in NAT1 KO cells compared to the MDA-MB-231 cells. Specifically, 13C-labeled citrate, isocitrate, a-ketoglutarate, fumarate, and malate were all decreased in NAT1 KO cells. We also detected increased 13C-labeled L-lactate levels in the NAT1 KO cells and decreased 13C enrichment in some nucleotides. Pathway analysis showed that arginine biosynthesis, alanine, aspartate and glutamate metabolism, and the TCA cycle were most affected. These data provide additional evidence supporting the impacts of NAT1 knockout on cellular energy metabolism. The data suggest that NAT1 expression is important for the proper functioning of mitochondria and the flux of glucose through the TCA/Krebs cycle in breast cancer cells. The metabolism changes in the fate of glucose in NAT1 KO breast cancer cells offer more insight into the role of NAT1 in energy metabolism and the growth of breast cancer cells. These data provide additional evidence that NAT1 may be a useful therapeutic target for breast cancer.
Collapse
Affiliation(s)
- James T. F. Wise
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, USA
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, USA
| | - David W. Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Hong KU, Gardner JQ, Doll MA, Stepp MW, Wilkey DW, Benz FW, Cai J, Merchant ML, Hein DW. Proteomic analysis of arylamine N-acetyltransferase 1 knockout breast cancer cells: Implications in immune evasion and mitochondrial biogenesis. Toxicol Rep 2022; 9:1566-1573. [PMID: 36158865 PMCID: PMC9500399 DOI: 10.1016/j.toxrep.2022.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023] Open
Abstract
Previous studies have shown that inhibition or depletion of N-acetyltransferase 1 (NAT1) in breast cancer cell lines leads to growth retardation both in vitro and in vivo, suggesting that NAT1 contributes to rapid growth of breast cancer cells. To understand molecular and cellular processes that NAT1 contributes to and generate novel hypotheses in regard to NAT1's role in breast cancer, we performed an unbiased analysis of proteomes of parental MDA-MB-231 breast cancer cells and two separate NAT1 knockout (KO) cell lines. Among 4890 proteins identified, 737 proteins were found significantly (p < 0.01) upregulated, and 651 proteins were significantly (p < 0.01) downregulated in both NAT1 KO cell lines. We performed enrichment analyses to identify Gene Ontology biological processes, molecular functions, and cellular components that were enriched in each data set. Among the proteins upregulated in NAT1 KO cells, pathways associated with MHC (major histocompatibility complex) I-mediated antigen presentation were significantly enriched. This raises an interesting and new hypothesis that upregulation of NAT1 in breast cancer cells may aid them evade immune detection. Multiple pathways involved in mitochondrial functions were collectively downregulated in NAT1 KO cells, including multiple subunits of mitochondrial ATP synthase (Complex V of the electron transport chain). This was accompanied by a reduction in cell cycle-associated proteins and an increase in pro-apoptotic pathways in NAT1 KO cells, consistent with reported observations that NAT1 KO cells exhibit a slower growth rate both in vitro and in vivo. Thus, mitochondrial dysfunction in NAT1 KO cells likely contributes to growth retardation.
Collapse
Affiliation(s)
- Kyung U. Hong
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jonathan Q. Gardner
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Mark A. Doll
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Marcus W. Stepp
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel W. Wilkey
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Frederick W. Benz
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jian Cai
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Michael L. Merchant
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - David W. Hein
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA,Correspondence to: Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY 40202, USA.
| |
Collapse
|
7
|
Salazar-González RA, Doll MA, Hein DW. Arylamine N-Acetyltransferase 1 Activity is Regulated by the Protein Acetylation Status. Front Pharmacol 2022; 13:797469. [PMID: 35153780 PMCID: PMC8828969 DOI: 10.3389/fphar.2022.797469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Arylamine N-acetyltransferase 1 (NAT1) is a drug metabolizing enzyme that influences cancer cell proliferation and survival, especially in breast cancer. Lysine-acetylation is an important Post-Translational Modification (PTM) in the regulation of diverse cellular processes. Histone deacetylases (HDACs) and Sirtuins (SIRT) may have an important role on the NAT1 acetylation status, affecting its catalytic capacity and having an impact on the downstream functions of this protein. The aim of the present work is to investigate the acetylation status of NAT1 in human breast cancer. Breast cancer cell lines MDA-MB-231 (ER-, PR-, HER2-) and ZR-75-1 (estrogen receptor+, PR+, HER2+) were cultured in the presence of HDAC inhibitors (SAHA, TSA) or Sirtuin inhibitors (AGK2, EX527, Sirtinol). Under these conditions, NAT1 protein and gene expression as well as enzymatic activity were quantified. Acetylation of NAT1 protein was evaluated following an immunoprecipitation protocol and acetyl-Lysine quantification. Sirt1 and Sirt2 knockdown were performed and NAT1 protein and NAT1 mRNA expression and catalytic activity were quantified. The treatment of MDA-MB-231 or ZR-75-1 cells with increasing HDAC inhibitors resulted in 2 to 15-fold upregulation in NAT1 message expression. Finally, the catalytic activity of NAT1 in the presence of HDAC inhibition increased 2-fold. Conversely, the inhibition of Sirtuin activity did not cause significant changes in NAT1 message but produced a significant decrease in NAT1 catalytic activity. NAT1 acetylation was higher in the cells treated with HDAC inhibitors, as well as Sirtuin inhibitors. Finally, silencing of Sirt1 and Sirt2 genes by siRNA transient knockdown of each or both genes resulted in reduction of NAT1 protein expression and catalytic activity. The use of HDAC and Sirtuin inhibitors has been demonstrated as a promising powerful therapeutic alternative in various cancers. These inhibitors can significantly attenuate tumor burden by limiting tumor growth and metastasis. These compounds can also induce DNA damage, cell cycle arrest, apoptosis, and autophagy to promote cancer cell death. Several studies have shown that NAT1 is upregulated in cancer cells. The results of the present study show that the acetylation status of NAT1 is an important factor that might have a relevant role in the progression of cancer.
