1
|
Wakabayashi K, Miki Y, Tanji K, Mori F. Neuropathology of Multiple System Atrophy, a Glioneuronal Degenerative Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2-12. [PMID: 35474048 DOI: 10.1007/s12311-022-01407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 12/16/2022]
Abstract
Multiple system atrophy (MSA) is a fatal disease characterized pathologically by the widespread occurrence of aggregated α-synuclein in the oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). α-Synuclein aggregates are also found in the oligodendroglial nuclei and neuronal cytoplasm and nuclei. It is uncertain whether the primary source of α-synuclein in GCIs is originated from neurons or oligodendrocytes. Accumulating evidence suggests that there are two degenerative processes in this disease. One possibility is that numerous GCIs are associated with the impairment of oligo-myelin-axon-neuron complex, and the other is that neuronal inclusion pathology is also a primary event from the early stage. Both oligodendrocytes and neurons may be primarily affected in MSA, and the damage of one cell type contributes to the degeneration of the other. Vesicle-mediated transport plays a key role in the nuclear translocation of α-synuclein as well as in the formation of glial and neuronal α-synuclein inclusions. Recent studies have shown that impairment of autophagy can occur along with or as a result of α-synuclein accumulation in the brain of MSA and Lewy body disease. Activated autophagy may be implicated in the therapeutic approach for α-synucleinopathies.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
2
|
Yu H, Wang F, Jia D, Bi S, Gong J, Wu J, Mao Y, Chen J, Chai G. Pathological features and molecular signatures of early olfactory dysfunction in 3xTg-AD model mice. CNS Neurosci Ther 2024; 30:e14632. [PMID: 38366763 PMCID: PMC10873683 DOI: 10.1111/cns.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Olfactory dysfunction is known to be an early manifestation of Alzheimer's disease (AD). However, the underlying mechanism, particularly the specific molecular events that occur during the early stages of olfactory disorders, remains unclear. METHODS In this study, we utilized transcriptomic sequencing, bioinformatics analysis, and biochemical detection to investigate the specific pathological and molecular characteristics of the olfactory bulb (OB) in 4-month-old male triple transgenic 3xTg-AD mice (PS1M146V/APPSwe/TauP301L). RESULTS Initially, during the early stages of olfactory impairment, no significant learning and memory deficits were observed. Correspondingly, we observed significant accumulation of amyloid-beta (Aβ) and Tau pathology specifically in the OB, but not in the hippocampus. In addition, significant axonal morphological defects were detected in the olfactory bulb, cortex, and hippocampal brain regions of 3xTg-AD mice. Transcriptomic analysis revealed a significant increase in the expression of neuroinflammation-related genes, accompanied by a significant decrease in neuronal activity-related genes in the OB. Moreover, immunofluorescence and immunoblotting demonstrated an activation of glial cell biomarkers Iba1 and GFAP, along with a reduction in the expression levels of neuronal activity-related molecules Nr4a2 and FosB, as well as olfaction-related marker OMP. CONCLUSION In sum, the early accumulation of Aβ and Tau pathology induces neuroinflammation, which subsequently leads to a decrease in neuronal activity within the OB, causing axonal transport deficits that contribute to olfactory disorders. Nr4a2 and FosB appear to be promising targets for intervention aimed at improving early olfactory impairment in AD.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Affiliated Hospital of Jiangnan UniversityWuxiJiangsu ProvinceP. R. China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Dongdong Jia
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation HospitalWuxiJiangsuP. R. China
| | - Shuguang Bi
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Juan Gong
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Jia‐Jun Wu
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Yumin Mao
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Jia Chen
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Gao‐Shang Chai
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| |
Collapse
|
3
|
Dutta D, Karthik K, Holla VV, Kamble N, Yadav R, Pal PK, Mahale RR. Olfactory Bulb Volume, Olfactory Sulcus Depth in Parkinson's Disease, Atypical Parkinsonism. Mov Disord Clin Pract 2023; 10:794-801. [PMID: 37205255 PMCID: PMC10187014 DOI: 10.1002/mdc3.13733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Background About 70-90% of Parkinson's disease (PD) patients have olfactory deficits which is considered as pre-motor symptom of PD. Lewy bodies have been demonstrated in the olfactory bulb (OB) in PD. Objective To assess the OB volume (OBV), olfactory sulcus depth (OSD) in PD and compare with progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and vascular parkinsonism (VP) patients and determine the cut-off volume of OB that will aid in the diagnosis of PD. Methods This was a cross-sectional, hospital based, single-center study. Forty PD, 20 PSP, 10 MSA, 10 VP patients and 30 controls were recruited. OBV and OSD was assessed using 3-T magnetic resonance imaging (MRI) brain. Olfaction was tested using Indian Smell Identification test (INSIT). Results The mean total OBV in PD was 113.3 ± 79.2 mm3 and 187.4 ± 65.0 mm3 in controls (P = 0.003) which was significantly lower in PD. The mean total OSD in PD was 19.4 ± 8.1 and 21.1 ± 2.2 mm in controls (P = 0.41) with no difference. The mean total OBV was significantly lower in PD as compared to that of PSP, MSA and VP patients. There was no difference in the OSD among the groups. The total OBV in PD had no association with age at onset, duration of disease, dopaminergic drugs dosage, motor and non-motor symptoms severity but had positive correlation with cognitive scores. Conclusion OBV is reduced in PD patients as compared to PSP, MSA, VP patients and controls. OBV estimation by MRI adds to the armamentarium in the diagnosis of PD.
