1
|
The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. BIOLOGY 2023; 12:biology12020204. [PMID: 36829482 PMCID: PMC9953436 DOI: 10.3390/biology12020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication. They form the gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc., between neighboring tumor cells as well as between tumor and stromal cells. Connexin hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, connexins have been reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. The pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization, and functionality as well as their channel assembly and non-channel functions. In this review, we have summarized the data on the contribution of connexins to the formation of the tumor microenvironment and to cancer initiation and progression.
Collapse
|
2
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
3
|
Maes M, Yanguas SC, Willebrords J, Vinken M. Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol In Vitro 2015; 30:569-577. [PMID: 26420514 PMCID: PMC4685743 DOI: 10.1016/j.tiv.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
4
|
Wang R, Huang F, Chen Z, Li S. Downregulation of connexin 32 attenuates hypoxia/reoxygenation injury in liver cells. J Biochem Mol Toxicol 2015; 29:189-97. [PMID: 25530438 DOI: 10.1002/jbt.21684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 01/02/2023]
Abstract
Gap junction intercellular communication is involved in ischemia-reperfusion (IR) injury of organs. Connexins are proteins that are critical to the function of gap junctions. To clarify the role of gap junctions in IR injury in liver cells, the function of gap junctions was modulated in an in vitro hypoxia/reoxygenation (H/R) model. BRL-3A rat liver cells, endogenously expressing connexins Cx32 and Cx43, were used to model the process of hepatic IR injury. Suppression of gap junction activity was achieved genetically, using Cx32-specific small interfering RNA (siRNA), or chemically, with pharmacological inhibitors, oleamide, and 18-α-GA. BRL-3A cells subjected to H/R exhibited reduced cell survival and pathologies indicative of IR injury. Cx32-specific siRNA, oleamide, and 18-α-GA, respectively, decreased gap junction permeability, as assessed by the parachute assay. Pretreatment with Cx32-specific siRNA increased cell survival. Pretreatment with oleamide or 18-α-GA did not improve cell survival. Modulating gap junction by Cx32 gene silencing protected BRL-3A liver cells from H/R.
Collapse
Affiliation(s)
- Ren Wang
- Department of Anaesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | | | | | | |
Collapse
|
5
|
Ionta M, Rosa MC, Almeida RB, Freitas VM, Rezende-Teixeira P, Machado-Santelli GM. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation. Braz J Med Biol Res 2012; 45:721-9. [PMID: 22618858 PMCID: PMC3854244 DOI: 10.1590/s0100-879x2012007500087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 04/27/2012] [Indexed: 02/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.
Collapse
Affiliation(s)
- M Ionta
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brasil
| | | | | | | | | | | |
Collapse
|
6
|
Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V. Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit Rev Biochem Mol Biol 2009; 44:201-22. [PMID: 19635038 DOI: 10.1080/10409230903061215] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct communication between hepatocytes, mediated by gap junctions, constitutes a major regulatory platform in the control of liver homeostasis, ranging from hepatocellular proliferation to hepatocyte cell death. Inherent to this pivotal task, gap junction functionality is frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity and carcinogenicity. In the present paper, the deleterious effects of a number of chemical and biological toxic compounds on hepatic gap junctions are discussed, including environmental pollutants, biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. Particular attention is paid to the molecular mechanisms that underlie the abrogation of gap junction functionality. Since hepatic gap junctions are specifically targeted by tumor promoters and epigenetic carcinogens, both in vivo and in vitro, inhibition of gap junction functionality is considered as a suitable indicator for the detection of nongenotoxic hepatocarcinogenicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Ionta M, Ferreira RAS, Pfister SC, Machado-Santelli GM. Exogenous Cx43 expression decrease cell proliferation rate in rat hepatocarcinoma cells independently of functional gap junction. Cancer Cell Int 2009; 9:22. [PMID: 19678939 PMCID: PMC2738655 DOI: 10.1186/1475-2867-9-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gap junction intercellular communication (GJIC) is considered to play a role in the regulation of homeostasis because it regulates important processes, such as cell proliferation and cell differentiation. A reduced or lost GJIC capacity has been observed in solid tumors and studies have demonstrated that GJIC restoration in tumor cells contribute to reversion of the transformed phenotype. This observation supports the idea that restoration of the functional channel is essential in this process. However, in the last years, reports have proposed that just the increase in the expression of specific connexins can contribute to reversion of the malign phenotype in some tumor cells. In the present work, we studied the effects of exogenous Connexin 43 (Cx43) expression on the proliferative behavior and phenotype of rat hepatocarcinoma cells. RESULTS The exogenous Cx43 did not increase GJIC capacity of transfected cells, but it was critical to decrease the cell proliferation rate as well as reorganization of the actin filaments and cell flattening. We also observed more adhesion capacity to substrate after Cx43 transfection. CONCLUSION Cx43 expression leads to a decrease of the growth of the rat hepatocellular carcinoma cells and it contributes to the reversion of the transformed phenotype. These effects were independent of the GJIC and were probably associated with the phosphorylation pattern changes and redistribution of the Cx43 protein.
