1
|
Jang JK, Kwon MJ, Kim NK, Lew H. Clinical implications of genetic polymorphisms in blepharospasm. Exp Ther Med 2024; 28:332. [PMID: 38979016 PMCID: PMC11228564 DOI: 10.3892/etm.2024.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/14/2024] [Indexed: 07/10/2024] Open
Abstract
The possible genetic variants associated with blepharospasm (BSP) and facial dystonia have been investigated. Although genetic variants associated with BSP have been extensively studied, the contribution of single-nucleotide polymorphisms towards this condition remains poorly understood. In addition, the etiology of BSP remains to be fully elucidated. Therefore, the present study aimed to assess the role of polymorphisms in the torsin 1A (TOR1A), dopamine receptor D (DRD)2 and DRD5 genes in South Korean patients with BSP. Furthermore, the role of genetic variants of these three aforementioned genes was investigated. A prospective case-control study was established, where 56 patients with BSP and 115 healthy controls were recruited at the Department of Ophthalmology of CHA Bundang Medical Center (Seongnam, South Korea) using single nucleotide polymorphisms analysis by real-time PCR. The TOR1A rs1182CC/DRD5 rs6283TC genotype combination was found to be associated with decreased BSP risk [adjusted odds ratio (AOR), 0.288; P=0.013]. DRD5 rs6283 was observed to be associated with the periocular type of BSP in the co-dominant (for the TC genotype; AOR, 0.370; P=0.029) and dominant models (AOR, 0.406; P=0.029). The recessive model of TOR1A rs1801968 (AOR, 0.245; P=0.030), and the recessive (AOR, 0.245; P=0.029) and over-dominant models (AOR, 2.437; P=0.019) of DRD2 rs1800497 were found to be associated with superior responses to botulinum neurotoxin A (BoNT) treatment. By contrast, dominant (AOR, 0.205; P=0.034) and additive (AOR, 0.227; P=0.030) models of DRD5 rs6283 were associated with poor responses to BoNT treatment. To conclude, these results suggested that DRD2 rs1800497 can confer genetic susceptibility to BSP responses to BoNT treatment, whereas the TOR1A rs1182CC/DRD5 rs6283TC genotype combination appeared to contribute to the association with BoNT efficacy in BSP.
Collapse
Affiliation(s)
- Jeong-Kyeong Jang
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Min-Jung Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| |
Collapse
|
2
|
Kalita J, Tripathi A, Jadhav M, Thakur RS, Patel DK. A Study of Dopaminergic Pathway in Neurologic Wilson Disease with Movement Disorder. Mol Neurobiol 2023; 60:3496-3506. [PMID: 36879138 DOI: 10.1007/s12035-023-03276-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Movement disorder (MD) is an important manifestation of neurologic Wilson disease (NWD), but there is a paucity of information on dopaminergic pathways. We evaluate dopamine and its receptors in patients with NWD and correlate the changes with MD and MRI changes. Twenty patients with NWD having MD were included. The severity of dystonia was assessed using BFM (Burke-Fahn-Marsden) score. The neurological severity of NWD was categorized as grades I to III based on the sum score of 5 neurological signs and activity of daily living. Dopamine concentration in plasma and CSF was measured using liquid chromatography-mass spectrometry, and D1 and D2 receptor expression at mRNA by reverse transcriptase polymerase chain reaction in patients and 20 matched controls. The median age of the patients was 15 years and 7 (35%) were females. Eighteen (90%) patients had dystonia and 2 (10%) had chorea. The CSF dopamine concentration (0.08 ± 0.02 vs 0.09 ± 0.017 pg/ml; p = 0.42) in the patients and controls was comparable, but D2 receptor expression was reduced in the patients (0.41 ± 0.13 vs 1.39 ± 1.04; p = 0.01). Plasma dopamine level correlated with BFM score (r = 0.592, p < 0.01) and D2 receptor expression with the severity of chorea (r = 0.447, p < 0.05). The neurological severity of WD correlated with plasma dopamine concentration (p = 0.006). Dopamine and its receptors were not related to MRI changes. The central nervous system dopaminergic pathway is not enhanced in NWD, which may be due to structural damage to the corpus striatum and/or substantia nigra.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
| | - Abhilasha Tripathi
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Mahesh Jadhav