Collapse
Affiliation(s)
- Raúl A Salazar-González
- Department of Pharmacology and Toxicology, Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Mark A Doll
- Department of Pharmacology and Toxicology, Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - David W Hein
- Department of Pharmacology and Toxicology, Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
8
|
Doll MA, Ray AR, Salazar-González RA, Shah PP, Vega AA, Sears SM, Krueger AM, Hong KU, Beverly LJ, Hein DW. Deletion of arylamine N-acetyltransferase 1 in MDA-MB-231 human breast cancer cells reduces primary and secondary tumor growth in vivo with no significant effects on metastasis. Mol Carcinog 2022; 61:481-493. [PMID: 35133049 PMCID: PMC9018511 DOI: 10.1002/mc.23392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
Arylamine N-acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer. Previous studies showed that inhibition or depletion of NAT1 in breast cancer cells diminishes anchorage-independent growth in culture, suggesting that NAT1 contributes to breast cancer growth and metastasis. To further investigate the contribution of NAT1 to growth and cell invasive/migratory behavior, we subjected parental and NAT1 knockout (KO) breast cancer cell lines (MDA-MB-231, MCF-7, and ZR-75-1) to multiple assays. The rate of cell growth in suspension was not consistently decreased in NAT1 KO cells across the cell lines tested. Similarly, cell migration and invasion assays failed to produce reproducible differences between the parental and NAT1 KO cells. To overcome the limitations of in vitro assays, we tested parental and NAT1 KO cells in vivo in a xenograft model by injecting cells into the flank of immunocompromised mice. NAT1 KO MDA-MB-231 cells produced primary tumors smaller than those formed by parental cells, which was contributed by an increased rate of apoptosis in KO cells. The frequency of lung metastasis, however, was not altered in NAT1 KO cells. When the primary tumors of the parental and NAT1 KO cells were allowed to grow to a pre-determined size or delivered directly via tail vein, the number and size of metastatic foci in the lung did not differ between the parental and NAT1 KO cells. In conclusion, NAT1 contributes to primary and secondary tumor growth in vivo in MDA-MB-231 breast cancer cells but does not appear to affect its metastatic potential.
Collapse
Affiliation(s)
- Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Andrew R Ray
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Parag P Shah
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Alexis A Vega
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Austin M Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Kyung U Hong
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA.,Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Levi J Beverly
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA.,Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA.,Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Leggett CS, Doll MA, Salazar-González RA, Habil MR, Trent JO, Hein DW. Identification and characterization of potent, selective, and efficacious inhibitors of human arylamine N-acetyltransferase 1. Arch Toxicol 2022; 96:511-524. [PMID: 34783865 PMCID: PMC8837702 DOI: 10.1007/s00204-021-03194-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Arylamine N-acetyltransferase 1 (NAT1) plays a pivotal role in the metabolism of carcinogens and is a drug target for cancer prevention and/or treatment. A protein-ligand virtual screening of 2 million chemicals was ranked for predicted binding affinity towards the inhibition of human NAT1. Sixty of the five hundred top-ranked compounds were tested experimentally for inhibition of recombinant human NAT1 and N-acetyltransferase 2 (NAT2). The most promising compound 9,10-dihydro-9,10-dioxo-1,2-anthracenediyl diethyl ester (compound 10) was found to be a potent and selective NAT1 inhibitor with an in vitro IC50 of 0.75 µM. Two structural analogs of this compound were selective but less potent for inhibition of NAT1 whereas a third structural analog 1,2-dihydroxyanthraquinone (a compound 10 hydrolysis product also known as Alizarin) showed comparable potency and efficacy for human NAT1 inhibition. Compound 10 inhibited N-acetylation of the arylamine carcinogen 4-aminobiphenyl (ABP) both in vitro and in DNA repair-deficient Chinese hamster ovary (CHO) cells in situ stably expressing human NAT1 and CYP1A1. Compound 10 and Alizarin effectively inhibited NAT1 in cryopreserved human hepatocytes whereas inhibition of NAT2 was not observed. Compound 10 caused concentration-dependent reductions in DNA adduct formation and DNA double-strand breaks following metabolism of aromatic amine carcinogens beta-naphthylamine and/or ABP in CHO cells. Compound 10 inhibited proliferation and invasion in human breast cancer cells and showed selectivity towards tumorigenic versus non-tumorigenic cells. In conclusion, our study identifies potent, selective, and efficacious inhibitors of human NAT1. Alizarin's ability to inhibit NAT1 could reduce breast cancer metastasis particularly to bone.