Collapse
Affiliation(s)
- Debayan Dutta
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Kulanthaivelu Karthik
- Department of Neuroimaging and Interventional Radiology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Vikram V Holla
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Nitish Kamble
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Ravi Yadav
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Pramod Kumar Pal
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Rohan R Mahale
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| |
Collapse
|
4
|
Killinger BA, Mercado G, Choi S, Tittle T, Chu Y, Brundin P, Kordower JH. Distribution of phosphorylated alpha-synuclein in non-diseased brain implicates olfactory bulb mitral cells in synucleinopathy pathogenesis. NPJ Parkinsons Dis 2023; 9:43. [PMID: 36966145 PMCID: PMC10039879 DOI: 10.1038/s41531-023-00491-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Synucleinopathies are neurodegenerative diseases characterized by pathological inclusions called "Lewy pathology" (LP) that consist of aggregated alpha-synuclein predominantly phosphorylated at serine 129 (PSER129). Despite the importance for understanding disease, little is known about the endogenous function of PSER129 or why it accumulates in the diseased brain. Here we conducted several observational studies using a sensitive tyramide signal amplification (TSA) technique to determine PSER129 distribution and function in the non-diseased mammalian brain. In wild-type non-diseased mice, PSER129 was detected in the olfactory bulb (OB) and several brain regions across the neuroaxis (i.e., OB to brainstem). In contrast, PSER129 immunoreactivity was not observed in any brain region of alpha-synuclein knockout mice. We found evidence of PSER129 positive structures in OB mitral cells of non-diseased mice, rats, non-human primates, and healthy humans. Using TSA multiplex fluorescent labeling, we showed that PSER129 positive punctate structures occur within inactive (i.e., c-fos negative) T-box transcription factor 21 (TBX21) positive mitral cells and PSER129 within these cells was spatially associated with PK-resistant alpha-synuclein. Ubiquitin was found in PSER129 mitral cells but was not closely associated with PSER129. Biotinylation by antibody recognition (BAR) identified 125 PSER129-interacting proteins in the OB of healthy mice, which were significantly enriched for presynaptic vesicle trafficking/recycling, SNARE, fatty acid oxidation, oxidative phosphorylation, and RNA binding. TSA multiplex labeling confirmed the physical association of BAR-identified protein Ywhag with PSER129 in the OB and in other regions across the neuroaxis. We conclude that PSER129 accumulates in the mitral cells of the healthy OB as part of alpha-synuclein normal cellular functions. Incidental LP has been reported in the OB, and therefore we speculate that for synucleinopathies, either the disease processes begin locally in OB mitral cells or a systemic disease process is most apparent in the OB because of the natural tendency to accumulate PSER129.
Collapse
Affiliation(s)
- Bryan A Killinger
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Gabriela Mercado
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Solji Choi
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Tyler Tittle
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| | - Patrik Brundin
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Pharma Research and Early Development (pRED), F Hoffman-La Roche, New York, NY, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
5
|
Tremblay C, Serrano GE, Intorcia AJ, Mariner MR, Sue LI, Arce RA, Atri A, Adler CH, Belden CM, Shill HA, Driver-Dunckley E, Mehta SH, Beach TG. Olfactory Bulb Amyloid-β Correlates With Brain Thal Amyloid Phase and Severity of Cognitive Impairment. J Neuropathol Exp Neurol 2022; 81:643-649. [PMID: 35751438 PMCID: PMC9297096 DOI: 10.1093/jnen/nlac042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Alzheimer disease (AD) neuropathological hallmarks amyloid β (Aβ) and tau neurofibrillary (NF) pathology have been reported in the olfactory bulb (OB) in aging and in different neurodegenerative diseases, which coincides with frequently reported olfactory dysfunction in these conditions. To better understand when the OB is affected in relation to the hierarchical progression of Aβ throughout the brain and whether OB pathology might be an indicator of AD severity, we assessed the presence of OB Aβ and tau NF pathology in an autopsy cohort of 158 non demented control and 173 AD dementia cases. OB Aβ was found in less than 5% of cases in lower Thal phases 0 and 1, in 20% of cases in phase 2, in 60% of cases in phase 3 and in more than 80% of cases in higher Thal phases 4 and 5. OB Aβ and tau pathology significantly predicted a Thal phase greater than 3, a Braak NF stage greater than 4, and an MMSE score lower than 24. While OB tau pathology is almost universal in the elderly and therefore is not a good predictor of AD severity, OB Aβ pathology coincides with clinically-manifest AD and might prove to be a useful biomarker of the extent of brain spread of both amyloid and tau pathology.
Collapse
Affiliation(s)
- Cécilia Tremblay
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Anthony J Intorcia
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Monica R Mariner
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Richard A Arce
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alireza Atri
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA.,Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Christine M Belden
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Shyamal H Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
6
|
Campese N, Fanciulli A, Stefanova N, Haybaeck J, Kiechl S, Wenning GK. Neuropathology of multiple system atrophy: Kurt Jellinger`s legacy. J Neural Transm (Vienna) 2021; 128:1481-1494. [PMID: 34319460 PMCID: PMC8528766 DOI: 10.1007/s00702-021-02383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023]
Abstract
Multiple System Atrophy (MSA) is a rare, fatal neurodegenerative disorder. Its etiology and exact pathogenesis still remain poorly understood and currently no disease-modifying therapy is available to halt or slow down this detrimental neurodegenerative process. Hallmarks of the disease are α-synuclein rich glial cytoplasmic inclusions (GCIs). Neuropathologically, various degrees of striatonigral degeneration (SND) and olivopontocerebellar atrophy (OPCA) can be observed. Since the original descriptions of this multifaceted disorder, several steps forward have been made to clarify its neuropathological hallmarks and key pathophysiological mechanisms. The Austrian neuropathologist Kurt Jellinger substantially contributed to the understanding of the underlying neuropathology of this disease, to its standardized assessment and to a broad systematical clinic-pathological correlation. On the occasion of his 90th birthday, we reviewed the current state of the art in the field of MSA neuropathology, highlighting Prof. Jellinger’s substantial contribution.