Collapse
Affiliation(s)
- Marisa Ionta
- Department of Cell and Developmental Biology, Institute of Biomedical Science University of Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
8
|
Qu C, Liang F, Smythe NM, Schulte BA. Identification of ClC-2 and CIC-K2 chloride channels in cultured rat type IV spiral ligament fibrocytes. J Assoc Res Otolaryngol 2007; 8:205-19. [PMID: 17334850 PMCID: PMC2538358 DOI: 10.1007/s10162-007-0072-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 12/26/2006] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated chloride channels (ClCs) are important mediators of cellular ion homeostasis and volume regulation. In an earlier study, we used immunohistochemical, Western blot, and reverse transcriptase PCR (RT-PCR) approaches to identify ClC-K variants in types II, IV, and V fibrocytes of the rodent spiral ligament. We have now confirmed the expression of ClC-K2 in these cells by in situ hybridization. All three of these fibrocyte subtypes are thought to be involved in cochlear K(+) recycling; thus, it is important to understand the precise mechanisms regulating their membrane conductance and the role played by ClCs in this process. In this study, we report the characterization of a secondary cell line derived from explants from the region of the rat spiral ligament underlying and inferior to the spiral prominence. The cultured cells were immunopositive for vimentin, Na,K/ATPase, Na,K,Cl-cotransporter, carbonic anhydrase isozyme II, and creatine kinase isozyme BB, but not for cytokeratins or Ca/ATPase, an immunostaining profile indicative of the type IV subtype. Evaluation of the cultures by RT-PCR and Western blot analysis confirmed the presence of both ClC-2 and -K2. Whole-cell patch clamp recordings identified two biophysically distinct Cl(-) currents in the cultured cells. One, an inwardly rectifying Cl(-) current activated by hyperpolarization or decreasing extracellular pH corresponded with the properties of ClC-2. The other, a weak outwardly rectifying Cl(-) current regulated by extracellular pH, Cl(-), and Ca(2+) resembled the channel characteristics of ClC-K2 when expressed in Xenopus oocytes. These findings suggest that at least two functionally different chloride channels are involved in regulating membrane anion conductance in cultured type IV spiral ligament fibrocytes.