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Ravindra S Thakur
- CSIR, Indian Institute of Toxicology Research Institute, Lucknow, Uttar Pradesh, India
| | - Devendra K Patel
- CSIR, Indian Institute of Toxicology Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Criswell SR, Searles Nielsen S, Dlamini WW, Warden MN, Perlmutter JS, Sheppard L, Moerlein SM, Lenox-Krug J, Checkoway H, Racette BA. Principal Component Analysis of Striatal and Extrastriatal D2 Dopamine Receptor Positron Emission Tomography in Manganese-Exposed Workers. Toxicol Sci 2021; 182:132-141. [PMID: 33881537 DOI: 10.1093/toxsci/kfab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The relationships between the neurotoxicant manganese (Mn), dopaminergic pathology, and parkinsonism remain unclear. Therefore, we used [11C](N-methyl)benperidol (NMB) positron emission tomography to investigate the associations between Mn exposure, striatal and extrastriatal D2 dopamine receptors (D2R), and motor function in 54 workers with a range of Mn exposure. Cumulative Mn exposure was estimated from work histories, and all workers were examined by a movement specialist and completed a Grooved Pegboard test (GPT). NMB D2R nondisplaceable binding potentials (BPND) were calculated for brain regions of interest. We identified 2 principal components (PCs) in a PC analysis which explained 66.8% of the regional NMB BPND variance (PC1 = 55.4%; PC2 = 11.4%). PC1 was positively correlated with NMB binding in all regions and inversely correlated with age. PC2 was driven by NMB binding in 7 brain regions (all p < .05), positively in the substantia nigra, thalamus, amygdala, and medial orbital frontal gyrus and negatively in the nucleus accumbens, anterior putamen, and caudate. PC2 was associated with both Mn exposure status and exposure duration (years). In addition, PC2 was associated with higher Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) scores and slower GPT performance. We conclude Mn exposure is associated with both striatal and extrastriatal D2R binding. Multifocal alterations in D2R expression are also associated with motor dysfunction as measured by both the GPT and UPDRS3, demonstrating a link between Mn exposure, striatal and extrastriatal D2R expression, and clinical neurotoxicity.
Collapse
Affiliation(s)
- Susan R Criswell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Wendy W Dlamini
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Mark N Warden
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Program in Physical Therapy, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Program in Occupational Therapy, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, School of Public Health, Seattle, Washington 98195, USA.,Department of Biostatistics, University of Washington, School of Public Health, Seattle, Washington 98195, USA
| | - Stephen M Moerlein
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jason Lenox-Krug
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA.,Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
4
|
Bushueva OO, Antipenko EA. [Update on the etiology and pathogenesis of muscle dystonia]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:127-133. [PMID: 34037366 DOI: 10.17116/jnevro2021121041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Muscle dystonia is one of the most common extrapyramidal diseases and is the third most common after essential tremor and Parkinson's disease. The introduction of diagnostic methods expanded the understanding of the genetic basis of muscle dystonia and neurophysiological mechanisms of dystonic phenomena. However, the questions of the etiology and pathogenesis of dystonia still remain the subject of close interest of researchers. The review provides up-to-date information about the etiology and pathogenesis of muscle dystonia. Recent changes in the genetic nomenclature of dystonia are described. Modern ideas about the pathogenetic significance of such mechanisms as abnormalities of neural inhibition, disturbances of sensorimotor integration, and abnormalities of neural plasticity are considered. Recent research data support the concept of systemic sensorimotor disintegration, including not only basal ganglia dysfunction, but also motor network disorders involving the cerebellum, cortex, midbrain, thalamus and other areas.