Collapse
Affiliation(s)
- Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.,Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alessandra Fanciulli
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstrasse 44, 6020, Innsbruck, Austria.,Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
7
|
Ebihara T, Yamasaki M, Kozaki K, Ebihara S. Medical aromatherapy in geriatric syndrome. Geriatr Gerontol Int 2021; 21:377-385. [PMID: 33789361 DOI: 10.1111/ggi.14157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Geriatric syndromes are symptoms and signs, such as falls, incontinence, delirium, pressure ulcers, dysphagia and so on, that often threaten the independence of older adults, rather than the disease itself. Although the syndromes are very common in older people, it is difficult to treat those by modern medicine due to their complexity. To mitigate the intractable geriatric symptoms, we review the efficacy of aromatherapy, especially for dysphagia, dyspnea, cognitive dysfunction and falls in geriatric syndrome. Olfactory stimulation using a volatile black pepper oil on institutional residents improved the swallowing reflex, which is a crucial risk factor of aspiration pneumonia. Brain imaging study showed that olfactory stimulation using volatile black pepper oil activated cerebral regions of the anterior cingulate and the insular cortex, which play a role in controlling appetite and swallowing. Also, aromatherapy with volatile l-menthol decreased the sense of dyspnea and improved the efficacy of exercise therapy. The fragrance of the combination of rosemary and lemon oils in the morning, and the combination of lavender and orange oils in the night-time were reported to improve cognition and behavioural and psychological symptoms of dementia, respectively. Also, the combination of lavender and lemon balm oils was reported to be effective for irritability-related agitation in older adults. Furthermore, aromatherapy with lavender fragrance could improve both static and dynamic balance, resulting in a reduction in the number of fallers and the incidence rate in older people. Thus, aromatherapy is a promising remedy for geriatric syndrome. Geriatr Gerontol Int 2021; 21: 377-385.
Collapse
Affiliation(s)
- Takae Ebihara
- Department of Geriatric Medicine, Graduate School of Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Miyako Yamasaki
- National Health Insurance Kuzumaki Hospital, Kuzumaki, Iwate, Japan
| | - Koichi Kozaki
- Department of Geriatric Medicine, Graduate School of Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Athanassi A, Dorado Doncel R, Bath KG, Mandairon N. Relationship between depression and olfactory sensory function: a review. Chem Senses 2021; 46:6383453. [PMID: 34618883 PMCID: PMC8542994 DOI: 10.1093/chemse/bjab044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Links between olfactory sensory function and effect have been well established. A robust literature exists in both humans and animals showing that disrupting olfaction sensory function can elicit disordered mood state, including serve as a model of depression. Despite this, considerably less is known regarding the directionality and neural basis of this relationship, e.g. whether disruptions in sensory function precede and contribute to altered mood or if altered mood state precipitates changes in olfactory perception. Further, the neural basis of altered olfactory function in depression remains unclear. In conjunction with clinical studies, animal models represent a valuable tool to understand the relationship between altered mood and olfactory sensory function. Here, we review the relevant literature assessing olfactory performance in depression in humans and in rodent models of depressive-like behavioral states. Rodents allow for detailed characterization of alterations in olfactory perception, manipulation of experiential events that elicit depressive-like phenotypes, and allow for interrogation of potential predictive markers of disease and the cellular basis of olfactory impairments associated with depressive-like phenotypes. We synthesize these findings to identify paths forward to investigate and understand the complex interplay between depression and olfactory sensory function.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| | - Romane Dorado Doncel
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| | - Kevin G Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University Medical College, New York, NY, 10032, USA
| | - Nathalie Mandairon
- INSERM, U1028; Centre National de la Recherche Scientific, UMR5292; Lyon Neuroscience Research Centre, Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon 1, F-69000, France
| |
Collapse
|
9
|
Fanciulli A, Stankovic I, Krismer F, Seppi K, Levin J, Wenning GK. Multiple system atrophy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:137-192. [PMID: 31779811 DOI: 10.1016/bs.irn.2019.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple system atrophy (MSA) is a sporadic, adult-onset, relentlessly progressive neurodegenerative disorder, clinically characterized by various combinations of autonomic failure, parkinsonism and ataxia. The neuropathological hallmark of MSA are glial cytoplasmic inclusions consisting of misfolded α-synuclein. Selective atrophy and neuronal loss in striatonigral and olivopontocerebellar systems underlie the division into two main motor phenotypes of MSA-parkinsonian type and MSA-cerebellar type. Isolated autonomic failure and REM sleep behavior disorder are common premotor features of MSA. Beyond the core clinical symptoms, MSA manifests with a number of non-motor and motor features. Red flags highly specific for MSA may provide clues for a correct diagnosis, but in general the diagnostic accuracy of the second consensus criteria is suboptimal, particularly in early disease stages. In this chapter, the authors discuss the historical milestones, etiopathogenesis, neuropathological findings, clinical features, red flags, differential diagnosis, diagnostic criteria, imaging and other biomarkers, current treatment, unmet needs and future treatments for MSA.
