1
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
3
|
Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M, Giordano A. Multiple aspects of matrix stiffness in cancer progression. Front Oncol 2024; 14:1406644. [PMID: 39015505 PMCID: PMC11249764 DOI: 10.3389/fonc.2024.1406644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
The biophysical and biomechanical properties of the extracellular matrix (ECM) are crucial in the processes of cell differentiation and proliferation. However, it is unclear to what extent tumor cells are influenced by biomechanical and biophysical changes of the surrounding microenvironment and how this response varies between different tumor forms, and over the course of tumor progression. The entire ensemble of genes encoding the ECM associated proteins is called matrisome. In cancer, the ECM evolves to become highly dysregulated, rigid, and fibrotic, serving both pro-tumorigenic and anti-tumorigenic roles. Tumor desmoplasia is characterized by a dramatic increase of α-smooth muscle actin expressing fibroblast and the deposition of hard ECM containing collagen, fibronectin, proteoglycans, and hyaluronic acid and is common in many solid tumors. In this review, we described the role of inflammation and inflammatory cytokines, in desmoplastic matrix remodeling, tumor state transition driven by microenvironment forces and the signaling pathways in mechanotransduction as potential targeted therapies, focusing on the impact of qualitative and quantitative variations of the ECM on the regulation of tumor development, hypothesizing the presence of matrisome drivers, acting alongside the cell-intrinsic oncogenic drivers, in some stages of neoplastic progression and in some tumor contexts, such as pancreatic carcinoma, breast cancer, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BioUp Sagl, Lugano, Switzerland
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe De Gennaro,” Casamassima, Bari, Italy
| | - Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, NA, Italy
- Sbarro Health Research Organization (S.H.R.O.) Italia Foundation ETS, Candiolo, TO, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
5
|
Mei S, Li D, Wang A, Zhu G, Zhou B, Li N, Qin Y, Zhang Y, Jiang S. The role of sialidase Neu1 in respiratory diseases. Respir Res 2024; 25:134. [PMID: 38500102 PMCID: PMC10949680 DOI: 10.1186/s12931-024-02763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
Neu1 is a sialidase enzyme that plays a crucial role in the regulation of glycosylation in a variety of cellular processes, including cellular signaling and inflammation. In recent years, numerous evidence has suggested that human NEU1 is also involved in the pathogenesis of various respiratory diseases, including lung infection, chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis. This review paper aims to provide an overview of the current research on human NEU1 and respiratory diseases.
Collapse
Affiliation(s)
- Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Dingding Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingwen Zhou
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Qin
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Hao B, Dong H, Xiong R, Song C, Xu C, Li N, Geng Q. Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med 2024; 171:108183. [PMID: 38422959 DOI: 10.1016/j.compbiomed.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/20/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND As one of the common subtypes of non-small lung cancer, lung squamous cell carcinoma (LUSC) patients with advanced stage have few choices of treatment strategies. Therefore, it is urgent to discover genes that are associated with the survival and efficacy of immunotherapies. METHOD Differential gene expression analyses were conducted using TCGA LUSC bulk-sequencing and single-cell RNA-sequencing data. Prognostic genes were identified from the TCGA LUSC cohort. Protein expression validation and survival analyses were performed. Experiments were conducted to explore the underlying mechanisms. In addition, the correlation between gene expression and pathological response to adjuvant immunochemotherapy was also investigated. RESULTS After a series of bioinformatic analyses, solute carrier family 2 member 1(SLC2A1), encoding glucose transporter-1 (GLUT1), was found to be differentially expressed between tumor and normal tissues. GLUT1 was subsequently identified as an independent prognostic factor for LUSC. GSEA analysis revealed the glycolysis metabolism pathway of KEGG enriched in SLC2A1high tumor tissues. LASSO analyses revealed that tumor tissues with high expression of SLC2A1 were associated with high levels of protein lactylation. We found that SLC2A1 was preferentially expressed by SPP1+ macrophages in the tumor microenvironment, and the expression of SLC2A1 was associated with the abundance of SPP1+ macrophages. Immunofluorescence demonstrated GLUT1 and HIF1α colocalization in tumor-infiltrating macrophages. In vitro experiments showed HIF-1α-induced macrophage polarization under hypoxia, and GLUT1 inhibition blocked this polarization. In addition, SLC2A1 was negatively associated with the common immune checkpoint molecules, such as programmed cell death 1(PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), cytotoxic T-lymphocyte associated protein 4 (CTLA4) and lymphocyte activating 3 (LAG3), while showed a positive association with CD44. Finally, we observed that there was a significant correlation between pre-adjuvant-treatment GLUT1 expression and the pathological response. CONCLUSION SLC2A1 expression was differentially upregulated in tumor tissues, and elevated GLUT1 expression was associated with worse survival and poor pathological response to adjuvant immunochemotherapy. Upregulation of GLUT1 promoted macrophage polarization into the M2 phenotype. The findings will contribute to guiding the treatment selection for LUSC patients and providing personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Huixing Dong
- Department of Pulmonary and Critical Care Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
7
|
Chen C, He Y, Ni Y, Tang Z, Zhang W. Identification of crosstalk genes relating to ECM-receptor interaction genes in MASH and DN using bioinformatics and machine learning. J Cell Mol Med 2024; 28:e18156. [PMID: 38429902 PMCID: PMC10907849 DOI: 10.1111/jcmm.18156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/03/2024] Open
Abstract
This study aimed to identify genes shared by metabolic dysfunction-associated fatty liver disease (MASH) and diabetic nephropathy (DN) and the effect of extracellular matrix (ECM) receptor interaction genes on them. Datasets with MASH and DN were downloaded from the Gene Expression Omnibus (GEO) database. Pearson's coefficients assessed the correlation between ECM-receptor interaction genes and cross talk genes. The coexpression network of co-expression pairs (CP) genes was integrated with its protein-protein interaction (PPI) network, and machine learning was employed to identify essential disease-representing genes. Finally, immuno-penetration analysis was performed on the MASH and DN gene datasets using the CIBERSORT algorithm to evaluate the plausibility of these genes in diseases. We found 19 key CP genes. Fos proto-oncogene (FOS), belonging to the IL-17 signalling pathway, showed greater centrality PPI network; Hyaluronan Mediated Motility Receptor (HMMR), belonging to ECM-receptor interaction genes, showed most critical in the co-expression network map of 19 CP genes; Forkhead Box C1 (FOXC1), like FOS, showed a high ability to predict disease in XGBoost analysis. Further immune infiltration showed a clear positive correlation between FOS/FOXC1 and mast cells that secrete IL-17 during inflammation. Combining the results of previous studies, we suggest a FOS/FOXC1/HMMR regulatory axis in MASH and DN may be associated with mast cells in the acting IL-17 signalling pathway. Extracellular HMMR may regulate the IL-17 pathway represented by FOS through the Mitogen-Activated Protein Kinase 1 (ERK) or PI3K-Akt-mTOR pathway. HMMR may serve as a signalling carrier between MASH and DN and could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Chao Chen
- Instrumentation and Service Center for Science and TechnologyBeijing Normal UniversityZhuhaiChina
| | - Yuxi He
- Pediatric Research InstituteThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ying Ni
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| | - Zhanming Tang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| | - Wensheng Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| |
Collapse
|
8
|
Hashemi M, Esbati N, Rashidi M, Gholami S, Raesi R, Bidoki SS, Goharrizi MASB, Motlagh YSM, Khorrami R, Tavakolpournegari A, Nabavi N, Zou R, Mohammadnahal L, Entezari M, Taheriazam A, Hushmandi K. Biological landscape and nanostructural view in development and reversal of oxaliplatin resistance in colorectal cancer. Transl Oncol 2024; 40:101846. [PMID: 38042134 PMCID: PMC10716031 DOI: 10.1016/j.tranon.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Esbati
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Leila Mohammadnahal