Collapse
Affiliation(s)
- Carmine S. Leggett
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Raúl A. Salazar-González
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Mariam R. Habil
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - John O. Trent
- UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA,Department of Medicine, University of Louisville,
Louisville, KY USA
| | - David W. Hein
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA,Department of Medicine, University of Louisville,
Louisville, KY USA,Corresponding author: David W. Hein, University of
Louisville Health Science Center, Kosair Charities Clinical and Translational
Research Building Room 303, 505 South Hancock Street, Louisville, KY USA
40202-1617. . Telephone:
502-852-6252
| |
Collapse
|
10
|
Carlisle SM, Trainor PJ, Doll MA, Hein DW. Human Arylamine N-Acetyltransferase 1 (NAT1) Knockout in MDA-MB-231 Breast Cancer Cell Lines Leads to Transcription of NAT2. Front Pharmacol 2022; 12:803254. [PMID: 35046826 PMCID: PMC8762260 DOI: 10.3389/fphar.2021.803254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Many cancers, including breast cancer, have shown differential expression of human arylamine N-acetyltransferase 1 (NAT1). The exact effect this differential expression has on disease risk and progression remains unclear. While NAT1 is classically defined as a xenobiotic metabolizing enzyme, other functions and roles in endogenous metabolism have recently been described providing additional impetus for investigating the effects of varying levels of NAT1 on global gene expression. Our objective is to further evaluate the role of NAT1 in breast cancer by determining the effect of NAT1 overexpression, knockdown, and knockout on global gene expression in MDA-MB-231 cell lines. RNA-seq was utilized to interrogate differential gene expression (genes correlated with NAT1 activity) across three biological replicates of previously constructed and characterized MDA-MB-231 breast cancer cell lines expressing parental (Scrambled), increased (Up), decreased (Down, CRISPR 2–12), or knockout (CRISPR 2–19, CRISPR 5–50) levels of NAT1. 3,889 genes were significantly associated with the NAT1 N-acetylation activity of the cell lines (adjusted p ≤ 0.05); of those 3,889 genes, 1,756 were positively associated with NAT1 N-acetylation activity and 2,133 were negatively associated with NAT1 N-acetylation activity. An enrichment of genes involved in cell adhesion was observed. Additionally, human arylamine N-acetyltransferase 2 (NAT2) transcripts were observed in the complete NAT1 knockout cell lines (CRISPR 2–19 and CRISPR 5–50). This study provides further evidence that NAT1 functions as more than just a drug metabolizing enzyme given the observation that differences in NAT1 activity have significant impacts on global gene expression. Additionally, our data suggests the knockout of NAT1 results in transcription of its isozyme NAT2.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States.,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Patrick J Trainor
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States.,Division of Cardiovascular Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
11
|
Li P, Butcher NJ, Minchin RF. Effect arylamine N-acetyltransferase 1 on morphology, adhesion, migration, and invasion of MDA-MB-231 cells: role of matrix metalloproteinases and integrin αV. Cell Adh Migr 2021; 14:1-11. [PMID: 31910058 PMCID: PMC6961680 DOI: 10.1080/19336918.2019.1710015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Reducted arylamine N-acetyltransferase (NAT1) in breast cancers is associated with poor patient survival. NAT1 has also been associated with changes in cancer cell survival and invasion both invitro and invivo. Here, we report the effects of NAT1 in cancer cell invasion by addressing its role in adherence, migration, and invasion in vitro. The NAT1 gene was deleted in MDA-MB-231, HT-29 and HeLa cells using CRISPR/Cas9 gene editing. Loss of NAT1 increased adherence to collagen in all three cell-lines but migration was unaffected. NAT1 deletion decreased invasion and induced changes to cell morphology. These effects were independent of matrix metalloproteinases but were related to integrin ITGαV expression. The data suggest NAT1 is important in adhesion and invasion through integrin expression.
Collapse
Affiliation(s)
- Pengcheng Li
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
12
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
13
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Hong KU, Doll MA, Lykoudi A, Salazar-González RA, Habil MR, Walls KM, Bakr AF, Ghare SS, Barve SS, Arteel GE, Hein DW. Acetylator Genotype-Dependent Dyslipidemia in Rats Congenic for N-Acetyltransferase 2. Toxicol Rep 2020; 7:1319-1330. [PMID: 33083237 PMCID: PMC7553889 DOI: 10.1016/j.toxrep.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Recent reports suggest that arylamine N-acetyltransferases (NAT1 and/or NAT2) serve important roles in regulation of energy utility and insulin sensitivity. We investigated the interaction between diet (control vs. high-fat diet) and acetylator phenotype (rapid vs. slow) using previously established congenic rat lines (in F344 background) that exhibit rapid or slow Nat2 (orthologous to human NAT1) acetylator genotypes. Male and female rats of each genotype were fed control or high-fat (Western-style) diet for 26 weeks. We then examined diet- and acetylator genotype-dependent changes in body and liver weights, systemic glucose tolerance, insulin sensitivity, and plasma lipid profile. Male and female rats on the high fat diet weighed approximately 10% more than rats on the control diet and the percentage liver to body weight was consistently higher in rapid than slow acetylator rats. Rapid acetylator rats were more prone to develop dyslipidemia overall (i.e., higher triglyceride; higher LDL; and lower HDL), compared to slow acetylator rats. Total cholesterol (TC)-to-HDL ratios were significantly higher and HDL-to-LDL ratios were significantly lower in rapid acetylator rats. Our data suggest that rats with rapid systemic Nat2 (NAT1 in humans) genotype exhibited higher dyslipidemia conferring risk for metabolic syndrome and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kyung U. Hong
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A. Doll
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Angeliki Lykoudi
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Raúl A. Salazar-González
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mariam R. Habil
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kennedy M. Walls
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Alaa F. Bakr
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Smita S. Ghare
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shirish S. Barve
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gavin E. Arteel