Collapse
Affiliation(s)
| | - Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Doty RL, Hawkes CH. Chemosensory dysfunction in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:325-360. [PMID: 31604557 DOI: 10.1016/b978-0-444-63855-7.00020-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of neurodegenerative diseases are accompanied by disordered smell function. The degree of dysfunction can vary among different diseases, such that olfactory testing can aid in differentiating, for example, Alzheimer's disease (AD) from major affective disorder and Parkinson's disease (PD) from progressive supranuclear palsy. Unfortunately, altered smell function often goes unrecognized by patients and physicians alike until formal testing is undertaken. Such testing uniquely probes brain regions not commonly examined in physical examinations and can identify, in some cases, patients who are already in the "preclinical" stage of disease. Awareness of this fact is one reason why the Quality Standards Committee of the American Academy of Neurology has designated smell dysfunction as one of the key diagnostic criteria for PD. The same recommendation has been made by the Movement Disorder Society for both the diagnosis of PD and identification of prodromal PD. Similar suggestions are proposed to include olfactory dysfunction as an additional research criterion for the diagnosis of AD. Although taste impairment, i.e., altered sweet, sour, bitter, salty, and umami perception, has also been demonstrated in some disorders, taste has received much less scientific attention than smell. In this review, we assess what is known about the smell and taste disorders of a wide range of neurodegenerative diseases and describe studies seeking to understand their pathologic underpinnings.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | | |
Collapse
|
11
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
12
|
Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 2018; 109:226-248. [PMID: 28011307 PMCID: PMC5972535 DOI: 10.1016/j.nbd.2016.12.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Olfactory deficits are present in numerous neurodegenerative disorders and are accompanied by pathology in related brain regions. In several of these disorders, olfactory disturbances appear early and are considered as prodromal symptoms of the disease. In addition, pathological protein aggregates affect olfactory regions prior to other regions, suggesting that the olfactory system might be particularly vulnerable to neurodegenerative diseases. Exposed to the external environment, the olfactory epithelium and olfactory bulb allow pathogen and toxin penetration into the brain, a process that has been proposed to play a role in neurodegenerative diseases. Determining whether the olfactory bulb could be a starting point of pathology and of pathology spread is crucial to understanding how neurodegenerative diseases evolve. We argue that pathological changes following environmental insults contribute to the initiation of protein aggregation in the olfactory bulb, which then triggers the spread of the pathology within the brain by a templating mechanism in a prion-like manner. We review the evidence for the early involvement of olfactory structures in neurodegenerative diseases and the relationship between neuropathology and olfactory function. We discuss the vulnerability and putative underlying mechanisms by which pathology could be initiated in the olfactory bulb, from the entry of pathogens (promoted by increased permeability of the olfactory epithelium with aging or inflammation) to the sensitivity of the olfactory system to oxidative stress and inflammation. Finally, we review changes in protein expression and neural excitability triggered by pathogenic proteins that can promote pathogenesis in the olfactory bulb and beyond.
Collapse
Affiliation(s)
- Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Daniel W Wesson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
13
|
Watanabe Y, Suzuki K, Miyamoto T, Miyamoto M, Numao A, Fujita H, Uchiyama T, Kadowaki T, Matsubara T, Hirata K. A Card-type Odor Identification Test for Japanese Patients with Parkinson's Disease and Related Disorders. Intern Med 2017; 56:2871-2878. [PMID: 28943542 PMCID: PMC5709629 DOI: 10.2169/internalmedicine.8565-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective The characteristics of olfactory impairment in Parkinson's disease (PD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) have not been determined in detail. We assessed the olfactory function among PD, MSA and PSP patients. Methods A card-type odor identification test, Open Essence (OE, Wako, Japan), which consists of 12 different odorants familiar to Japanese subjects, was administered to 98 PD patients, 32 MSA patients, 17 PSP patients and 96 control subjects ≥50 years of age. Results The PD patients had significantly lower OE scores than the other groups. The OE scores of the MSA and PSP patients fell between those of the PD patients and the control subjects. A cut-off OE score of 6 was beneficial for differentiating PD patients from controls with 84.7% sensitivity and 85.4% specificity. A cut-off OE score of 4 had 60.2% sensitivity and 77.6% specificity for differentiating PD patients from MSA and PSP patients. The correct answer rates for the curry, Japanese orange and perfume odorants in the PD patients were lower than those in the MSA and PSP patients and controls. The PD patients also had the highest ratio of "not detected" choices across the 12 odors. Conclusion Marked olfactory impairment was a feature of the patients with PD, while mild olfactory impairment was observed in those with MSA or PSP. The answer patterns and the specific odorants may also be useful in differentiating PD from related disorders.