- Department of Health Services Management, School of Health, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Astaneh ME, Fereydouni N. A focused review on hyaluronic acid contained nanofiber formulations for diabetic wound healing. Int J Biol Macromol 2023; 253:127607. [PMID: 37871723 DOI: 10.1016/j.ijbiomac.2023.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The significant clinical challenge presented by diabetic wounds is due to their impaired healing process and increased risk of complications. It is estimated that a foot ulcer will develop at some point in the lives of 15-25 % of diabetic patients. Serious complications, including infection and amputation, are often led to by these wounds. In the field of tissue engineering and regenerative medicine, nanofiber-based wound dressings have emerged in recent years as promising therapeutic strategies for diabetic wound healing. Hyaluronic acid (HA), among various nanofiber materials, has gained considerable attention due to its unique properties, including biocompatibility, biodegradability, and excellent moisture retention capacity. By promoting skin hydration and controlling inflammation, a crucial role in wound healing is played by HA. Wounds are also helped to heal faster by HA through the regulation of inflammation levels and signaling the body to build more blood vessels in the damaged area. Great potential in various applications, including wound healing, has been shown by the development and use of nanofiber formulations in medicine. However, challenges and limitations associated with nanofibers in medicine exist, such as reproducibility, proper characterization, and biological evaluation. By providing a biomimetic environment that enhances re-epithelialization and facilitates the delivery of active substances, nanofibers promote wound healing. In accelerating wound healing, promising results have been shown by HA-contained nanofiber formulations in diabetic wounds. Key strategies employed by these formulations include revascularization, modulation of the inflammation microenvironment, delivery of active substances, photothermal nanofibers, and nanoparticle-loaded fabrics. Particularly crucial is revascularization as it restores blood flow to the wound area, promoting healing. Wound healing can also be enhanced by modulating the inflammation microenvironment through controlling inflammation levels. Future perspectives in this field involve addressing the current challenges and limitations of nanofiber technology and further optimizing HA-contained nanofiber formulations for improved efficacy in diabetic wound healing. This includes exploring new fabrication techniques, enhancing the biocompatibility and biodegradability of nanofibers, and developing multifunctional nanofibers for targeted drug delivery. Not only does writing a review in the field of nanofiber-based wound dressings, particularly those containing hyaluronic acid, allow us to consolidate our current knowledge and understanding but also broadens our horizons. An opportunity is provided to delve deeper into the intricacies of this innovative therapeutic strategy, explore its potential and limitations, and envision future directions. By doing so, a contribution can be made to the ongoing advancements in tissue engineering and regenerative medicine, ultimately improving the quality of life for patients with diabetic wounds.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
11
|
Berdiaki A, Thrapsanioti LN, Giatagana EM, K Karamanos N, C Savani R, N Tzanakakis G, Nikitovic D. RHAMM/hyaluronan inhibit β-catenin degradation, enhance downstream signaling, and facilitate fibrosarcoma cell growth. Mol Biol Rep 2023; 50:8937-8947. [PMID: 37710072 DOI: 10.1007/s11033-023-08763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Increased hyaluronan deposition (HA) in various cancer tissues, including sarcomas, correlates with disease progression. The receptor for hyaluronic acid-mediated motility (RHAMM) expression is elevated in most human cancers. β-catenin is a critical downstream mediator of the Wnt signaling pathways, facilitating carcinogenic events characterized by deregulated cell proliferation. We previously showed that low molecular weight (LMW) HA/RHAMM/β-catenin signaling axis increases HT1080 fibrosarcoma cell growth. Here, focusing on mechanistic aspects and utilizing immunofluorescence and immunoprecipitation, we demonstrate that LMW HA treatment enhanced RHAMM intracellular localization (p ≤ 0.001) and RHAMM/β-catenin colocalization in HT1080 fibrosarcoma cells (p ≤ 0.05). Downregulating endogenous HA attenuated the association of RHAMM/β-catenin in HT1080 fibrosarcoma cells (p ≤ 0.0.01). Notably, Axin-2, the key β-catenin degradation complex component, and RHAMM were demonstrated to form a complex primarily to cell membranes, enhanced by LMW HA (p ≤ 0.01). In contrast, LMW HA attenuated the association of β-catenin and Axin-2 (p ≤ 0.05). The utilization of FH535, a Wnt signaling inhibitor, showed that LMW HA partially rescued the Wnt-dependent growth of HT1080 cells and restored the expression of Wnt/β-catenin mediators, cyclin-D1 and c-myc (p ≤ 0.05). B6FS fibrosarcoma cells with different HA metabolism do not respond to the LMW HA growth stimulus (p = NS). The present study identifies a novel LMW HA/RHAMM mechanism in a fibrosarcoma model. LMW HA regulates intracellular RHAMM expression, which acts as a scaffold protein binding β-catenin and Axin-2 at different cellular compartments to increase β-catenin expression, transcriptional activity, and fibrosarcoma growth.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Lydia-Nefeli Thrapsanioti
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | | | - Rashmin C Savani
- Department of Pediatrics, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100296, Gainesville, FL, USA
| | - George N Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
12
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
13
|
Lee JS, Park E, Oh H, Choi WI, Koo H. Levan nanoparticles with intrinsic CD44-targeting ability for tumor-targeted drug delivery. Int J Biol Macromol 2023; 234:123634. [PMID: 36773871 DOI: 10.1016/j.ijbiomac.2023.123634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Existing anticancer therapeutics exhibit short half-lives, non-specificity, and severe side effects. To address this, active-targeting nanoparticles have been developed; however, the complex fabrication procedures, scale-up, and low reproducibility delay FDA approval, particularly for functionalized nanoparticles. We developed levan nanoparticles via simple one-pot nanoprecipitation for specific anticancer drug delivery. Levan is a plant polysaccharide which has a binding affinity to CD44 receptors and amphiphilicity. The nanoparticles are self-assembled and enable active-targeting without chemical modifications. The paclitaxel-loaded levan nanoparticles (PTX@LevNP) demonstrated a sustained PTX release and long-term stability. The LevNP can bind CD44 receptors on cancer cells, and PTX@LevNP showed enhanced anticancer activity in CD44-positive cells (SCC7 cells). In SCC7 tumor-bearing mice, the accumulation of LevNP in tumor tissue was 3.7 times higher than that of the free-dye, resulting in improved anticancer efficacy of PTX@LevNP. This new strategy using levan can produce nanoparticles for effective cancer treatment without complex fabrication procedures.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Eunyoung Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
14
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
15
|
Ilvesroiha E, Lauren P, Uema N, Kikuchi K, Takashima Y, Laaksonen T, Lajunen T. Establishing a simple perfusion cell culture system for light-activated liposomes. Sci Rep 2023; 13:2050. [PMID: 36739469 PMCID: PMC9899206 DOI: 10.1038/s41598-023-29215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
The off-target effects of light-activated or targeted liposomes are difficult to distinguish in traditional well plate experiments. Additionally, the absence of fluid flow in traditional cell models can lead to overestimation of nanoparticle uptake. In this paper, we established a perfusion cell culture platform to study light-activated liposomes and determined the effect of flow on the liposomal cell uptake. The optimal cell culturing parameters for the A549 cells under flow conditions were determined by monitoring cell viability. To determine optimal liposome treatment times, particle uptake was measured with flow cytometry. The suitability of commercial QuasiVivo flow-chambers for near-infrared light activation was assessed with a calcein release study. The chamber material did not hinder the light activation and subsequent calcein release from the liposomes. Furthermore, our results show that the standard cell culturing techniques are not directly translatable to flow cultures. For non-coated liposomes, the uptake was hindered by flow. Interestingly, hyaluronic acid coating diminished the uptake differences between the flow and static conditions. The study demonstrates that flow affects the liposomal uptake by lung cancer cell line A549. The flow also complicates the cell attachment of A549 cells. Moreover, we show that the QuasiVivo platform is suitable for light-activation studies.