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W. Hein
- Department of Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Departments of Medicine and Pharmacology & Toxicology, Center for Hepatobiology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
15
|
Carlisle SM, Trainor PJ, Hong KU, Doll MA, Hein DW. CRISPR/Cas9 knockout of human arylamine N-acetyltransferase 1 in MDA-MB-231 breast cancer cells suggests a role in cellular metabolism. Sci Rep 2020; 10:9804. [PMID: 32555504 PMCID: PMC7299936 DOI: 10.1038/s41598-020-66863-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1), present in all tissues, is classically described as a phase-II xenobiotic metabolizing enzyme but can also catalyze the hydrolysis of acetyl-Coenzyme A (acetyl-CoA) in the absence of an arylamine substrate using folate as a cofactor. NAT1 activity varies inter-individually and has been shown to be overexpressed in estrogen receptor-positive (ER+) breast cancers. NAT1 has also been implicated in breast cancer progression however the exact role of NAT1 remains unknown. The objective of this study was to evaluate the effect of varying levels of NAT1 N-acetylation activity in MDA-MB-231 breast cancer cells on global cellular metabolism and to probe for unknown endogenous NAT1 substrates. Global, untargeted metabolomics was conducted via ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) on MDA-MB-231 breast cancer cell lines constructed with siRNA and CRISPR/Cas9 technologies to vary only in NAT1 N-acetylation activity. Many metabolites were differentially abundant in NAT1-modified cell lines compared to the Scrambled parental cell line. N-acetylasparagine and N-acetylputrescine abundances were strongly positively correlated (r = 0.986 and r = 0.944, respectively) with NAT1 N-acetylation activity whereas saccharopine abundance was strongly inversely correlated (r = −0.876). Two of the most striking observations were a reduction in de novo pyrimidine biosynthesis and defective β-oxidation of fatty acids in the absence of NAT1. We have shown that NAT1 expression differentially affects cellular metabolism dependent on the level of expression. Our results support the hypothesis that NAT1 is not just a xenobiotic metabolizing enzyme and may have a role in endogenous cellular metabolism.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick J Trainor
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Applied Statistics, EASIB Department, New Mexico State University, Las Cruces, NM, USA
| | - Kyung U Hong
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
16
|
El Kawak M, Dhaini HR, Jabbour ME, Moussa MA, El Asmar K, Aoun M. Slow N-acetylation as a possible contributor to bladder carcinogenesis. Mol Carcinog 2020; 59:1017-1027. [PMID: 32529781 DOI: 10.1002/mc.23232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Bladder cancer (BCa) is an exophytic tumor that presents as either noninvasive confined to the mucosa (NMIBC) or invading the detrusor muscle (MIBC), and was recently further subgrouped into molecular subtypes. Arylamines, major BCa environmental and occupational risk factors, are mainly metabolized by the genetically polymorphic N-acetyltransferases 1, NAT1 and NAT2. In this study, we investigated the association between N-acetyltransferases genetic polymorphism and key MIBC and NMIBC tumor biomarkers and subtypes. A cohort of 250 males with histologically confirmed urothelial BCa was identified. Tumors were genotyped for NAT1 and NAT2 using real-time polymerase chain reaction (PCR), and characterized for mutations in TP53, RB1, and FGFR3 by PCR-restriction fragment length polymorphism. Pathology data and patients' smoking status were obtained from medical records. Pearson χ2 and Fisher exact tests were used to check for associations and interactions. Results show that NAT1 G560 A polymorphism is significantly associated with higher muscle-invasiveness (MIBC vs NMIBC; P = .001), higher tumor grade (high grade vs low grade; P = .011), and higher FGFR3 mutation frequency within the MIBC subgroup (P = .042; .027). NAT2 G857 A polymorphism is also found to be significantly associated with higher muscle-invasiveness (MIBC vs NMIBC; P = .041). Our results indicate that slow N-acetylation is a contributor to bladder carcinogenesis and muscle-invasiveness. These findings highlight NAT1 as a biomarker candidate in BCa and a potential target for drug development.
Collapse
Affiliation(s)
- Michelle El Kawak
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Michel E Jabbour
- Department of Urology, St George Hospital University Medical Center, Beirut, Lebanon
| | - Mohamad A Moussa
- Division of Urology, Al Zahraa University Hospital, Beirut, Lebanon
| | - Khalil El Asmar
- Department of Epidemiology and Population Health, American University of Beirut, Beirut, Lebanon
| | - Mona Aoun
- Department of Pathology, St George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
17
|
Butcher NJ, Burow R, Minchin RF. Modulation of Human Arylamine N-Acetyltransferase 1 Activity by Lysine Acetylation: Role of p300/CREB-Binding Protein and Sirtuins 1 and 2. Mol Pharmacol 2020; 98:88-95. [PMID: 32487734 DOI: 10.1124/mol.119.119008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme that also has a role in cancer cell growth and metabolism. Recently, it was reported that NAT1 undergoes lysine acetylation, an important post-translational modification that can regulate protein function. In the current study, we use site-directed mutagenesis to identify K100 and K188 as major sites of lysine acetylation in the NAT1 protein. Acetylation of ectopically expressed NAT1 in HeLa cells was decreased by C646, an inhibitor of the protein acetyltransferases p300/CREB-binding protein (CBP). Recombinant p300 directly acetylated NAT1 in vitro. Acetylation of NAT1 was enhanced by the sirtuin (SIRT) inhibitor nicotinamide but not by the histone deacetylase inhibitor trichostatin A. Cotransfection of cells with NAT1 and either SIRT 1 or 2, but not SIRT3, significantly decreased NAT1 acetylation. NAT1 activity was evaluated in cells after nicotinamide treatment to enhance acetylation or cotransfection with SIRT1 to inhibit acetylation. The results indicated that NAT1 acetylation impaired its enzyme kinetics, suggesting decreased acetyl coenzyme A binding. In addition, acetylation attenuated the allosteric effects of ATP on NAT1. Taken together, this study shows that NAT1 is acetylated by p300/CBP in situ and is deacetylated by the sirtuins SIRT1 and 2. It is hypothesized that post-translational modification of NAT1 by acetylation at K100 and K188 may modulate NAT1 effects in cells. SIGNIFICANCE STATEMENT: There is growing evidence that arylamine N-acetyltransferase 1 has an important cellular role in addition to xenobiotic metabolism. Here, we show that NAT1 is acetylated at K100 and K188 and that changes in protein acetylation equilibrium can modulate its activity in cells.