Collapse
Affiliation(s)
- Yuji Watanabe
- Department of Neurology, Dokkyo Medical University, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Koshigaya Hospital, Japan
| | - Masayuki Miyamoto
- Department of Clinical Medicine for Nursing, Dokkyo Medical University School of Nursing, Japan
| | - Ayaka Numao
- Department of Neurology, Dokkyo Medical University, Japan
| | - Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Japan
| | - Tomoyuki Uchiyama
- Department of Neurology, Dokkyo Medical University, Japan
- Neuro-urology and Continence Center, Dokkyo Medical University Hospital, Japan
| | - Taro Kadowaki
- Department of Neurology, Dokkyo Medical University, Japan
| | | | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Japan
| |
Collapse
|
14
|
Comparative study of perception and processing of socially or sexually significant odor information in male rats with normal or accelerated senescence using fMRI. Behav Brain Res 2015; 294:89-94. [PMID: 26248295 DOI: 10.1016/j.bbr.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 11/23/2022]
Abstract
Olfaction plays an important role in mammals while aging causes olfactory dysfunction. Here the features of olfactory function in aging male rats were studied. We compared brain activity of regions involved in the perception (olfactory bulbs) and processing (cerebral cortex, hippocampus, hypothalamus) of sexually or socially significant odor stimulus with 11.7 T MR-scanner and odor perception using behavioral tests in 5-month old males with normal (Wistar rats) or accelerated senescence (d-galactose-treated Wistar rats (150 mg/kg/day, i.p., 12 weeks) or OXYS rats with hereditary defined accelerated aging). d-galactose-treated Wistar males had altered BOLD-response in the centers processing socially significant odor information and changed patterns of the functional connectivity. We detected no significant changes in the olfactory function of OXYS males probably due to compensatory processes. In saline-treated Wistar rats, the correlation of BOLD-responses to both types of stimuli in the olfactory bulbs and cerebral cortex indicated changes in odor differentiation. Behavioral tests showed no significant differences between groups. However, the time of odor exploration increased in d-galactose-treated males indicating changes in odor recognition. Thus, we first revealed that in animal model of pharmacologically induced aging olfactory dysfunction occurred at the level of the centers processing socially significant odor information while the centers of odor perception (olfactory bulbs) remained unaffected. Alterations observed in Wistar rats chronically treated with saline evidenced the influence of long-term manipulations with experimental animals on olfactory function per se.
Collapse
|
15
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|
16
|
Intact olfaction in a mouse model of multiple system atrophy. PLoS One 2013; 8:e64625. [PMID: 23691255 PMCID: PMC3656866 DOI: 10.1371/journal.pone.0064625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
Background Increasing evidence suggests that olfaction is largely preserved in multiple system atrophy while most patients with Parkinson's disease are hyposmic. Consistent with these observations, recent experimental studies demonstrated olfactory deficits in transgenic Parkinson's disease mouse models, but corresponding data are lacking for MSA models. Methods Olfactory function and underlying neuropathological changes were investigated in a transgenic multiple system atrophy mouse model based on targeted oligodendroglial overexpression of α-synuclein as well as wild-type controls. The study was divided into (1) a pilot study investigating olfactory preference testing and (2) a long-term study characterizing changes in the olfactory bulb of aging transgenic multiple system atrophy mice. Results In our pilot behavioral study, we observed no significant differences in investigation time in the olfactory preference test comparing transgenic with wild-type animals. These findings were accompanied by unaffected tyrosine hydroxylase-positive cell numbers in the olfactory bulb. Similarly, although a significant age-related increase in the amount of α-synuclein within the olfactory bulb was detected in the long-term study, progressive degeneration of the olfactory bulb could not be verified. Conclusions Our experimental data show preserved olfaction in a transgenic multiple system atrophy mouse model despite α-synucleinopathy in the olfactory bulb. These findings are in line with the human disorder supporting the concept of a primary oligodendrogliopathy with variable neuronal involvement.
Collapse
|
17
|
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis 2012; 46:527-52. [PMID: 22192366 PMCID: PMC3429117 DOI: 10.1016/j.nbd.2011.10.026] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances.
Collapse
Affiliation(s)
- Richard L Doty
- Smell & Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Jecmenica-Lukic M, Poewe W, Tolosa E, Wenning GK. Premotor signs and symptoms of multiple system atrophy. Lancet Neurol 2012; 11:361-8. [PMID: 22441197 DOI: 10.1016/s1474-4422(12)70022-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diagnostic criteria for multiple system atrophy are focused on motor manifestations of the disease, in particular ataxia and parkinsonism, but these criteria often cannot detect the early stages. Non-motor symptoms and signs of multiple system atrophy often precede the onset of classic motor manifestations, and this prodromal phase is estimated to last from several months to years. Autonomic failure, sleep problems, and respiratory disturbances are well known symptoms of established multiple system atrophy and, when presenting early and preceding ataxia or parkinsonism, should be regarded as evidence of premotor multiple system atrophy. An early and accurate diagnosis is becoming increasingly important as new neuroprotective agents are developed.
Collapse
|
19
|
Suzuki M, Hashimoto M, Yoshioka M, Murakami M, Kawasaki K, Urashima M. The odor stick identification test for Japanese differentiates Parkinson's disease from multiple system atrophy and progressive supra nuclear palsy. BMC Neurol 2011; 11:157. [PMID: 22192419 PMCID: PMC3297535 DOI: 10.1186/1471-2377-11-157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022] Open
Abstract
Background Progressive supranuclear palsy (PSP) and parkinsonian variant of multiple system atrophy (MSA-P) are clinically difficult to differentiate from idiopathic Parkinson's disease (PD), particularly in the early stages of the disease. Previous reports indicated that the olfactory function is relatively intact or slightly reduced in patients with PSP and MSA-P, suggesting that the odor stick identification test for Japanese (OSIT-J), which is a short and simple noninvasive test that is potentially useful clinically for detecting early-stage PD in Japan, may be useful in the differential diagnosis of early-stage PD from MSA-P and PSP. There is no information on the sensitivity and specificity of OSIT-J in the diagnosis of parkinsonian syndromes such as PSP and MSA-P. Methods We assessed the olfactory function using the OSIT-J test in 94 Japanese patients with idiopathic PD, 15 with MSA-P, 7 with PSP, and 29 age-matched control subjects. Results The mean ± SD score of OSIT-J in patients with PD (4.4 ± 2.9) was significantly lower than in patients with MSA-P (8.7 ± 2.2, P < 0.0001), PSP (7.6 ± 2.2, P < 0.0057), and control subjects (10.5 ± 1.3, P < 0.0001). The area under the curve (AUC) of receiver operating characteristic (ROC) to discriminate PD from normal control using OSIT-J scores was 0.97 (95% confidence interval, 0.95-1.00), from MSA-P 0.87 (0.80-0.95), and from PSP 0.81 (0.66-0.96). Conclusion The OSIT-J is a potentially useful clinical test not only for detection of olfactory deficit in PD but also for differentiating PD from MSA-P and PSP.