Collapse
Affiliation(s)
- Eija Ilvesroiha
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland.
| | - Patrick Lauren
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Natsumi Uema
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Kanako Kikuchi
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yuuki Takashima
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, 33720, Tampere, Finland
| | - Tatu Lajunen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
- Faculty of Health Sciences, University of Eastern Finland, 70600, Kuopio, Finland
| |
Collapse
|
16
|
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2202118. [PMID: 36373221 PMCID: PMC11469756 DOI: 10.1002/adhm.202202118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a dynamic and complex matter shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) is a major TME component that plays pro-tumorigenic and carcinogenic functions. These functions are mediated by different hyaladherins expressed by cancer and tumor-associated cells triggering downstream signaling pathways that determine cell fate and contribute to TME progression toward a carcinogenic state. Here, the interaction of HA is reviewed with several cell-surface hyaladherins-CD44, RHAMM, TLR2 and 4, LYVE-1, HARE, and layilin. The signaling pathways activated by these interactions and the respective response of different cell populations within the TME, and the modulation of the TME, are discussed. Potential cancer therapies via targeting these interactions are also briefly discussed.
Collapse
Affiliation(s)
- Ana M. Carvalho
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Rui L. Reis
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Iva Pashkuleva
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| |
Collapse
|
17
|
Zhang H, Cao H, Luo H, Zhang N, Wang Z, Dai Z, Wu W, Liu G, Xie Z, Cheng Q, Cheng Y. RUNX1/CD44 axis regulates the proliferation, migration, and immunotherapy of gliomas: A single-cell sequencing analysis. Front Immunol 2023; 14:1086280. [PMID: 36776876 PMCID: PMC9909339 DOI: 10.3389/fimmu.2023.1086280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Background Glioma is one of the most common, primary, and lethal adult brain tumors because of its extreme aggressiveness and poor prognosis. Several recent studies relevant to the immune function of CD44, a transmembrane glycoprotein as a significant hyaluronic acid receptor, have achieved great success, revealing the critical role of CD44 in immune infiltration in gliomas. The overexpression of CD44 has been verified to correlate with cancer aggressiveness and migration, while the clinical and immune features of CD44 expression have not yet been thoroughly characterized in gliomas. Methods Molecular and clinical data of glioma collected from publicly available genomic databases were analyzed. Results CD44 was up-expressed in malignant gliomas, notably in the 1p/19q non-codeletion cases, isocitrate dehydrogenase (IDH) wild-type, and mesenchymal subtypes in GBM samples. CD44 expression level strongly correlates with stromal and immune cells, mainly infiltrating the glioma microenvironment by single-cell sequencing analysis. Meanwhile, CD44 can be a promising biomarker in predicting immunotherapy responses and mediating the expression of PD-L1. Finally, RUNX1/CD44 axis could promote the proliferation and migration of gliomas. Conclusions Therefore, CD44 was responsible for glioma growth and progression. It could potentially lead to a novel target for glioma immunotherapy or a prognostic biomarker.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Yang H, Miao Y, Yu Z, Wei M, Jiao X. Cell adhesion molecules and immunotherapy in advanced non-small cell lung cancer: Current process and potential application. Front Oncol 2023; 13:1107631. [PMID: 36895477 PMCID: PMC9989313 DOI: 10.3389/fonc.2023.1107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has high mortality rate after conventional treatment (e.g., surgical resection, chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer cells can induce immunosuppression, growth and metastasis by modulating cell adhesion molecules of both cancer cells and immune cells. Therefore, immunotherapy is increasingly concerned due to its promising anti-tumor effect and broader indication, which targets cell adhesion molecules to reverse the process. Among these therapies, immune checkpoint inhibitors (mainly anti-PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or second line therapy in advanced NSCLC. However, drug resistance and immune-related adverse reactions restrict its further application. Further understanding of mechanism, adequate biomarkers and novel therapies are necessary to improve therapeutic effect and alleviate adverse effect.
Collapse
Affiliation(s)
- Hongjian Yang
- Innovative Institute, China Medical University, Shenyang, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Shenyang, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China
| |
Collapse
|
19
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
20
|
Puluhulawa LE, Joni IM, Elamin KM, Mohammed AFA, Muchtaridi M, Wathoni N. Chitosan-Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers (Basel) 2022; 14:polym14163410. [PMID: 36015667 PMCID: PMC9416118 DOI: 10.3390/polym14163410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan–hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan–hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Muchtaridi Muchtaridi
- Departement of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-824-888888
| |
Collapse
|
21
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Carvalho AM, Soares da Costa D, Reis RL, Pashkuleva I. RHAMM expression tunes the response of breast cancer cell lines to hyaluronan. Acta Biomater 2022; 146:187-196. [PMID: 35577044 DOI: 10.1016/j.actbio.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/12/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Hyaluronan (HA) synthesis and degradation are altered during carcinogenesis leading to an increased HA content in the tumor microenvironment, which correlates with poor prognosis and treatment outcomes. The main HA receptors, CD44 and RHAMM, are also overexpressed in tumors where they activate anti-apoptotic, proliferative, invasive, and migration signaling pathways. Herein, we used a unidirectional HA gradient to investigate in a high-throughput fashion the bi-directional communication between HA and breast cancer cell lines with different surface expression of CD44 and RHAMM. We found that the expression of CD44 and RHAMM depends on the HA density: the expression of these receptors is promoted at higher HA density and RHAMM is more sensitive to these changes when compared to CD44. Blocking either CD44 or RHAMM revealed different functions on binding and recognizing HA and a compensatory expression between these two receptors that maintains protumorigenic effectors such as cortactin. STATEMENT OF SIGNIFICANCE: We show that the expression of main hyaluronan (HA) receptors CD44 and RHAMM is enhanced in a HA concentration-dependent manner. Blocking activity experiments with either RHAMM or CD44 reveal the redundancy of these two receptors towards HA recognition and activation/recruitment of protumorigenic molecular effector, cortactin. These experiments also demonstrate that cells with overexpressed RHAMM are more sensitive to HA density than CD44 positive cells. The reported results are important for the development of therapies that target the hyaluronan signaling in the tumor microenvironment.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| |
Collapse
|
23
|