Collapse
Affiliation(s)
- Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rachel Burow
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
18
|
Li P, Butcher NJ, Minchin RF. Arylamine N-Acetyltransferase 1 Regulates Expression of Matrix Metalloproteinase 9 in Breast Cancer Cells: Role of Hypoxia-Inducible Factor 1-α. Mol Pharmacol 2019; 96:573-579. [DOI: 10.1124/mol.119.117432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
|
19
|
N-Acetyltransferase 1 Knockout Elevates Acetyl Coenzyme A Levels and Reduces Anchorage-Independent Growth in Human Breast Cancer Cell Lines. JOURNAL OF ONCOLOGY 2019; 2019:3860426. [PMID: 31531019 PMCID: PMC6720663 DOI: 10.1155/2019/3860426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Elevated expression of N-acetyltransferase 1 (NAT1) is associated with invasive and lobular breast carcinomas as well as with bone metastasis following an epithelial-to-mesenchymal transition. We investigated the effect of NAT1 gene deletion in three different human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1. Human NAT1 was knocked out using CRISPR/Cas9 technology and two different guide RNAs. None of the NAT1 knockout (KO) cell lines exhibited detectable NAT1 activity when measured using its selective substrate p-aminobenzoic acid (PABA). Endogenous acetyl coenzyme A levels (cofactor for acetylation pathways) in NAT1 KO cell lines were significantly elevated in the MDA-MB-231 (p < 0.001) and MCF-7 (p=0.0127) but not the ZR-75-1 (p > 0.05). Although the effects of NAT1 KO on cell-doubling time were inconsistent across the three breast cancer cell lines, the ability of the NAT1 KO cell lines to form anchorage-independent colonies in soft agar was dramatically and consistently reduced in each of the breast cancer cell lines. The NAT1 KO clones for MDA-MB-231, MCF-7, and ZR-75-1 had a reduction greater than 20-, 6-, and 7- folds in anchorage-independent cell growth, respectively, compared to their parental cell lines (p < 0.0001, p < 0.0001, and p < 0.05, respectively). The results indicate that NAT1 may be an important regulator of cellular acetyl coenzyme A levels and strongly suggest that elevated NAT1 expression in breast cancers contribute to their anchorage-independent growth properties and ultimately metastatic potential.
Collapse
|
20
|
Population variability of rhesus macaque (Macaca mulatta) NAT1 gene for arylamine N-acetyltransferase 1: Functional effects and comparison with human. Sci Rep 2019; 9:10937. [PMID: 31358821 PMCID: PMC6662693 DOI: 10.1038/s41598-019-47485-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Human NAT1 gene for N-acetyltransferase 1 modulates xenobiotic metabolism of arylamine drugs and mutagens. Beyond pharmacogenetics, NAT1 is also relevant to breast cancer. The population history of human NAT1 suggests evolution through purifying selection, but it is unclear whether this pattern is evident in other primate lineages where population studies are scarce. We report NAT1 polymorphism in 25 rhesus macaques (Macaca mulatta) and describe the haplotypic and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified and experimentally demonstrated to compromise enzyme function, mainly through destabilization of NAT1 protein and consequent activity loss. One non-synonymous SNV (c.560G > A, p.Arg187Gln) has also been characterized for human NAT1 with similar effects. Population haplotypic and functional variability of rhesus NAT1 was considerably higher than previously reported for its human orthologue, suggesting different environmental pressures in the two lineages. Known functional elements downstream of human NAT1 were also differentiated in rhesus macaque and other primates. Xenobiotic metabolizing enzymes play roles beyond mere protection from exogenous chemicals. Therefore, any link to disease, particularly carcinogenesis, may be via modulation of xenobiotic mutagenicity or more subtle interference with cell physiology. Comparative analyses add the evolutionary dimension to such investigations, assessing functional conservation/diversification among primates.
Collapse
|
21
|
Functional expression of human arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles: a mini review. Pharmacogenet Genomics 2019; 28:238-244. [PMID: 30222709 DOI: 10.1097/fpc.0000000000000350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The arylamine N-acetyltransferase (NAT) nomenclature committee assigns functional phenotypes for human arylamine N-acetyltransferase 1 (NAT1) alleles in those instances in which the committee determined a consensus has been achieved in the scientific literature. In the most recent nomenclature update, the committee announced that functional phenotypes for NAT1*10 and NAT1*11 alleles were not provided owing to a lack of consensus. Phenotypic inconsistencies observed among various studies for NAT1*10 and NAT1*11 may be owing to variable allelic expression among different tissues, the limitations of the genotyping assays (which mostly relied on techniques not involving direct DNA sequencing), the differences in recombinant protein expression systems used (bacteria, yeast, and mammalian cell lines) and/or the known inherent instability of human NAT1 protein, which requires very careful handling of native and recombinant cell lysates. Three recent studies provide consistent evidence of the mechanistic basis underlying the functional phenotype of NAT1*10 and NAT1*11 as 'increased-activity' alleles. Some NAT1 variants (e.g. NAT1*14, NAT1*17, and NAT1*22) may be designated as 'decreased-activity' alleles and other NAT1 variants (e.g. NAT1*15 and NAT1*19) may be designated as 'no-activity' alleles compared with the NAT1*4 reference allele. We propose that phenotypic designations as 'rapid' and 'slow' acetylator should be discontinued for NAT1 alleles, although these designations remain very appropriate for NAT2 alleles.