Collapse
Affiliation(s)
- Masahiko Suzuki
- Department of Neurology, Aoto Hospital, Jikei University School of Medicine, 6-41-2 Aoto Katsushika-ku, Tokyo 125-8506, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Lebouvier T, Tasselli M, Paillusson S, Pouclet H, Neunlist M, Derkinderen P. Biopsable neural tissues: toward new biomarkers for Parkinson's disease? Front Psychiatry 2010; 1:128. [PMID: 21423439 PMCID: PMC3059648 DOI: 10.3389/fpsyt.2010.00128] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/11/2010] [Indexed: 12/20/2022] Open
Abstract
Biomarkers for Parkinson's disease (PD) are mainly intended for the early diagnosis of the disease and to monitor its progression, two aspects insufficiently covered by clinical evaluation. In the last 20 years, the search for biomarkers has been supported by technological advances in the fields of molecular genetics and neuroimaging. Nevertheless, no fully validated biomarker is yet available, and there is still a need for biomarkers that will complement those already available. Development of biomarkers for PD has been hampered by the fact that the core pathology lies in the brainstem, hidden from direct study in living patients. In this context, the recent observations that clearly demonstrated the presence of PD pathology in peripheral neural tissues provide new opportunities to develop original histopathological markers of the disease. Some of these peripheral tissues, especially the enteric nervous system, by being assessable using routine biopsies, could represent a window to assess in vivo the neuropathological processes occurring in PD.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm, U913Nantes, France
- University NantesNantes, France
- Department of NeurologyCHU Nantes, France
| | | | | | - Hélène Pouclet
- Inserm, U913Nantes, France
- Department of NeurologyCHU Nantes, France
| | | | - Pascal Derkinderen
- Inserm, U913Nantes, France
- University NantesNantes, France
- Department of NeurologyCHU Nantes, France
| |
Collapse
|
21
|
Ubhi K, Rockenstein E, Mante M, Inglis C, Adame A, Patrick C, Whitney K, Masliah E. Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci 2010; 30:6236-46. [PMID: 20445049 PMCID: PMC2896284 DOI: 10.1523/jneurosci.0567-10.2010] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/16/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. Neuronal degeneration is accompanied by primarily oligodendrocytic accumulation of alpha-synuclein (alphasyn) as opposed to the neuronal inclusions more commonly found in other alpha-synucleinopathies such as Parkinson's disease. It is unclear how alphasyn accumulation in oligodendrocytes may lead to the extensive neurodegeneration observed in MSA; we hypothesize that the altered expression of oligodendrocyte-derived neurotrophic factors by alphasyn may be involved. In this context, the expression of a number neurotrophic factors reportedly expressed by oligodendrocytes [glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor 1 (IGF-1), as well as basic fibroblast growth factor 2 (bFGF2), reportedly astrocyte derived] were examined in transgenic mouse models expressing human alphasyn (halphasyn) under the control of either neuronal (PDGFbeta or mThy1) or oligodendrocytic (MBP) promoters. Although protein levels of BDNF and IGF-1 were altered in all the alphasyn transgenic mice regardless of promoter type, a specific decrease in GDNF protein expression was observed in the MBP-halphasyn transgenic mice. Intracerebroventricular infusion of GDNF improved behavioral deficits and ameliorated neurodegenerative pathology in the MBP-halphasyn transgenic mice. Consistent with the studies in the MBP-halphasyn transgenic mice, analysis of GDNF expression levels in human MSA samples demonstrated a decrease in the white frontal cortex and to a lesser degree in the cerebellum compared with controls. These results suggest a mechanism in which alphasyn expression in oligodendrocytes impacts on the trophic support provided by these cells for neurons, perhaps contributing to neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eliezer Masliah
- Departments of Neurosciences and
- Pathology, University of California, San Diego, School of Medicine, La Jolla, California 92093-0624
| |
Collapse
|
22
|
Beach TG, White CL, Hladik CL, Sabbagh MN, Connor DJ, Shill HA, Sue LI, Sasse J, Bachalakuri J, Henry-Watson J, Akiyama H, Adler CH, Arizona Parkinson's Disease Consortium. Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol 2009; 117:169-74. [PMID: 18982334 PMCID: PMC2631085 DOI: 10.1007/s00401-008-0450-7] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Involvement of the olfactory bulb by Lewy-type alpha-synucleinopathy (LTS) is known to occur at an early stage of Parkinson's disease (PD) and Lewy body disorders and is therefore of potential usefulness diagnostically. An accurate estimate of the specificity and sensitivity of this change has not previously been available. We performed immunohistochemical alpha-synuclein staining of the olfactory bulb in 328 deceased individuals. All cases had received an initial neuropathological examination that included alpha-synuclein immunohistochemical staining on sections from brainstem, limbic and neocortical regions, but excluded olfactory bulb. These cases had been classified based on their clinical characteristics and brain regional distribution and density of LTS, as PD, dementia with Lewy bodies (DLB), Alzheimer's disease with LTS (ADLS), Alzheimer's disease without LTS (ADNLS), incidental Lewy body disease (ILBD) and elderly control subjects. The numbers of cases found to be positive and negative, respectively, for olfactory bulb LTS were: PD 55/3; DLB 34/1; ADLS 37/5; ADNLS 19/84; ILBD 14/7; elderly control subjects 5/64. The sensitivities and specificities were, respectively: 95 and 91% for PD versus elderly control; 97 and 91% for DLB versus elderly control; 88 and 91% for ADLS versus elderly control; 88 and 81% for ADLS versus ADNLS; 67 and 91% for ILBD versus elderly control. Olfactory bulb synucleinopathy density scores correlated significantly with synucleinopathy scores in all other brain regions (Spearman R values between 0.46 and 0.78) as well as with scores on the Mini-Mental State Examination and Part 3 of the Unified Parkinson's Disease Rating Scale (Spearman R -0.27, 0.35, respectively). It is concluded that olfactory bulb LTS accurately predicts the presence of LTS in other brain regions. It is suggested that olfactory bulb biopsy be considered to confirm the diagnosis in PD subjects being assessed for surgical therapy.