Yang W, Li L, Jia J, Wang Z, Zang H. Basic Fibroblast Growth Factor (bFGF)-Overexpressed Bone Marrow Mesenchymal Stem Cells (BMSCs) Orchestrate Lung Cancer Development and Fibroblast Growth. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lung cancer is one of most common cancer with a complicated pathogenesis and a poor prognosis. This study aimed to investigate the role of bFGF and BMSCs in lung cancer progression. BMSCs were transfected with bFGF mimic or NC and then co-cultured with lung cancer cells followed by
measuring cell migration by Transwell assay and proliferation by CCK-8 assay, expression of bFGF, E-cadherin, and Vimentin by RT-qPCR and Western blot. The BMSCs were positive for CD90, CD71, CD29 and CD45. Overexpression of bFGF in BMSCs resulted in increased lung cancer cell proliferation
at 24 h, 48 h and 72 h. Meanwhile, bFGF overexpression also significantly promoted cell migration and invasion as well as upregulated bFGF (4.03±0.36 ng/μl) and E-cadherin (3.64±0.27 ng/μl) and downregulated Vimentin (1.45±0.19 ng/μl). In
conclusion, co-culture of BMSCs overexpressing bFGF and lung cancer cells enhances BMSCs differentiation and promotes cancer cell development possibly through regulation of E-cadherin and Vimentin expression, indicating that this might be a novel approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Weidong Yang
- Department of X-ray, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Lei Li
- Department of X-ray, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Jiangtao Jia
- Department of Digestive System, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Zhibao Wang
- Department of Nuclear Magnetic Resonance Room, The No. 2 Hospital of Baoding, No. 338 4Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Hanqing Zang
- Department of ICU, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| |
Collapse
|
24
|
Enemark MB, Hybel TE, Madsen C, Lauridsen KL, Honoré B, Plesner TL, Hamilton-Dutoit S, d’Amore F, Ludvigsen M. Tumor-Tissue Expression of the Hyaluronic Acid Receptor RHAMM Predicts Histological Transformation in Follicular Lymphoma Patients. Cancers (Basel) 2022; 14:cancers14051316. [PMID: 35267625 PMCID: PMC8909114 DOI: 10.3390/cancers14051316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Histological transformation (HT) remains the leading cause of mortality in follicular lymphoma (FL), underlining the need to identify reliable transformation predictors. The hyaluronic acid receptors CD44 and the receptor for hyaluronan mediated motility (RHAMM, also known as HMMR and CD168), have been shown to be involved in the pathogeneses of both solid tumors and hematological malignancies. In an attempt to improve risk stratification, expression of RHAMM and CD44 were evaluated by immunohistochemistry and digital image analysis in pre-therapeutic tumor-tissue biopsies from FL patients, either without (nt-FL, n = 34), or with (st-FL, n = 31) subsequent transformation, and in paired biopsies from the transformed lymphomas (tFL, n = 31). At the time of initial diagnosis, samples from st-FL patients had a higher expression of RHAMM compared with samples from nt-FL patients (p < 0.001). RHAMM expression further increased in tFL samples following transformation (p < 0.001). Evaluation of CD44 expression showed no differences in expression comparing nt-FL, st-FL, and tFL samples. Shorter transformation-free survival was associated with high tumoral and intrafollicular RHAMM expression, as well as with low intrafollicular CD44 expression (p = 0.002, p < 0.001, and p = 0.034, respectively). Our data suggest that high tumor-tissue RHAMM expression predicts the risk of shorter transformation-free survival in FL patients already at initial diagnosis.
Collapse
Affiliation(s)
- Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | | | - Stephen Hamilton-Dutoit
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus, Denmark; (K.L.L.); (S.H.-D.)
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
25
|
Zhang T, Abdelaziz MM, Cai S, Yang X, Aires DJ, Forrest ML. Hyaluronic acid carrier-based photodynamic therapy for head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther 2022; 37:102706. [PMID: 34954388 PMCID: PMC8898305 DOI: 10.1016/j.pdpdt.2021.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Conventional photosensitizers for photodynamic therapy (PDT) typically have wide tissue distribution and poor water solubility. A hyaluronic acid (HA) polymeric nanoparticle with specific lymphatic uptake and highly water solubility was developed to deliver pyropheophorbide-a (PPa) for locally advanced head and neck squamous cell carcinoma (HNSCC) treatment. METHODS AND RESULTS PPa was chemically conjugated to the HA polymeric nanoparticle via an adipic acid dihydrazide (ADH) linker. The conjugates were injected subcutaneously in a region near the tumor. Near-infrared (NIR) imaging was used to monitor distribution, and diode laser was used to activate PPa. The singlet oxygen generation efficiency of PPa was not affected by conjugation to HA nanoparticles at a PPa loading degree of 1.89 w.t.%. HA-ADH-PPa inhibited human HNSCC MDA-1986 cell growth only when photo-irradiation was applied. After HA-ADH-PPa treatment and radiation, NU/NU mice bearing human HNSCC MDA-1986 tumors showed reduced tumor growth and significantly enhanced survival time compared with an untreated group (p < 0.05). CONCLUSIONS These results demonstrate that HA-ADH-PPa could be useful for in vivo locoregional photodynamic therapy of HNSCC.
Collapse
Affiliation(s)
- Ti Zhang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | | | - Shuang Cai
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - Xinmai Yang
- Department of Bioengineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Daniel J. Aires
- Division of Dermatology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,Author for correspondence Phone: 1-785-864-4388,
| |
Collapse
|
26
|
Icardi A, Lompardia SL, Papademetrio DL, Rosales P, Díaz M, Pibuel MA, Alaniz L, Alvarez E. Hyaluronan in the Extracellular Matrix of Hematological and Solid Tumors. Its Biological Effects. BIOLOGY OF EXTRACELLULAR MATRIX 2022:161-196. [DOI: 10.1007/978-3-030-99708-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Hu H, Zhang Y, Ji W, Mei H, Wu T, He Z, Wang K, Shi C. Hyaluronic acid-coated and Olaparib-loaded PEI - PLGA nanoparticles for the targeted therapy of triple negative breast cancer. J Microencapsul 2021; 39:25-36. [PMID: 34859741 DOI: 10.1080/02652048.2021.2014586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To prepare the hyaluronic acid-coated Olaparib-loaded PEI - PLGA nanoparticles (HA-Ola-PPNPs) and investigate their tumour-targeted anticancer effect. METHODS The synthesis of HA-Ola-PPNPs was verified by DLS, TEM and SEM, followed was measured its cytotoxicity using CCK-8 assay. Confocal microscopy was used to observe the cellular uptake. Cell apoptosis was analysed by flow cytometry, biological SEM, and TEM. The expression of related proteins within the tumour site was investigated by immunostaining. RESULTS The prepared HA-Ola-PPNPs showed a diameter of ∼160 nm with a negatively charged surface (-16.9 ± 2.7 mV) and sustained drug release behaviour. And the encapsulation efficiency of HA-Ola-PPNPs was 78.63 ± 5.29%. HA-Ola-PPNPs exhibited efficient in vitro and in vivo antitumor activities. HA-Ola-PPNPs induced cell apoptosis by upregulating Bax, Cytochrome C, and Caspase 3, downregulating Bcl-2 in breast cancer-bearing mice. CONCLUSIONS According to the results, the Ola-loaded and HA-coated PEI - PLGA nanoparticles could be considered as a powerful tumour-targeted drug delivery system for TNBC treatment.