Collapse
Affiliation(s)
- O O Bushueva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,City Hospital N 33, Nizhny Novgorod, Russia
| | - E A Antipenko
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Melis C, Beauvais G, Muntean BS, Cirnaru MD, Otrimski G, Creus-Muncunill J, Martemyanov KA, Gonzalez-Alegre P, Ehrlich ME. Striatal Dopamine Induced ERK Phosphorylation Is Altered in Mouse Models of Monogenic Dystonia. Mov Disord 2021; 36:1147-1157. [PMID: 33458877 DOI: 10.1002/mds.28476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Similar to some monogenic forms of dystonia, levodopa-induced dyskinesia is a hyperkinetic movement disorder with abnormal nigrostriatal dopaminergic neurotransmission. Molecularly, it is characterized by hyper-induction of phosphorylation of extracellular signal-related kinase in response to dopamine in medium spiny neurons of the direct pathway. OBJECTIVES The objective of this study was to determine if mouse models of monogenic dystonia exhibit molecular features of levodopa-induced dyskinesia. METHODS Western blotting and quantitative immunofluorescence was used to assay baseline and/or dopamine-induced levels of the phosphorylated kinase in the striatum in mouse models of DYT1, DYT6, and DYT25 expressing a reporter in dopamine D1 receptor-expressing projection neurons. Cyclic adenosine monophosphate (cAMP) immunoassay and adenylyl cyclase activity assays were also performed. RESULTS In DYT1 and DYT6 models, blocking dopamine reuptake with cocaine leads to enhanced extracellular signal-related kinase phosphorylation in dorsomedial striatal medium spiny neurons in the direct pathway, which is abolished by pretreatment with the N-methyl-d-aspartate antagonist MK-801. Phosphorylation is decreased in a model of DYT25. Levels of basal and stimulated cAMP and adenylyl cyclase activity were normal in the DYT1 and DYT6 mice and decreased in the DYT25 mice. Oxotremorine induced increased abnormal movements in the DYT1 knock-in mice. CONCLUSIONS The increased dopamine induction of extracellular signal-related kinase phosphorylation in 2 genetic types of dystonia, similar to what occurs in levodopa-induced dyskinesia, and its decrease in a third, suggests that abnormal signal transduction in response to dopamine in the postsynaptic nigrostriatal pathway might be a point of convergence for dystonia and other hyperkinetic movement disorders, potentially offering common therapeutic targets. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chiara Melis
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Genevieve Beauvais
- Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Garrett Otrimski
- Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular and Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Dong H, Luo Y, Fan S, Yin B, Weng C, Peng B. Screening Gene Mutations in Chinese Patients With Benign Essential Blepharospasm. Front Neurol 2020; 10:1387. [PMID: 32038460 PMCID: PMC6989602 DOI: 10.3389/fneur.2019.01387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: This study aimed to screen gene mutations in Chinese patients with benign essential blepharospasm (BEB) to understand its etiology. Methods: Twenty BEB patients diagnosed by clinical manifestations between April 2015 and October 2015 were enrolled. All the cases were investigated by questionnaires about general conditions, social behavioral factors, environmental factors, psychological factors, genetic factors, and previous diseases. In each patient, a total of 151 genes related to movement disorders were analyzed by second-generation sequencing. Results: Two patients had a family history of BEB, and they had SYNE1 and Cdkn1A-interacting zinc finger protein 1 (CIZ1) mutation, respectively. We found the SYNE1 mutation in seven patients, the CIZ1 mutation in two patients, the CACNA1A mutation in two patients, the LRRK2 mutation in two patients, and the FUS mutation in two patients. The C10orf2, TPP1, SLC1A3, PNKD, EIF4G1, SETX, PRRT2, SPTBN2, and TTBK2 mutations were found in only one patient, respectively, while not any mutation in the 151 genes were found in two patients. Some patients had mutations in two genes. Conclusion: Genetic factors, especially SYNE1 and CIZ1 mutations, contribute to the etiology of BEB.
Collapse
Affiliation(s)
- Hongjuan Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Calabresi P, Standaert DG. Dystonia and levodopa-induced dyskinesias in Parkinson's disease: Is there a connection? Neurobiol Dis 2019; 132:104579. [PMID: 31445160 PMCID: PMC6834901 DOI: 10.1016/j.nbd.2019.104579] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
Dystonia and levodopa-induced dyskinesia (LID) are both hyperkinetic movement disorders. Dystonia arises most often spontaneously, although it may be seen after stroke, injury, or as a result of genetic causes. LID is associated with Parkinson's disease (PD), emerging as a consequence of chronic therapy with levodopa, and may be either dystonic or choreiform. LID and dystonia share important phenomenological properties and mechanisms. Both LID and dystonia are generated by an integrated circuit involving the cortex, basal ganglia, thalamus and cerebellum. They also share dysregulation of striatal cholinergic signaling and abnormalities of striatal synaptic plasticity. The long duration nature of both LID and dystonia suggests that there may be underlying epigenetic dysregulation as a proximate cause. While both may improve after interventions such as deep brain stimulation (DBS), neither currently has a satisfactory medical therapy, and many people are disabled by the symptoms of dystonia and LID. Further study of the fundamental mechanisms connecting these two disorders may lead to novel approaches to treatment or prevention.