Collapse
Affiliation(s)
- Thomas G Beach
- Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fujishiro H, Ahn TB, Frigerio R, DelleDonne A, Josephs KA, Parisi JE, Eric Ahlskog J, Dickson DW. Glial cytoplasmic inclusions in neurologically normal elderly: prodromal multiple system atrophy? Acta Neuropathol 2008; 116:269-75. [PMID: 18553090 PMCID: PMC2880173 DOI: 10.1007/s00401-008-0398-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/01/2008] [Accepted: 06/01/2008] [Indexed: 11/28/2022]
Abstract
In this study, we used immunohistochemistry to screen for alpha-synuclein pathology in the brains of 241 individuals without clinical evidence of neurologic disease, and discovered 36 cases (15%) with incidental Lewy bodies (LBs) and one case, a 96-year-old woman (0.4%), with inclusions similar to those seen in multiple system atrophy (MSA), a non-familial neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and autonomic dysfunction and alpha-synuclein immunoreactive glial cytoplasmic inclusions (GCI). In a routine hospital autopsy series of 125 brains, we detected GCI in a neurologically normal 82-year-old man (0.8%). Both cases showed widespread GCI in the central nervous system, as well as a few neuronal cytoplasmic inclusions, but no neuronal loss or gliosis in vulnerable brain regions, including the substantia nigra, putamen, inferior olive and pontine base. Applying a recently proposed grading scale for MSA, the two cases showed pathology far below that detected in patients with clinically overt MSA, suggesting the possibility that these two individuals had preclinical MSA. The prevalence of clinically overt MSA is estimated to be about 4 per 100,000 persons (0.004%), which is far less than the frequency of GCI in this series (0.4-0.8%). Further studies are needed to determine if GCI in neurologically normal elderly represents prodromal MSA or a rare non-progressive age-related alpha-synucleinopathy.
Collapse
Affiliation(s)
- Hiroshige Fujishiro
- Department of Pathology (Neuropathology), Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Herting B, Bietenbeck S, Scholz K, Hähner A, Hummel T, Reichmann H. Riechstörungen bei Morbus Parkinson. DER NERVENARZT 2007; 79:175-84. [PMID: 17701389 DOI: 10.1007/s00115-007-2326-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Olfactory dysfunction is a prominent symptom in Parkinson's disease (PD) and found in about 70-100% of patients. In earlier studies significant loss of olfactory function seemed to be unrelated to disease duration, did not correlate with motor function, and was uninfluenced by antiparkinsonian medication. We suggest that the increase of dopaminergic cells in the olfactory bulb is responsible for the hyposmia in PD patients. Interestingly, this olfactory dysfunction is not found in progressive supranuclear palsy or corticobasal degeneration. In multiple system atrophy, the deficit is mild and indistinguishable from cerebellar syndromes of other aetiologies. Intact olfaction has also been reported recently in Parkin disease (PARK 2) and vascular parkinsonism. Olfactory tests may significantly enhance the diagnostic armamentarium in the differential diagnosis of parkinsonian syndromes and indeterminate tremors. Furthermore, olfactory testing may also prove to be a useful aid in the early or "preclinical" detection of PD, once effective disease-modifying therapies are found. Braak and coworkers have confirmed the widespread, extranigral pathology in PD and suggested that pathology in the anterior olfactory region may be one of the earliest appearances of neurodegeneration in PD.