Collapse
Affiliation(s)
- Huiping Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, P. R. China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, P. R. China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, P. R. China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, P. R. China
| | - Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, P. R. China
| |
Collapse
|
28
|
Díaz M, Pibuel M, Paglilla N, Poodts D, Álvarez E, Papademetrio DL, Hajos SE, Lompardía SL. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci 2021; 287:120065. [PMID: 34678263 DOI: 10.1016/j.lfs.2021.120065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
AIMS Despite continuous improvement in the treatment of acute leukemia, new therapies are still needed to overcome resistance and reduce adverse effects. The aim of this work was to study the tumor-suppressive effects of 4-methylumbelliferone (4MU) in human acute leukemia cell lines. In addition, we aimed to address the extent of these effects in relation to the inhibition of hyaluronic acid (HA) synthesis. MAIN METHODS HA levels were measured by an ELISA-like assay. Human acute leukemia cell lines were treated with 4MU, HA or their combination. Cell proliferation was assessed by the [3H]-Tdr uptake assay, metabolic activity by the XTT assay and cell death was determined by DAPI, AO/EB and AnnexinV-PE/7-AAD staining. Senescence induction was evaluated by SA-β-Gal and C12FDG staining. Total and surface RHAMM expression levels were assessed by flow cytometry and fluorescence microscopy. KEY FINDINGS 4MU reduced metabolic activity and inhibited cell proliferation in all leukemia cells, and these effects were explained by the induction of senescence or cell death depending on the cell line evaluated. Exogenous HA failed to prevent most of the tumor-suppressive effects observed. Results from this work suggest that the tumor-suppressive effects exerted by 4MU would be explained by HA-synthesis-independent mechanisms. SIGNIFICANCE These findings broaden the knowledge of 4MU as a potential treatment in acute leukemia. We report for the first time the existence of tumor-suppressive effects of 4MU on human acute leukemia cell lines that are independent of its role as HA-synthesis inhibitor.
Collapse
Affiliation(s)
- Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Matías Pibuel
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nadia Paglilla
- Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Poodts
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Elida Álvarez
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela L Papademetrio
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia E Hajos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina L Lompardía
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
29
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
30
|
Emerging Therapeutic Agents for Colorectal Cancer. Molecules 2021; 26:molecules26247463. [PMID: 34946546 PMCID: PMC8707340 DOI: 10.3390/molecules26247463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC’s therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.
Collapse
|
31
|
Miao H, Zhu X, Yuan F, Su Q, Li P, Li W, Zhao D, Chang J. Self-Assembly Cascade Reaction Platform for CD44 Positive Lung Cancer Therapy. J Biomed Nanotechnol 2021; 17:2374-2381. [PMID: 34974860 DOI: 10.1166/jbn.2021.3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lung cancer, as one of the most fatal cancers around the world, is responsible for the death of millions every year. Among various types of lung cancers, the ones overexpressing CD44 is usually associated higher cell proliferation with poorer prognosis. Therefore, finding a way to effectively treat CD44 positive lung cancer is urgently needed. Here in this study, negatively charged ultrasmall prussian blue nanoparticles (UPBNPs) was firstly synthesized and adsorbed to polyethyleneimine (PEI) together with glucose oxidase (Gox). Afterwards, the PEI was further complexed with hyaluronic acid (HA) to give a cascade reaction platform (HP/UPB-Gox) for CD44 positive lung cancer therapy. The HP/UPB-Gox with HA shell was able to positively target CD44 overexpressed A549 cells. Upon arriving at the tumor tissue, the Gox catalyzed the glucose of tumor to create H₂O₂, which further served as the substrate of UPBNPs, a peroxidase mimic, to finally give highly toxic hydroxyl radical (OH) for cancer therapy. Therefore, the cascade reaction formed between UPBNPs and Gox was expected to realize effective treatment on CD44 overexpressed lung cancer.
Collapse
Affiliation(s)
- Haitao Miao
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, 200127, China
| | - Xiaoxiao Zhu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Fei Yuan
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Qing Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Pei Li
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Wanyu Li
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Diandian Zhao
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Jianhua Chang
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, 200127, China
| |
Collapse
|
32
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
33
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
34
|
Wessels DJ, Pujol C, Pradhan N, Lusche DF, Gonzalez L, Kelly SE, Martin EM, Voss ER, Park YN, Dailey M, Sugg SL, Phadke S, Bashir A, Soll DR. Directed movement toward, translocation along, penetration into and exit from vascular networks by breast cancer cells in 3D. Cell Adh Migr 2021; 15:224-248. [PMID: 34338608 PMCID: PMC8331046 DOI: 10.1080/19336918.2021.1957527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed a computer-assisted platform using laser scanning confocal microscopy to 3D reconstruct in real-time interactions between metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs). We demonstrate that MB-231 cancer cells migrate toward HUVEC networks, facilitated by filopodia, migrate along the network surfaces, penetrate into and migrate within the HUVEC networks, exit and continue migrating along network surfaces. The system is highly amenable to 3D reconstruction and computational analyses, and assessments of the effects of potential anti-metastasis monoclonal antibodies and other drugs. We demonstrate that an anti-RHAMM antibody blocks filopodium formation and all of the behaviors that we found take place between MB-231 cells and HUVEC networks.
Collapse
Affiliation(s)
- Deborah J Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Claude Pujol
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Nikash Pradhan
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Luis Gonzalez
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sydney E Kelly
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Elizabeth M Martin
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Edward R Voss
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Yang-Nim Park
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Michael Dailey
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sneha Phadke
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Amani Bashir
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
35
|
Vaiman EE, Shnayder NA, Dyuzhakova AV, Nikitina EI, Borzykh OB, Nasyrova RF. Pharmacogenomics of hyaluronic acid. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract.Introduction: Hyaluronic acid (hyaluronan, HA) has become the most popular tool for improving the skin condition during aging, correcting wrinkles and other cosmetic defects. Objective: Analysis of the results of studies that reflect the pharmacogenomics of the synthesis, degradation, and reception of HA. Materials and methods: We searched for full-text publications in Russian and English in the E-Library, PubMed, Springer, Clinical keys, Google Scholar databases, using keywords and combined word searches (hyaluronic acid, hyaluronan, synthesis, degradation, reception, receptor, genetics), over the past decade. In addition, the review included earlier publications of historical interest. Despite our comprehensive searches of these commonly used databases and search terms, it cannot be excluded that some publications may have been missed. Results: The lecture examines: the role of ha in normal and aging human; genes involved in the synthesis (HAS1, HAS2, HAS3), degradation (HYAL1, HYAL2, HYAL3) and reception of ha (CD44, HARE, RHAMM); as well as the expression of their encoded proteins and enzymes in the skin. Conclusion: Expanding our knowledge of the pharmacogenomics of endogenous ha and increasing the exogenous HA drugs (used in anti-aging therapy and medical cosmetology) on the pharmaceutical market requires taking into account individual, including genetically determined, characteristics of the body of each individual patient to ensure an optimal balance of effectiveness/safety of exogenous HA from the point of view of personalized medicine
Collapse
|
36
|
Goodarzi K, Rao SS. Hyaluronic acid-based hydrogels to study cancer cell behaviors. J Mater Chem B 2021; 9:6103-6115. [PMID: 34259709 DOI: 10.1039/d1tb00963j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hyaluronic acid (HA) is a natural polysaccharide and a key component of the extracellular matrix (ECM) in many tissues. Therefore, HA-based biomaterials are extensively utilized to create three dimensional ECM mimics to study cell behaviors in vitro. Specifically, derivatives of HA have been commonly used to fabricate hydrogels with controllable properties. In this review, we discuss the various chemistries employed to fabricate HA-based hydrogels as a tunable matrix to mimic the cancer microenvironment and subsequently study cancer cell behaviors in vitro. These include Michael-addition reactions, photo-crosslinking, carbodiimide chemistry, and Diels-Alder chemistry. The utility of these HA-based hydrogels to examine cancer cell behaviors such as proliferation, migration, and invasion in vitro in various types of cancer are highlighted. Overall, such hydrogels provide a biomimetic material-based platform to probe cell-matrix interactions in cancer cells in vitro and study the mechanisms associated with cancer progression.