Collapse
Affiliation(s)
- Chunyan Qu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, P.O. Box 250908, Charleston, SC 29425 USA
| | - Fenghe Liang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, P.O. Box 250908, Charleston, SC 29425 USA
| | - Nancy M. Smythe
- Department of Otolaryngology–Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Bradley A. Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Suite 309, P.O. Box 250908, Charleston, SC 29425 USA
- Department of Otolaryngology–Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
9
|
Vinken M, Papeleu P, Snykers S, De Rop E, Henkens T, Chipman JK, Rogiers V, Vanhaecke T. Involvement of cell junctions in hepatocyte culture functionality. Crit Rev Toxicol 2006; 36:299-318. [PMID: 16809101 DOI: 10.1080/10408440600599273] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In liver, like in other multicellular systems, the establishment of cellular contacts is a prerequisite for normal functioning. In particular, well-defined cell junctions between hepatocytes, including adherens junctions, desmosomes, tight junctions, and gap junctions, are known to play key roles in the performance of liver-specific functionality. In a first part of this review article, we summarize the current knowledge concerning cell junctions and their roles in hepatic (patho)physiology. In a second part, we discuss their relevance in liver-based in vitro modeling, thereby highlighting the use of primary hepatocyte cultures as suitable in vitro models for preclinical pharmaco-toxicological testing. We further describe the actual strategies to regain and maintain cell junctions in these in vitro systems over the long-term.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML. Defective gap junctional intercellular communication in the carcinogenic process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:125-45. [PMID: 16359943 DOI: 10.1016/j.bbamem.2005.11.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 01/07/2023]
Abstract
Gap junctions are membrane structures made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules. Nearly 40 years ago, the loss of functional gap junctions has been described in cancer cells and led to the hypothesis that such type of intercellular communication is involved in the carcinogenesis process. From this time, a lot of data has been accumulated confirming that gap junctions are frequently decreased or absent in cancer cells whatever their tissue and species origins. Here, we review such data by insisting on the possible links existing between altered gap-junctional intercellular communication capacity (or the altered expression of their constitutive proteins, the connexins) and the stages of cancer progression in various cancer models. Then, we analyse particular aspects of the disturbance of connexin-mediated communication in cancer such as the cytoplasmic localization of connexins, the lack of heterologous communication between cancer cells and normal cells, the role of connexin gene mutations in cancer. In a separate part of the review, we also analyse the disturbance of gap-junctional intercellular communication during the late stages of cancer (invasion and metastasis processes).
Collapse
Affiliation(s)
- Marc Mesnil
- Equipe Interactions et Communications Cellulaires, Institut de Physiologie et Biologie Cellulaires, CNRS-UMR 6187, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
| | | | | | | |
Collapse
|
11
|
Wang Q, Huo JR, Liu DL, Wang XH. Expression of gap junction protein Cx32 in human hepatocellular carcinoma tissue. Shijie Huaren Xiaohua Zazhi 2004; 12:1796-1799. [DOI: 10.11569/wcjd.v12.i8.1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the significance and mechanism of expression and localization of gap junction protein Cx32 in hepatocarcinogenesis.
METHODS: The quantity and localization of Cx32 in 34 cases of HCC and 10 cases of normal liver tissue were analyzed by streptavidin-peroxidase immunohistochemical method.
RESULTS: In HCC and normal liver tissues, the positive rates of Cx32 protein were 38.2% and 90% respectively, with a significant difference between them (P < 0.01).In HCC (gradesⅠ,Ⅱ and Ⅲ), the positive rates of Cx32 protein were 57.1%,40.0% and 29.4% respectively, with a significant difference between HCCⅡ, Ⅲ and normal liver tissue (P < 0.05), and the lower the histological degree, the lower the Cx32 protein positive rate, but the detection rates of Cx32 protein had no significant difference among each histological grade.In normal liver tissue, Cx32 was detected in cytoplasmic membrane at intercellular contacts.But in HCC, Cx32 was detected mainly either intracytoplas-mically or in plasma membrane free from contact with other cells.
CONCLUSION: The decrease of Cx32 protein expression level and aberrant localization of Cx32 may play an important role in hepatocarcinogenesis.