Collapse
Affiliation(s)
- B Herting
- Klinik für Neurologie, Diakonie-Klinikum Schwäbisch Hall gGmbH, Diakoniestrasse 10, Schwäbisch Hall, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Multiple system atrophy (MSA) is a sporadic, adult-onset neurodegenerative disease, which is characterized by striatonigral degeneration, olivopontocerebellar atrophy, and preganglionic autonomic lesions in any combination. The histological hallmark is the presence of argyrophilic fibrillary inclusions in the oligodendrocytes, referred to as glial cytoplasmic inclusions (GCIs). Fibrillary inclusions are also found in the neuronal somata, axons, and nucleus. Neuronal cytoplasmic inclusions are frequently found in the pontine and inferior olivary nuclei. Since the discovery of alpha-synuclein as a major component of glial and neuronal inclusions in MSA, two neurodegenerative processes have been considered in this disease: one is due to the widespread occurrence of GCIs associated with oligodendroglia-myelin degeneration (oligodendrogliopathy) in the central nervous system, and the other is due to the filamentous aggregation of alpha-synuclein in the neurons in several brain regions. These two degenerative processes might synergistically cause neuronal depletion in MSA.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, School of Medicine, Hirosaki University, Japan.
| | | |
Collapse
|
26
|
Lee PH, Yeo SH, Kim HJ, Youm HY. Correlation between cardiac123I-MIBG and odor identification in patients with Parkinson's disease and multiple system atrophy. Mov Disord 2006; 21:1975-7. [PMID: 16960860 DOI: 10.1002/mds.21083] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated an association between olfaction and cardiac (123)I-metaiodobenzylguanidine (MIBG) uptake in patients with Parkinson's disease (PD) and multiple system atrophy (MSA). There was a significant positive correlation between cardiac MIBG uptake and the Cross-Cultural Smell Identification (CCSI) score in patients with PD (r = 0.56; P = 0.003) independent of the disease duration or clinical rating of motor status. However, patients with MSA did not show a significant correlation between cardiac MIBG uptake and the CCSI score. Our findings suggest that the functional losses of the olfactory and cardiac sympathetic systems are closely coupled in PD.
Collapse
Affiliation(s)
- Phil Hyu Lee
- Department of Neurology, Ajou University College of Medicine, Suwon, South Korea.
| | | | | | | |
Collapse
|
27
|
Mueller A, Abolmaali ND, Hakimi AR, Gloeckler T, Herting B, Reichmann H, Hummel T. Olfactory bulb volumes in patients with idiopathic Parkinson's disease a pilot study. J Neural Transm (Vienna) 2005; 112:1363-70. [PMID: 15711853 DOI: 10.1007/s00702-005-0280-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 01/08/2005] [Indexed: 10/25/2022]
Abstract
Olfactory loss is among early signs of idiopathic Parkinson's disease (IPD). The present pilot study aimed to investigate whether this loss would be reflected in a decreased volume of the olfactory bulb (OB) established through magnetic resonance imaging. Eleven consecutive IPD patients were compared to 9 healthy, age-matched controls. Results indicated that there is little or no difference between IPD patients and healthy controls in terms of OB volume. Based upon the relation between loss of olfactory input to the olfactory bulb and consecutive decrease in volume, these data support the idea that olfactory loss in IPD is not a primary consequence of damage to the olfactory epithelium but rather results from central-nervous changes.
Collapse
Affiliation(s)
- A Mueller
- Smell and Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Wenning GK, Jellinger KA. The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol 2005; 109:129-40. [PMID: 15666181 DOI: 10.1007/s00401-004-0935-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/04/2004] [Accepted: 10/04/2004] [Indexed: 11/27/2022]
Abstract
The discovery of glial cytoplasmic inclusions (GCIs) in 1989 helped to define multiple system atrophy (MSA) as a clinicopathological entity, and drew attention to the prominent role played by these inclusions in the pathogenesis of the disorder. Subsequently, GCIs were shown to be highly positive for alpha-synuclein, a neuronal protein that is normally absent in oligodendroglia except during embryonic development. The source of oligodendroglial alpha-synuclein aggregation in MSA is unknown. Since genetic overexpression has been excluded, active uptake from dying neurons remains a possibility. The similar topography of oligodendroglial and neuronal pathology in MSA suggests a fundamental disturbance of the functional unit between oligodendroglia, axon, and neuron. Transgenic MSA mouse models are now available to determine these aspects of cellular disturbance experimentally.
Collapse
Affiliation(s)
- Gregor K Wenning
- Department of Neurology, University of Innsbruck, School of Medicine, Anichstrasse 35, 6020, Innsbruck, Austria
| | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Marked olfactory dysfunction (hyposmia) is a frequent and early abnormality in Parkinson's disease. We review recent advances related to its cause and its clinical relevance with respect to the differential diagnosis of Parkinsonian syndromes. RECENT FINDINGS Marked olfactory dysfunction occurs in Parkinson's disease and dementia with Lewy bodies but is not found in progressive supranuclear palsy and corticobasal degeneration. In multiple system atrophy, the deficit is mild and indistinguishable from cerebellar syndromes of other aetiologies, including the spino-cerebllar ataxias. This is in keeping with evidence of cerebellar involvement in olfactory processing, which may also help to explain recent findings of mild olfactory dysfunction in essential tremor. Smell testing remains, however, a clinically relevant tool in the differential diagnosis of indeterminate tremors. Intact olfaction has also been reported recently in Parkin disease (PARK 2) and vascular Parkinsonism. The relevance of sniffing ability to olfaction and a possible role of increased tyrosine hydroxylase and dopamine in parts of the olfactory bulb are issues of current interest with respect to pathophysiology. The early or 'pre-clinical' detection of Parkinson's disease is increasingly recognized as an area in which olfactory testing may be of value. SUMMARY Research findings have confirmed a role for olfactory testing in the differential diagnosis of movement disorders, and suggest that this approach is currently underused in clinical practice. Validated test batteries are now available that may prove to be of practical use in the differential diagnosis of Parkinsonian syndromes and indeterminate tremors.
Collapse
|