Collapse
Affiliation(s)
- Paolo Calabresi
- Neurological Clinic, Department of Medicine, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia 06132, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Jinnah H, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis 2019; 129:159-168. [DOI: 10.1016/j.nbd.2019.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
|
9
|
Ribot B, Aupy J, Vidailhet M, Mazère J, Pisani A, Bezard E, Guehl D, Burbaud P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog Neurobiol 2019; 182:101678. [PMID: 31404592 DOI: 10.1016/j.pneurobio.2019.101678] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine", « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.
Collapse
Affiliation(s)
- Bastien Ribot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jérome Aupy
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Joachim Mazère
- Université de Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Service de médecine nucléaire, CHU de Bordeaux, France
| | - Antonio Pisani
- Department of Neuroscience, University "Tor Vergata'', Rome, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
10
|
Criswell SR, Warden MN, Searles Nielsen S, Perlmutter JS, Moerlein SM, Sheppard L, Lenox-Krug J, Checkoway H, Racette BA. Selective D2 receptor PET in manganese-exposed workers. Neurology 2018; 91:e1022-e1030. [PMID: 30097475 PMCID: PMC6140373 DOI: 10.1212/wnl.0000000000006163] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the associations between manganese (Mn) exposure, D2 dopamine receptors (D2Rs), and parkinsonism using [11C](N-methyl)benperidol (NMB) PET. METHODS We used NMB PET to evaluate 50 workers with a range of Mn exposure: 22 Mn-exposed welders, 15 Mn-exposed workers, and 13 nonexposed workers. Cumulative Mn exposure was estimated from work histories, and movement disorder specialists examined all workers. We calculated NMB D2R nondisplaceable binding potential (BPND) for the striatum, globus pallidus, thalamus, and substantia nigra (SN). Multivariate analysis of covariance with post hoc descriptive discriminate analysis identified regional differences by exposure group. We used linear regression to examine the association among Mn exposure, Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) score, and regional D2R BPND. RESULTS D2R BPND in the SN had the greatest discriminant power among exposure groups (p < 0.01). Age-adjusted SN D2R BPND was 0.073 (95% confidence interval [CI] 0.022-0.124) greater in Mn-exposed welders and 0.068 (95% CI 0.013-0.124) greater in Mn-exposed workers compared to nonexposed workers. After adjustment for age, SN D2R BPND was 0.0021 (95% CI 0.0005-0.0042) higher for each year of Mn exposure. Each 0.10 increase in SN D2R BPND was associated with a 2.65 (95% CI 0.56-4.75) increase in UPDRS3 score. CONCLUSIONS AND RELEVANCE Nigral D2R BPND increased with Mn exposure and clinical parkinsonism, indicating dose-dependent dopaminergic dysfunction of the SN in Mn neurotoxicity.
Collapse
Affiliation(s)
- Susan R Criswell
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Mark N Warden
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Susan Searles Nielsen
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Joel S Perlmutter
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Stephen M Moerlein
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Lianne Sheppard
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Jason Lenox-Krug
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Harvey Checkoway
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Brad A Racette
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa.
| |
Collapse
|
11
|
Loss of inhibition in sensorimotor networks in focal hand dystonia. NEUROIMAGE-CLINICAL 2017; 17:90-97. [PMID: 29062685 PMCID: PMC5645005 DOI: 10.1016/j.nicl.2017.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022]
Abstract
Objective To investigate GABA-ergic receptor density and associated brain functional and grey matter changes in focal hand dystonia (FHD). Methods 18 patients with FHD of the right hand and 18 age and gender matched healthy volunteers (HV) participated in this study. We measured the density of GABA-A receptors using [11C] Flumazenil and perfusion using [15O] H2O. Anatomical images were also used to measure grey matter volume with voxel-based morphometry (VBM). Results In FHD patients compared to HV, the vermis VI of the right cerebellum and the left sensorimotor cortex had a decrease of Flumazenil binding potential (FMZ-BP), whereas the striatum and the lateral cerebellum did not show significant change. Bilateral inferior prefrontal cortex had increased FMZ-BP and an increase of perfusion, which correlated negatively with disease duration. Only the left sensorimotor cortex showed a decrease of grey matter volume. Interpretation Impairments of GABAergic neurotransmission in the cerebellum and the sensorimotor cortical areas could explain different aspects of loss of inhibitory control in FHD, the former being involved in maladaptive plasticity, the latter in surround inhibition. Reorganization of the inferior prefrontal cortices, part of the associative network, might be compensatory for the loss of inhibitory control in sensorimotor circuits. These findings suggest that cerebellar and cerebral GABAergic abnormalities could play a role in the functional imbalance of striato-cerebello-cortical loops in dystonia. We tested GABAergic deficiency to explain inhibitory control loss in focal dystonia. The right cerebellar vermis and left sensorimotor cortex had GABAergic deficiencies. Bilateral prefrontal cortex had an increase of GABAergic potential and activity. Prefrontal changes correlated with cerebellar deficiency and disease duration. We highlighted the importance of the cerebellum for the pathophysiology of dystonia.