Collapse
|
22
|
Yao X, Liu R, Liang X, Ding J. Critical Areas of Proliferation of Single Cells on Micropatterned Surfaces and Corresponding Cell Type Dependence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15366-15380. [PMID: 30964630 DOI: 10.1021/acsami.9b03780] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Material cues to influence cell proliferation are a fundamental issue in the fields of biomaterials, cell biology, tissue engineering, and regenerative medicine. This paper aims to investigate the proliferation of single mammal cells on micropatterned material surfaces. To this end, we prepared cell-adhesive circular microislands with 20 areas on the nonfouling background and systematically examined adhesion and proliferation behaviors of different kinds of single cells (primary stem and nonstem cells, cancer and normal cell lines) on micropatterns. On the basis of the analysis of experimental data, we found two critical areas about cell proliferation: (1) the critical spreading area of cells from almost no proliferation to confined proliferation, denoted as AP and (2) the critical spreading area of cells from confined proliferation to almost free proliferation, denoted as AFP. We further summarized the relative size relationship between these two critical areas and the characteristic areas of cell adhesion on both patterned and nonpatterned surfaces. While proliferation of single primary cells was affected by cell spreading, those cell lines, irrespective of normal and cancer cells, did not exhibit significant cell-spreading effects. As a result, this study reveals that proliferation of single cells is dependent upon spreading area, in particular for primary cells on material surfaces.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| |
Collapse
|
23
|
Nakashima H, Yoshida R, Hirosue A, Kawahara K, Sakata J, Arita H, Yamamoto T, Toya R, Murakami R, Hiraki A, Shinohara M, Ito T, Kuwahara Y, Nakayama H. Circulating miRNA-1290 as a potential biomarker for response to chemoradiotherapy and prognosis of patients with advanced oral squamous cell carcinoma: A single-center retrospective study. Tumour Biol 2019; 41:1010428319826853. [DOI: 10.1177/1010428319826853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs are a class of small, endogenous, noncoding 18- to 24-nucleotide-long RNAs that can regulate multiple processes related to cancer progression. However, their clinical value in patients with oral squamous cell carcinoma has not yet been fully explored. Therefore, the aim of this study was to investigate the clinical significance of circulating microRNAs in oral squamous cell carcinoma patients. The expression levels of circulating miR-1246 and miR-1290 in healthy volunteers and oral squamous cell carcinoma patients were examined by quantitative real-time polymerase chain reaction. The expression levels of both microRNAs in the radioresistant oral squamous cell carcinoma cell line (SAS-R) and the parent cell line (SAS) and in the conditioned medium obtained from these cell lines were also examined by quantitative real-time polymerase chain reaction. In addition, the correlations between circulating microRNA status and various clinicopathological features in 55 oral squamous cell carcinoma patients with locally advanced oral squamous cell carcinoma who underwent surgery following 5-fluorouracil-based chemoradiotherapy were examined. The expression level of miR-1290 was significantly lower in the plasma of oral squamous cell carcinoma patients than in that of healthy volunteers (p < 0.01). The expression levels of microRNAs in the conditioned medium and in the cells varied from cell to cell. In the clinicopathological analyses, the frequency of patients with low miR-1290 levels was significantly higher among cases with lower pathological differentiation and among those with a poor pathological response for preoperative chemoradiotherapy (p = 0.030 each). Furthermore, Cox regression analysis based on the 5-year overall survival and disease-free survival revealed that miR-1290 status was a significant prognostic factor for patients with oral squamous cell carcinoma (hazard ratio = 0.169, p = 0.008, and hazard ratio = 0.186, p = 0.008, respectively). Circulating miR-1290 status could be a valuable biomarker for predicting the clinical response to chemoradiotherapy as well as overall survival in patients with oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuro Yamamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Toya
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akimitsu Hiraki
- Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | | | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Wang L, Minchin RF, Essebier PJ, Butcher NJ. Loss of human arylamine N-acetyltransferase I regulates mitochondrial function by inhibition of the pyruvate dehydrogenase complex. Int J Biochem Cell Biol 2019; 110:84-90. [PMID: 30836144 DOI: 10.1016/j.biocel.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) has been widely reported to affect cancer cell growth and survival and recent studies suggest it may alter cell metabolism. In this study, the effects of NAT1 deletion on mitochondrial function was examined in 2 human cell lines, breast carcinoma MDA-MB-231 and colon carcinoma HT-29 cells. Using a Seahorse XFe96 Flux Analyzer, NAT1 deletion was shown to decrease oxidative phosphorylation with a significant loss in respiratory reserve capacity in both cell lines. There also was a decrease in glycolysis without a change in glucose uptake. The changes in mitochondrial function was due to a decrease in pyruvate dehydrogenase activity, which could be reversed with the pyruvate dehydrogenase kinase inhibitor dichloroacetate. In the MDA-MB-231 and HT-29 cells, pyruvate dehydrogenase activity was attenuated either by an increase in phosphorylation or a decrease in total protein expression. These results may help explain some of the cellular events that have been reported recently in cell and animal models of NAT1 deficiency.