Collapse
Affiliation(s)
- Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| | | |
Collapse
|
37
|
Sun Y, Li Z, Song K. AR-mTOR-SRF Axis Regulates HMMR Expression in Human Prostate Cancer Cells. Biomol Ther (Seoul) 2021; 29:667-677. [PMID: 34099592 PMCID: PMC8551732 DOI: 10.4062/biomolther.2021.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 05/16/2021] [Indexed: 11/05/2022] Open
Abstract
The elevated expression of the hyaluronan-mediated motility receptor (HMMR) is known to be highly associated with tumor progression in prostate cancer, but the molecular mechanisms underlying the regulation of HMMR expression remain unclear. Here, we report that mammalian target of rapamycin (mTOR) is a key regulator of HMMR expression, for which its kinase activity is required. Pharmacological inhibitors of mTOR, such as rapamycin and Torin2, markedly suppressed the mRNA level as well as the protein level of HMMR in LNCaP and PC-3 cells. Our data demonstrate that such regulation occurs at the transcription level. HMMR promoter reporter assays revealed that the transcription factor SRF is responsible for the mTOR-mediated transcriptional regulation of HMMR gene. Consistently, the suppression of HMMR expression by Torin2 was noticeably reversed by the overexpression of SRF. Moreover, our findings suggest that the SRF binding sites responsible for the transcriptional regulation of HMMR through the mTOR-SRF axis are located in HMMR promoter sequences carrying the first intron, downstream of the translational start site. Furthermore, the upregulation of HMMR by DHT was abolished by stimulation with rapamycin, prior to DHT treatment, suggesting that mTOR activity is required for the induction of HMMR expression by androgen. Collectively, our study provides new mechanistic insights into the role of mTOR/SRF/AR signaling in HMMR regulation in prostate cancer cells.
Collapse
Affiliation(s)
- You Sun
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Zewu Li
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Kyung Song
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.,Institute of Pharmaceutical Research and Development, Wonkwang University, Iksan 54538, Republic of Korea.,Integrated Omics Institute, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
38
|
Role of the interactions of soft hyaluronan nanomaterials with CD44 and supported bilayer membranes in the cellular uptake. Colloids Surf B Biointerfaces 2021; 205:111916. [PMID: 34146785 DOI: 10.1016/j.colsurfb.2021.111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Increasing valence by acting on nanomaterial morphology can enhance the ability of a ligand to specifically bind to targeted cells. Herein, we investigated cell internalization of soft hyaluronic acid (HA) nanoplatelets (NPs) that exhibit a typical hexagonal shape, flat surfaces and high aspect ratio (Γ≈12 to 20), as characterized by atomic force microscopy in hydrated conditions. Fluorescence imaging revealed that internalization of HA-NPs by a T24 tumor cell line and by macrophages was higher than native polysaccharide in a dose-dependent and time-dependent manners. The ability of HA-NPs to efficiently compete with native HA assessed using Bio-layer interferometry showed that NPs had a stronger interaction with recombinant CD44 receptor compared to native HA. The results were discussed regarding physical properties of the NPs and the implication of multivalent interactions in HA binding to CD44. Experiments conducted on supported bilayer membranes with different compositions showed that non-specific interactions of NPs with lipid membranes were negligible. Our findings provide insights into intracellular drug delivery using soft HA-NPs through receptor-mediated multivalent interactions.
Collapse
|
39
|
Chen H, Fei F, Li X, Nie Z, Zhou D, Liu L, Zhang J, Zhang H, Fei Z, Xu T. A facile, versatile hydrogel bioink for 3D bioprinting benefits long-term subaqueous fidelity, cell viability and proliferation. Regen Biomater 2021; 8:rbab026. [PMID: 34211734 PMCID: PMC8240632 DOI: 10.1093/rb/rbab026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Both of the long-term fidelity and cell viability of three-dimensional (3D)-bioprinted constructs are essential to precise soft tissue repair. However, the shrinking/swelling behavior of hydrogels brings about inadequate long-term fidelity of constructs, and bioinks containing excessive polymer are detrimental to cell viability. Here, we obtained a facile hydrogel by introducing 1% aldehyde hyaluronic acid (AHA) and 0.375% N-carboxymethyl chitosan (CMC), two polysaccharides with strong water absorption and water retention capacity, into classic gelatin (GEL, 5%)-alginate (ALG, 1%) ink. This GEL-ALG/CMC/AHA bioink possesses weak temperature dependence due to the Schiff base linkage of CMC/AHA and electrostatic interaction of CMC/ALG. We fabricated integrated constructs through traditional printing at room temperature and in vivo simulation printing at 37°C. The printed cell-laden constructs can maintain subaqueous fidelity for 30 days after being reinforced by 3% calcium chloride for only 20 s. Flow cytometry results showed that the cell viability was 91.38 ± 1.55% on day 29, and the cells in the proliferation plateau at this time still maintained their dynamic renewal with a DNA replication rate of 6.06 ± 1.24%. This work provides a convenient and practical bioink option for 3D bioprinting in precise soft tissue repair.
Collapse
Affiliation(s)
- Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Neurosurgery, Central Theater General Hospital, Wuhan 430010, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Zhenguo Nie
- Department of Orthopedics, Fourth medical center of PLA general hospital, Beijing 100048, China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Libiao Liu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Zhang
- East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Haitao Zhang
- East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| |
Collapse
|
40
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
41
|
Tam NW, Chung D, Baldwin SJ, Simmons JR, Xu L, Rainey JK, Dellaire G, Frampton JP. Material properties of disulfide-crosslinked hyaluronic acid hydrogels influence prostate cancer cell growth and metabolism. J Mater Chem B 2021; 8:9718-9733. [PMID: 33015692 DOI: 10.1039/d0tb01570a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells reside in vivo within three dimensional environments in which they interact with extracellular matrices (ECMs) that play an integral role in maintaining tissue homeostasis and preventing tumour growth. Thus, tissue culture approaches that more faithfully reproduce these interactions with the ECM are needed to study cancer development and progression. Many materials exist for modeling tissue environments, and the effects of differing mechanical, physical, and biochemical properties of such materials on cell behaviour are often intricately coupled and difficult to tease apart. Here, an optimized protocol was developed to generate low reaction volume disulfide-crosslinked hyaluronic acid (HA) hydrogels for use in cell culture applications to relate the properties of ECM materials to cell signalling and behaviour. Mechanically, HA hydrogels are comparable to other soft hydrogel materials such as Matrigel and agarose or to tissues lacking type I collagen and other fibrillar ECM components. The diffusion of soluble materials in these hydrogels is affected by unique mass transfer properties. Specifically, HA hydrogel concentration affects the diffusion of anionic particles above 500 kDa, whereas diffusion of smaller particles appears unimpeded by HA content, likely reflecting hydrogel pore size. The HA hydrogels have a strong exclusion effect that limits the movement of proteins into and out of the material once fully formed. Such mass transfer properties have interesting implications for cell culture, as they ultimately affect access to nutrients and the distribution of signalling molecules, affecting nutrient sensing and metabolic activity. The use of disulfide-crosslinked HA hydrogels for the culture of the model prostate cancer cell lines PC3 and LNCaP reveals correlations of protein activation linked to metabolic flux, which parallel and can thus potentially provide insights into cell survival mechanisms in response to starvation that occurs in cancer cell microenvironments.