Collapse
|
12
|
Sasaki T, Hankins GR, Helm GA. Comparison of gene expression profiles between frozen original meningiomas and primary cultures of the meningiomas by GeneChip. Neurosurgery 2003; 52:892-8; discussion 898-9. [PMID: 12657186 DOI: 10.1227/01.neu.0000053368.73552.bb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Accepted: 12/05/2002] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE In vitro experiments are performed on a daily basis to study the molecular biology of tumors. For some benign tumors, however, established cell lines are not always available, or it may not be feasible to establish new ones. In such cases, primary cultures are used to perform in vitro experiments. Gene expression profiles in vitro differ from those in vivo, but information as to which genes have significantly altered levels is limited. In this study, gene expression profiles of meningiomas in primary cultures and frozen tumors were compared. METHODS Affymetrix U95A chips were applied to three sets of meningiomas. For each tumor, the gene expression profiles in frozen specimens (Fr) and primary cultures from the same tumor at Pass 5 (P5) and Pass 10 (P10) were compared. A paired t test (P < 0.025) was applied between Fr and P5, and then between Fr and P10. Genes that demonstrated significantly different expression levels in both comparisons were then identified. The expression levels for a subset of these genes were confirmed by quantitative real-time reverse transcription-polymerase chain reaction. RESULTS Among 12,000 genes examined, up-regulation of 51 genes by fivefold or more and down-regulation of 19 genes by twofold or more was found in primary cultures (P5 and P10) compared with the corresponding Fr. Up-regulation of genes encoding for extracellular matrix, cytoskeleton, and cell surface receptors was particularly notable. CONCLUSION Gene expression of tissue-cultured meningiomas and in situ meningiomas is significantly different for a large number of genes. Therefore, gene expression and therapeutic studies on cultured meningiomas need to be interpreted with caution.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
13
|
Meda P, Spray DC. Gap junction function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
14
|
|
15
|
Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:151-9. [PMID: 10196667 DOI: 10.1016/s0764-4469(99)80038-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gap junctional intercellular communication (GJIC) is considered to play a key role in the maintenance of tissue independence and homeostasis in multicellular organisms by controlling the growth of GJIC-connected cells. Gap junction channels are composed of connexin molecules and, so far, more than a dozen different connexin genes have been shown to be expressed in mammals. Reflecting the importance of GJIC in various physiological functions, deletion of different connexin genes from mice results in various disorders, including cancers, heart malformation or conduction abnormality, cataract, etc. The possible involvement of aberrant GJIC in abnormal cell growth and carcinogenesis has long been postulated and recent studies in our own and other laboratories have confirmed that expression and function of connexin genes play an important role in cell growth control. Thus, almost all malignant cells show altered homologous and/or heterologous GJIC and are often associated with aberrant expression or localization of connexins. Aberrant localization of connexins in some tumour cells is associated with lack of function of cell adhesion molecules, suggesting the importance of cell-cell recognition for GJIC. Transfection of connexin genes into tumorigenic cells restores normal cell growth, supporting the idea that connexins form a family of tumour-suppressor genes. Some studies also show that specific connexins may be necessary to control growth of specific cell types. We have produced various dominant-negative mutants of Cx26, Cx32 and Cx43 and showed that some of them prevent the growth control exerted by the corresponding wild-type genes. However, we have found that connexins 32, 37 and 43 genes are rarely mutated in tumours. In some of these studies, we noted that connexin expression per se, rather than GJIC level, is more closely related to growth control, suggesting that connexins may have a GJIC-independent function. We have recently created a transgenic mouse strain in which a mutant Cx32 is specifically overexpressed in the liver. Studies with such mice indicate that Cx32 plays a key role in liver regeneration after partial hepatectomy. A decade ago, we proposed a method to enhance killing of cancer cells by diffusion of therapeutic agents through GJIC. Recently, we and others have shown that GJIC is responsible for the bystander effect seen in HSV-tk/ganciclovir gene therapy. Thus, connexin genes can exert dual effects in tumour control: tumour suppression and a bystander effect for cancer therapy.