Collapse
Affiliation(s)
- Lili Wang
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia
| | - Rodney F Minchin
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia.
| | - Patricia J Essebier
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia
| | - Neville J Butcher
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia
| |
Collapse
|
25
|
Mu M, Li Y, Zhan Y, Li X, Zhang B. Knockdown of HOXA transcript at the distal tip suppresses the growth and invasion and induces apoptosis of oral tongue squamous carcinoma cells. Onco Targets Ther 2018; 11:8033-8044. [PMID: 30519045 PMCID: PMC6239101 DOI: 10.2147/ott.s174637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) is an aggressive cancer which has high mortality rates. HOXA transcript at the distal tip (HOTTIP) is a lncRNA that can be used as a prognostic marker in multiple carcinomas. The expression of HOTTIP is found to be elevated in OTSCC tissues, and such elevation is correlated with poor prognosis. However, its functional role in regulating the growth and metastasis of OTSCC cells remains elusive and requires further investigation. Methods HOTTIP-silenced OTSCC cells were established by inhibiting HOTTIP expression via its exclusive shRNA. Whether HOTTIP knockdown affected the aggressive tumor behaviors of OTSCC cells was investigated in vitro and in vivo. Results We found that HOTTIP shRNA restrained the cell proliferation and arrested the cell cycle at G1 phase in TSCCA and TCA8113 cells. The expression levels of cyclins B, D1, and E were downregulated in HOTTIP-silenced cells. HOTTIP silencing suppressed the growth of xenograft tumors. Moreover, the silencing of HOTTIP triggered apoptosis in TSCCA and TCA8113 cells and altered the expression of a group of apoptosis-related molecules: downregulated Bcl-2, upregulated Bax, and enhanced the cleavage of caspase 3 and PARP. Knockdown of HOTTIP also suppressed the migration, invasion, and epithelial-mesenchymal transition (EMT) of both TSCCA and TCA8113 cell lines. Conclusion Our findings suggest that HOTTIP is required by the OTSCC cells to maintain their growth and metastasis in vitro. It may serve as a promising potential candidate for OTSCC therapy.
Collapse
Affiliation(s)
- Mingkui Mu
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yue Li
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yuanbo Zhan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China,
| | - Xin Li
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China, .,Heilongjiang Academy of Medical Sciences, Harbin 150001, People's Republic of China,
| |
Collapse
|
26
|
Minchin RF, Rosengren KJ, Burow R, Butcher NJ. Allosteric regulation of arylamine N-acetyltransferase 1 by adenosine triphosphate. Biochem Pharmacol 2018; 158:153-160. [PMID: 30342020 DOI: 10.1016/j.bcp.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023]
Abstract
In the present study, a screen of adenosine analogs as potential modulators of arylamine-N-acetyltransferase 1 activity identified ATP as an inhibitor within its range of physiological concentrations. Kinetically, ATP was a non-competitive inhibitor with respect to the acetyl acceptor but a competitive inhibitor with respect to the acetyl donor (acetyl-coenzyme A). In silico modelling predicted that ATP bound within the active site cleft arranged with the triphosphate group in close proximity to arginine 127. Since lysine 100 has previously been implicated in the binding of acetyl-coenzyme A to the enzyme, this amino acid was mutated to either an arginine or a glutamine. Both substitutions significantly changed the affinity of ATP for the enzyme, as well as the nature of the interaction to one with a large Hill coefficient (>3). Under these conditions, ATP was a strong allosteric modulator of arylamine-N-acetyltransferase 1 activity. Western blot analysis identified lysine 100 as a site of post-translational modification by acetylation. The results suggest that acetylation of lysine 100 converts arylamine-N-acetyltransferase 1 into a switch modulated by ATP. This observation provides important understanding of the molecular regulation of NAT1 activity and may reveal possible insight into the endogenous role of the enzyme.
Collapse
Affiliation(s)
- Rodney F Minchin
- Molecular and Cellular Pharmacology Laboratory, University of Queensland, Brisbane, Queensland 4072, Australia
| | - K Johan Rosengren
- Peptide Structural Biology Laboratory, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rachel Burow
- Molecular and Cellular Pharmacology Laboratory, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Neville J Butcher
- Molecular and Cellular Pharmacology Laboratory, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
27
|
Carlisle SM, Trainor PJ, Doll MA, Stepp MW, Klinge CM, Hein DW. Knockout of human arylamine N-acetyltransferase 1 (NAT1) in MDA-MB-231 breast cancer cells leads to increased reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity. Mol Carcinog 2018; 57:1458-1466. [PMID: 29964355 DOI: 10.1002/mc.22869] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can also hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. Expression of NAT1 varies between individuals and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. To date, however, the exact mechanism by which NAT1 expression affects mitochondrial bioenergetics in breast cancer cells has not been described. To further evaluate the role of NAT1 in energy metabolism MDA-MB-231 breast cancer cells with parental, increased, and knockout levels of NAT1 activity were compared for bioenergetics profile. Basal oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured followed by programmed sequential injection of Oligomycin (ATP synthase inhibitor), FCCP (ETC uncoupler), Antimycin A (Complex III inhibitor), and Rotenone (Complex I inhibitor) to evaluate mitochondrial bioenergetics. Compared to the cell lines with parental NAT1 activity, NAT1 knockout MDA-MB-231 cell lines exhibited significant differences in bioenergetics profile, while those with increased NAT1 did not. Significant increases in reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity were observed in NAT1 knockout MDA-MB-231 cell lines compared to those with parental and increased NAT1 activity. These data indicate that NAT1 knockout in MDA-MB-231 breast cancer cells may enhance adaptation to stress by increasing plasticity in response to energy demand.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Patrick J Trainor
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Marcus W Stepp
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
28
|
Comparative analysis of xenobiotic metabolising N-acetyltransferases from ten non-human primates as in vitro models of human homologues. Sci Rep 2018; 8:9759. [PMID: 29950659 PMCID: PMC6021393 DOI: 10.1038/s41598-018-28094-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic metabolising N-acetyltransferases (NATs) perform biotransformation of drugs and carcinogens. Human NAT1 is associated with endogenous metabolic pathways of cells and is a candidate drug target for cancer. Human NAT2 is a well-characterised polymorphic xenobiotic metabolising enzyme, modulating susceptibility to drug-induced toxicity. Human NATs are difficult to express to high purification yields, complicating large-scale production for high-throughput screens or use in sophisticated enzymology assays and crystallography. We undertake comparative functional investigation of the NAT homologues of ten non-human primates, to characterise their properties and evaluate their suitability as models of human NATs. Considering the amount of generated recombinant protein, the enzymatic activity and thermal stability, the NAT homologues of non-human primates are demonstrated to be a much more effective resource for in vitro studies compared with human NATs. Certain NAT homologues are proposed as better models, such as the NAT1 of macaques Macaca mulatta and M. sylvanus, the NAT2 of Erythrocebus patas, and both NAT proteins of the gibbon Nomascus gabriellae which show highest homology to human NATs. This comparative investigation will facilitate in vitro screens towards discovery and optimisation of candidate pharmaceutical compounds for human NAT isoenzymes, while enabling better understanding of NAT function and evolution in primates.