Collapse
Affiliation(s)
- Nicky W Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Samuel J Baldwin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Jeffrey R Simmons
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Lingling Xu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jan K Rainey
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada. and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Department of Chemistry, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada. and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
42
|
Guo Q, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. CD44 activation state regulated by the CD44v10 isoform determines breast cancer proliferation. Oncol Rep 2021; 45:7. [PMID: 33649828 PMCID: PMC7876991 DOI: 10.3892/or.2021.7958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/14/2021] [Indexed: 12/27/2022] Open
Abstract
The cell surface glycoprotein CD44 displays different active statuses; however, it remains unknown whether the activation process of CD44 is critical for tumor development and progression. The aim of the present study was to investigate whether breast cancer (BCa) cells with different activation states of CD44 show similar or distinct functional characteristics and to further examine the mechanisms regulating CD44 activities. A feature for the ‘activated’ state of CD44 is that it can bind to its principal ligand hyaluronan (HA). The binding of CD44 with HA is usually influenced by CD44 alternative splicing, resulting in multiple CD44 isoforms that determine CD44 activities. Flow cytometry was used to sort BCa cell subsets based on CD44-HA binding abilities (HA−/low vs. HAhigh). Subsequently, cell proliferation and colony formation assays were performed in vitro, and CD44 expression patterns were analyzed via western blotting. The results demonstrated that the CD44 variant isoform 10 (CD44v10) was highly expressed in a HA−/low binding subset of BCa cells, which exhibited a significantly higher proliferation capacity compared with the HAhigh binding subpopulation. Knockdown of CD44v10 isoform in HA−/low binding subpopulation induced an increase in HA binding ability and markedly inhibited proliferation. Furthermore, the mechanistic analysis identified that CD44v10 facilitated cell proliferation via activation of ERK/p38 MAPK and AKT/mTOR signaling. Moreover, the knockdown of CD44v10 expression downregulated the phosphorylation of ERK, AKT and mTOR, while no alteration was observed in p38 phosphorylation. Collectively, the present study identified a subset of fast-growing BCa cells characterized by CD44v10 expression, which may serve as a specific therapeutic target for BCa.
Collapse
Affiliation(s)
- Qian Guo
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiwen Liu
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiqing He
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yan Du
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoliang Zhang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Cuixia Yang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Feng Gao
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
43
|
Zhou C, Wang Y, Wang Y, Lei L, Ji MH, Zhou G, Xia H, Yang JJ. Predicting lung adenocarcinoma prognosis with a novel risk scoring based on platelet-related gene expression. Aging (Albany NY) 2021; 13:8706-8719. [PMID: 33619234 PMCID: PMC8034940 DOI: 10.18632/aging.202682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/01/2021] [Indexed: 04/09/2023]
Abstract
Lung adenocarcinoma is the most common subtype of non-small cell lung cancer, and platelet receptor-related genes are related to its occurrence and progression. A new prognostic indicator based on platelet receptor-related genes was developed with multivariate COX analysis. Prognostic markers based on platelet-related risk score perform moderately in prognosis prediction. The functional annotation of this risk model in high-risk patients shows that the pathways related to cell cycle, glycolysis and platelet-derived related factors are rich. It is worth noting that somatic mutation analysis shows that TTN and MUC16 have higher mutation burdens in high-risk patients. Moreover, the differential genes of high- and low-risk groups are regulated by copy number variation and miRNA. And we provide a free online nomogram web tool based on clinical factors and the risk score (https://wsxzaq.shinyapps.io/wsxzaq_nomogram/). The score has been verified among three independent external cohorts (GSE13213, GSE68465 and GSE72094), and is still an independent risk factor for lung adenocarcinoma. In addition, among the other 6 cancers, the OS prognosis of high and low-risk groups of PRS is different (P < 0.05). Our research results have screened multiple platelet differential genes with clinical significance and constructed a meaningful prognostic risk score (PRS).
Collapse
Affiliation(s)
- Chengmao Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ying Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lei Lei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
44
|
Li M, Jin S, Cao Y, Xu J, Zhu S, Li Z. Emodin regulates cell cycle of non-small lung cancer (NSCLC) cells through hyaluronan synthase 2 (HA2)-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway. Cancer Cell Int 2021; 21:19. [PMID: 33407495 PMCID: PMC7789699 DOI: 10.1186/s12935-020-01711-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Non-small cell lung cancers (NSCLC) account for most cases of lung cancer. More effort is needed to research new drug and combination therapies for this disease. An anthraquinone derivative, emodin shows anticancer potency. We hypothesis that emodin suppresses lung cancer cells through hyaluronan (HA) synthase 2-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway mediated cell cycle regulation. Methods We tested the effect of emodin on viability, apoptosis, and HA secretion of 5 NSCLC cell lines. We used NSCLC cells A549 for two rounds of knockdown study: (1) knocking down either the synthases (HAS2 and HAS3) or the receptors (CD44 and RHAMM); (2) knocking down either HAS2 or HAS3. Then determined the effect of emodin on viability, HA secretion, cell cycle, and expression of cyclin proteins. Results Emodin suppressed viability and HA secretion of all 5 NSCLC cell lines except for HA secretion of H460. Emodin had a slight apoptosis induction effect on all cell lines and was not different among cell lines. The knockdown of either the synthases or the receptors blocked emodin effects on viability while the knockdown of HAS2 block emodin effects but not HAS3. Emodin increased cells in the G1/G0 phase, and decreased cells in the S and G2/M phase by down-regulating cyclin A and B and up-regulating cyclin C, D, and E. HAS2 knockdown blocked the effects of emodin on the cell cycle. Conclusions This study demonstrated that emodin regulates the cell cycle of NSCLC cells through the HAS2-HA-CD44/RHAMM interaction-dependent signaling pathway.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Shengbo Jin
- Traditional Therapy Center, Liaoning TCM Hospital, Liaoning, China
| | - Yang Cao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Shendong Zhu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Zheng Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China.