Collapse
Affiliation(s)
- H Yamasaki
- Unit of Multistage Carcinogenesis, International Agency for Research on Cancer, Lyon, France.
| | | | | | | | | | | |
Collapse
|
16
|
Chaumontet C, Mazzoleni G, Decaens C, Bex V, Cassio D, Martel P. The polarized hepatic human/rat hybrid WIF 12-1 and WIF-B cells communicate efficiently in vitro via connexin 32-constituted gap junctions. Hepatology 1998; 28:164-72. [PMID: 9657109 DOI: 10.1002/hep.510280122] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Gap junction intercellular communication (GJIC) plays an essential role in the control of growth, differentiation, and functions of different tissues. The expression of connexins (Cxs), the structural proteins of gap junctions, is developmentally regulated and tissue-specific. In vivo hepatocytes express Cx32 and Cx26. Most currently available in vitro hepatic cell systems express Cx43 instead of the expected Cxs. This work analyzes the GJIC competence and Cx expression of the highly differentiated and polarized hepatoma-derived hybrid cell lines, WIF 12-1 and WIF-B. It shows (using two dye transfer assays) that both lines communicate efficiently and that the acquisition of GJIC competence precedes the formation of bile canaliculi. Interestingly, these cells communicate via Cx32 expression, whereas Cx26 and Cx43 are not expressed, as demonstrated by Western and Northern blotting, immunocytochemistry, and confocal microscopy. The human fibroblast W138 parent communicates via Cx43, whereas the rat hepatoma parent Fao and the subclone WIF 12-1 TGdelta, that has lost the human X chromosome, do not communicate, the expression of Cx32 being restricted to the mRNA in these two lines. The GJIC competence of WIF cells could thus result from the activation of the human X chromosome-linked Cx32 gene.
Collapse
Affiliation(s)
- C Chaumontet
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, Centre de Recherche de Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
17
|
Kozma L. Age-dependent variation of doubling times in malignant disorders: why are the doubling times of tumours in childhood shorter than in adulthood? Med Hypotheses 1998; 50:419-22. [PMID: 9681922 DOI: 10.1016/s0306-9877(98)90215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proportion of patients with any given type of cancer in relation to all cases with malignant disorders in the same age-group exhibits a characteristic age-dependent variation. The values of age of maximal relative frequency (AMRF) were determined from statistics for seven cancer clusters grouped by target organ. The results of this study reveal that there exists a theoretical way of estimating AMRF by the linear combination of the approximative average values of tumour doubling times and the age of half-time development of the respective organ. The good correlation (corr. coeff. = 0.985, P < or = 0.001) between the observed and calculated values for AMRF makes the standard error of the calculation as low as 7.3 years. The conclusion is that in young developing organisms, only those tumours with short doubling time are likely to exist and survive, whereas later, during the period of organic involution and weakening cell-cell cooperation, more and more cancer types of longer doubling time can establish themselves. It seems that weak cellular cooperation yields way to malignancy; nevertheless, the normal growth rate of the target tissue has to be exceeded by the potential tumour. A slowly growing tumour in rapidly growing normal tissue is counterselected.
Collapse
Affiliation(s)
- L Kozma
- Department of Pathology, University Medical School of Debrecen, Hungary
| |
Collapse
|
18
|
Bevans CG, Kordel M, Rhee SK, Harris AL. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 1998; 273:2808-16. [PMID: 9446589 DOI: 10.1074/jbc.273.5.2808] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intercellular connexin channels (gap junction channels) have long been thought to mediate molecular signaling between cells, but the nature of the signaling has been unclear. This study shows that connexin channels from native tissue have selective permeabilities, partially based on pore diameter, that discriminate among cytoplasmic second messenger molecules. Permeability was assessed by measurement of selective loss/retention of tracers from liposomes containing reconstituted connexin channels. The tracers employed were tritiated cyclic nucleotides and a series of oligomaltosaccharides derivatized with a small uncharged fluorescent moiety. The data define different size cut-off limits for permeability through homomeric connexin-32 channels and through heteromeric connexin-32/connexin-26 channels. Connexin-26 contributes to a narrowed pore. Both cAMP and cGMP were permeable through the homomeric connexin-32 channels. cAMP was permeable through only a fraction of the heteromeric channels. Surprisingly, cGMP was permeable through a substantially greater fraction of the heteromeric channels than was cAMP. The data suggest that isoform stoichiometry and/or arrangement within a connexin channel determines whether cyclic nucleotides can permeate, and which ones. This is the first evidence for connexin-specific selectivity among biological signaling molecules.