Collapse
|
29
|
Carlisle SM, Hein DW. Retrospective analysis of estrogen receptor 1 and N‑acetyltransferase gene expression in normal breast tissue, primary breast tumors, and established breast cancer cell lines. Int J Oncol 2018; 53:694-702. [PMID: 29901116 PMCID: PMC6017241 DOI: 10.3892/ijo.2018.4436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
The expression levels of estrogen receptor 1 (ESR1), arylamine N‑acetyltransferase 1 (NAT1), and arylamine N‑acetyltransferase 2 (NAT2) are implicated in breast cancer; however, their co-expression profiles in normal breast tissue, primary breast tumors and established breast cancer cell lines are undefined. NAT1 expression is widely reported to be associated with ESR1 expression and is frequently investigated in breast cancer etiology. Furthermore, the NAT2 phenotype has been reported to modify breast cancer risk in molecular epidemiological association studies. Understanding the relationships between the expression levels of these genes is essential to understand their role in breast cancer etiology and treatment. In the present study, NAT1, NAT2 and ESR1 expression data were accessed from repositories of RNA‑Seq data covering 57 breast cancer cell lines, 1,043 primary breast tumors and 99 normal breast tissues. The relationships between gene expression, and between NAT1 activity and RNA expression in breast cancer cell lines were evaluated using non-parametric statistical analyses. Differences in gene expression in each dataset, as well as gene expression differences in normal breast tissue compared to primary breast tumors, and stratification by estrogen receptor status were determined. NAT1 and NAT2 mRNA expression were detected in normal and primary breast tumor tissues; NAT1 expression was much higher than NAT2. NAT1 and ESR1 expression were strongly associated, whereas NAT2 and ESR1 expression were not. Although NAT1 and NAT2 expression were associated, the magnitude was moderate. NAT1, NAT2, and ESR1 expression were increased in primary breast tumor tissue compared with normal breast tissue; however, the magnitude and significance of the differences were lower for NAT2. Analysis of NAT1, NAT2, and ESR1 expression in normal and primary breast tissues and breast cancer cell lines suggested that NAT1 and NAT2 expression are regulated by distinctive mechanisms, whereas NAT1 and ESR1 expression may have overlapping regulation. Defining these relationships is important for future investigations into breast cancer prevention.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
30
|
Zhang X, Carlisle SM, Doll MA, Martin RCG, States JC, Klinge CM, Hein DW. High N-Acetyltransferase 1 Expression Is Associated with Estrogen Receptor Expression in Breast Tumors, but Is not Under Direct Regulation by Estradiol, 5 α-androstane-3 β,17 β-Diol, or Dihydrotestosterone in Breast Cancer Cells. J Pharmacol Exp Ther 2018; 365:84-93. [PMID: 29339455 DOI: 10.1124/jpet.117.247031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
N-acetyltransferase 1 (NAT1) is an enzyme that metabolizes carcinogens, which suggests a potential role in breast carcinogenesis. High NAT1 expression in breast tumors is associated with estrogen receptor α (ERα+) and the luminal subtype. We report that NAT1 mRNA transcript, protein, and enzyme activity were higher in human breast tumors with high expression of ERα/ESR1 compared with normal breast tissue. There was a strong correlation between NATb promoter and NAT1 protein expression/enzyme activity. High NAT1 expression in tumors was not the result of adipocytes, as evidenced by low perilipin (PLIN) expression. ESR1, NAT1, and XBP1 expression were associated in tumor biopsies. Direct regulation of NAT1 transcription by estradiol (E2) was investigated in ERα (+) MCF-7 and T47D breast cancer cells. E2 did not increase NAT1 transcript expression but increased progesterone receptor expression in a dose-dependent manner. Likewise, NAT1 transcript levels were not increased by dihydrotestosterone (DHT) or 5α-androstane-3β, (3β-adiol) 17β-diol. Dithiothreitol increased levels of the activated, spliced XBP1 in ERα (+) MCF-7 and T47D breast cancer cells but did not affect NAT1 or ESR1 expression. We conclude that NAT1 expression is not directly regulated by E2, DHT, 3β-adiol, or dithiothreitol despite high NAT1 and ESR1 expression in luminal A breast cancer cells, suggesting that ESR1, XBP1, and NAT1 expression may share a common transcriptional network arising from the luminal epithelium associated with better survival in breast cancer. Clusters of high-expression genes, including NAT1, in breast tumors might serve as potential targets for novel therapeutic drug development.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Samantha M Carlisle
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mark A Doll
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Robert C G Martin
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - J Christopher States
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Carolyn M Klinge
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - David W Hein
- Departments of Pharmacology and Toxicology (X.Z., S.M.C., M.A.D., J.C.S., D.W.H.), Surgery (R.C.G.M.), Biochemistry and Molecular Genetics (C.M.K.), and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|