| |
Collapse
|
45
|
Zhao C, Zhang Z, Hu X, Zhang L, Liu Y, Wang Y, Guo Y, Zhang T, Li W, Li B. Hyaluronic Acid Correlates With Bone Metastasis and Predicts Poor Prognosis in Small-Cell Lung Cancer Patients. Front Endocrinol (Lausanne) 2021; 12:785192. [PMID: 35154001 PMCID: PMC8826575 DOI: 10.3389/fendo.2021.785192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Hyaluronan (HA) is one of the essential elements of the extracellular matrix (ECM), involved in the onset of metastasis in various tumors. The interaction and binding of the ligand-receptor HA/cluster of differentiation-44 (CD44) regulate the physical and biochemical properties of the ECM, which correlates with an increased propensity toward metastasis and poor survival outcome. Our study aimed to explore HA for predicting metastasis and survival rate in patients with small-cell lung cancer (SCLC). MATERIALS AND METHODS This prospective cohort study recruited 72 patients with SCLC. Plasma HA and CD44 levels were assayed by enzyme-linked immunosorbent assay (ELISA) for 72 cases before initial systematic treatment (baseline samples), and plasma HA was detected via after-2-cycle-chemotherapy (A-2-C-CT) in 48 samples. Logistic regression analysis and the Cox proportional risk model were used to determine the independent predictors of distant metastasis and survival rate of patients. RESULTS Baseline plasma HA was notably associated with bone metastasis (BM) [OR (95% CI = 1.015 (1.006-1.024), p = 0.001]. Multivariate logistic regression analysis showed that baseline plasma HA was chosen as an independent predictor of BM. Either baseline HA or CD44 or both were associated with BM. Dynamic alteration of HA was notably associated with A-2-C-CT clinical efficacy. Multivariate Cox regression analysis in forward likelihood ratio showed that A-2-C-CT HA was an independent predictor of progression-free survival (PFS) and overall survival (OS). CONCLUSIONS HA appears to be used as an independent predictive factor for BM, and the dynamic detection of HA can predict prognosis in SCLC patients. The mechanism of the HA/CD44 axis in BM of SCLC deserves further exploration.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Zhang
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Yanxia Liu
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Guo
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tongmei Zhang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| | - Weiying Li
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| | - Baolan Li
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| |
Collapse
|
46
|
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9:36. [PMID: 33303029 PMCID: PMC7727191 DOI: 10.1186/s40164-020-00192-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
47
|
Hai W, Bao X, Sun K, Li B, Peng J, Xu Y. The Labeling, Visualization, and Quantification of Hyaluronan Distribution in Tumor-Bearing Mouse Using PET and MR Imaging. Pharm Res 2020; 37:237. [PMID: 33151373 DOI: 10.1007/s11095-020-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Hyaluronan (HA) based biomaterials are widely used as tissue scaffolds, drug formulations, as well as targeting ligands and imaging probes for diagnosis and drug delivery. However, because of the presence of abundant endogenous HA presented in various tissues in vivo, the pharmacokinetic behavior and biodistribution patterns of exogenously administered HAs have not been well characterized. METHODS The HA backbone was modified with Diethylenetriamine (DTPA) to enable the chelation of gadolinium (Gd) and aluminum (Al) ions. Series of PET and MR imaging were taken after the injection of HA-DTPA-Gd and HA-DTPA-Al18F while using18F-FDG and Magnevist(DTPA-Gd) as controls. The Tomographic images were analyzed and quantified to reveal the distribution and locations of HA in tumor-bearing mice. RESULTS The labeled HAs had good stability in plasma. They retained binding affinity towards CD44s on tumor cell surface. The injected HAs distributed widely in various organs, but were found to be cleared quickly except inside tumor tissues where the signals were higher and persisted longer. CONCLUSION Medical imaging tools, including MR and PET, can be highly valuable for examining biomaterial distribution non-invasively. The HA tumor accumulation properties may be explored for the development of active targeting drug carriers and molecular probes.
Collapse
Affiliation(s)
- Wangxi Hai
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Xiao Bao
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Kang Sun
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China.
| | - Yuhong Xu
- School of Pharmacy and Chemistry, Dali University, Xia Guan, Dali, Yunnan, 6710000, People's Republic of China.
| |
Collapse
|
48
|
Multi-layered cellulose nanocrystal system for CD44 receptor-positive tumor-targeted anticancer drug delivery. Int J Biol Macromol 2020; 162:798-809. [DOI: 10.1016/j.ijbiomac.2020.06.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
|
49
|
Tian YB, Wang NX, Xu Y, Yu CY, Liu RM, Luo Y, Xiao JH. Hyaluronic acid ameliorates the proliferative ability of human amniotic epithelial cells through activation of TGF-β/BMP signaling. PeerJ 2020; 8:e10104. [PMID: 33062456 PMCID: PMC7532780 DOI: 10.7717/peerj.10104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) are a useful and noncontroversial source of stem cells for cell therapy and regenerative medicine, but their limited proliferative ability hinders the acquisition of adequate quantities of cells for clinical use due to not expressing telomerase in hAECs. Our previous study showed that hyaluronic acid (HA), an important component of the extracellular matrix, promoted the proliferation of human amniotic mesenchymal stem cells. Herein, we hypothesize that HA might improve the proliferative capability of hAECs. In the present study, the role of HA on the proliferation of human amniotic epithelial cells (hAECs) in vitro was investigated for the first time. HA at molecular weight of 300 kDa showed an obvious pro-proliferation effect on hAECs. Furthermore, HA not only kept phenotypic characteristics and differentiation capabilities of hAECs, but significantly promoted the secretion of the anti-inflammatory factors such as IL-10 and TGF-β1, and the expression of stem cell pluripotent factors such as Oct4 and Nanog. Analysis of PCR microarray data and RT-qPCR validation showed that TGF-β/BMP signaling was activated in the presence of HA. Further study showed that SB431542, an inhibitor of the TGF-β/BMP signaling, significantly suppressed the mRNA expression of TGFBR3, BMP4, BMP7, BMPR1B, SMAD3, SMAD4, and the pro-proliferative effect of HA on hAECs. These data suggest that HA is a safe and effective enhancer for in vitro expansion of hAECs, whose regulatory mechanism involves the TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Ya-Bing Tian
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nuo-Xin Wang
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ru-Ming Liu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
50
|
Hsa_circRNA_102002 facilitates metastasis of papillary thyroid cancer through regulating miR-488-3p/HAS2 axis. Cancer Gene Ther 2020; 28:279-293. [PMID: 32862195 PMCID: PMC8057948 DOI: 10.1038/s41417-020-00218-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
As important modulators in various physiological processes, circular RNAs (circRNAs) have been increasingly demonstrated in tumors, including papillary thyroid cancer (PTC). Hsa_circRNA_102002 (circ_102002) is a circRNA derived from alternative splicing of ubiquitin-specific peptidase 22 (USP22) transcript, the role of which needs further investigation. Our results suggested the upregulation of circ_102002 in PTC tissues and cells, and its promoting effects on epithelial–mesenchymal transition (EMT) and cell migration. Mechanism studies showed that circ_102002 could sponge microRNA-488-3p (miR-488-3p) and downregulate its expression. The target relationship between miR-488-3p and hyaluronic acid synthetase 2 (HAS2) in PTC was systematically studied. In addition, our results showed that HAS2 overexpression could restore the inhibited cell EMT and migration. Moreover, the inhibitory effect of downregulation of circ_102002 on PTC growth was evaluated in a mouse xenograft model, which involved miR-488-3p and HAS2 regulation. These findings about the signal axis of circ_102002/miR-488-3p/HAS2 may further elucidate the PTC pathogenesis and improve clinical treatment.
Collapse
|