Collapse
Affiliation(s)
- C G Bevans
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
19
|
Cao F, Eckert R, Elfgang C, Nitsche JM, Snyder SA, H-ulser DF, Willecke K, Nicholson BJ. A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci 1998; 111 ( Pt 1):31-43. [PMID: 9394010 DOI: 10.1242/jcs.111.1.31] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junctions provide direct intercellular communication by linking adjacent cells with aqueous pores permeable to molecules up to 1 kDa in molecular mass and 8–14 A in diameter. The identification of over a dozen connexins in the mammalian gap junction family has stimulated interest in the functional significance of this diversity, including the possibility of selectivity for permeants as seen in other channel classes. Here we present a quantitative comparison of channel permeabilities of different connexins expressed in both HeLa transfectants (rat Cx26, rat Cx32 and mouse Cx45) and Xenopus oocytes (rat Cx26 and rat Cx32). In HeLa cells, we examined permeability to two fluorescent molecules: Lucifer Yellow (LY: anionic, MW 457) and 4′,6-diamidino-2-phenylindole, dihydrochloride (DAPI, cationic, MW 350). A comparison of the kinetics of fluorescent dye transfer showed Cx32, Cx26 and Cx45 to have progressively decreasing permeabilities to LY, but increasing permeabilities to DAPI. This pattern was inconsistent with selection based on physical size of the probe, nor could it be accounted for by the differences between clones in the electrical conductance of the monolayers. In Xenopus oocytes, where electrical and dye coupling could be assessed in the same cells, Cx32 coupled oocytes showed an estimated 6-fold greater permeability to LY than those coupled by Cx26, a comparable result to that seen in HeLa cells, where an approximately 9-fold difference was seen. The oocyte system also allowed an examination of Cx32/Cx26 heterotypic gap junction that proved to have a permeability intermediate between the two homotypic forms. Thus, independent of the expression system, it appears that connexins show differential permeabilities that cannot be predicted based on size considerations, but must depend on other features of the probe, such as charge.
Collapse
Affiliation(s)
- F Cao
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamasaki H. Cellular and molecular methods to study the role of gap junctional intercellular communication in toxicology. Toxicol In Vitro 1997; 11:535-42. [DOI: 10.1016/s0887-2333(97)00052-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Grisham J, Thorgeirsson SS. Liver stem cells**The colour plate section for this chapter appears between pages 274 and 275. Stem Cells 1997. [DOI: 10.1016/b978-012563455-7/50009-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Yamasaki H. Role of disrupted gap junctional intercellular communication in detection and characterization of carcinogens. Mutat Res 1996; 365:91-105. [PMID: 8898991 DOI: 10.1016/s0165-1110(96)90014-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Results from short-term tests for carcinogens and our advanced knowledge on cellular and molecular mechanisms of carcinogenesis strongly suggest that carcinogens do not induce genetic changes necessarily by directly interacting with DNA. Therefore, it is not surprising to see that many carcinogens are not detectable by available genetic toxicology tests. Thus, it has become necessary to study nongenotoxic mechanisms of carcinogenesis and to provide methods to predict those carcinogens which escape from conventional mutation tests. One possible nongenotoxic mechanism of carcinogenesis which is supported by abundant experimental evidence is inhibition of gap junctional intercellular communication. Many, but not all, tumor-promoting agents have been shown to inhibit the communication of cultured cells as well as in vivo. Molecular mechanisms of gap junctional intercellular communication control revealed that connexin (gap junction) genes form a family of tumor suppressor genes. Control mechanisms of expression as well as function of connexins are vulnerable to various carcinogenic insults, notably to nongenetoxic carcinogens. Thus, studies on the role of connexins in cell growth and carcinogenesis may prove to be useful for establishing a mechanism-based test to detect certain types of nongenotoxic carcinogens.
Collapse
Affiliation(s)
- H Yamasaki
- Unit of Multistage Carcinogenesis, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
23
|
Abstract
Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.
Collapse
Affiliation(s)
- I V Budunova
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Smithville 78957, USA
| | | | | | | |
Collapse
|