Collapse
|
12
|
Mach RH, Luedtke RR. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies. J Labelled Comp Radiopharm 2017; 61:291-298. [PMID: 28857231 DOI: 10.1002/jlcr.3558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [11 C]raclopride, [18 F]fallypride, and [11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET.
Collapse
Affiliation(s)
- Robert H Mach
- Department of Radiology, Perelman School Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX, USA
| |
Collapse
|
13
|
Mach RH. Small Molecule Receptor Ligands for PET Studies of the Central Nervous System-Focus on G Protein Coupled Receptors. Semin Nucl Med 2017; 47:524-535. [PMID: 28826524 DOI: 10.1053/j.semnuclmed.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPRCs) are a class of proteins that are expressed in high abundance and are responsible for numerous signal transduction pathways in the central nervous system. Consequently, alterations in GPRC function have been associated with a wide variety of neurologic and neuropsychiatric disorders. The development of PET probes for imaging GPRCs has served as a major emphasis of PET radiotracer development and PET imaging studies over the past 30 years. In this review, a basic description of the biology of G proteins and GPRCs is provided. This includes recent evidence of the existence of dimeric and multimeric species of GPRCs that have been termed "receptor mosaics," with an emphasis on the different GPRCs that form complexes with the dopamine D2 receptor. An overview of the different PET radiotracers for imaging the component GPRC within these different multimeric complexes of the D2 receptor is also provided.
Collapse
Affiliation(s)
- Robert H Mach
- Department of Radiology, Perelman School Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
14
|
Pirio Richardson S, Altenmüller E, Alter K, Alterman RL, Chen R, Frucht S, Furuya S, Jankovic J, Jinnah HA, Kimberley TJ, Lungu C, Perlmutter JS, Prudente CN, Hallett M. Research Priorities in Limb and Task-Specific Dystonias. Front Neurol 2017; 8:170. [PMID: 28515706 PMCID: PMC5413505 DOI: 10.3389/fneur.2017.00170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Dystonia, which causes intermittent or sustained abnormal postures and movements, can present in a focal or a generalized manner. In the limbs, focal dystonia can occur in either the upper or lower limbs and may be task-specific causing abnormal motor performance for only a specific task, such as in writer’s cramp, runner’s dystonia, or musician’s dystonia. Focal limb dystonia can be non-task-specific and may, in some circumstances, be associated with parkinsonian disorders. The true prevalence of focal limb dystonia is not known and is likely currently underestimated, leaving a knowledge gap and an opportunity for future research. The pathophysiology of focal limb dystonia shares some commonalities with other dystonias with a loss of inhibition in the central nervous system and a loss of the normal regulation of plasticity, called homeostatic plasticity. Functional imaging studies revealed abnormalities in several anatomical networks that involve the cortex, basal ganglia, and cerebellum. Further studies should focus on distinguishing cause from effect in both physiology and imaging studies to permit focus on most relevant biological correlates of dystonia. There is no specific therapy for the treatment of limb dystonia given the variability in presentation, but off-label botulinum toxin therapy is often applied to focal limb and task-specific dystonia. Various rehabilitation techniques have been applied and rehabilitation interventions may improve outcomes, but small sample size and lack of direct comparisons between methods to evaluate comparative efficacy limit conclusions. Finally, non-invasive and invasive therapeutic modalities have been explored in small studies with design limitations that do not yet clearly provide direction for larger clinical trials that could support new clinical therapies. Given these gaps in our clinical, pathophysiologic, and therapeutic knowledge, we have identified priorities for future research including: the development of diagnostic criteria for limb dystonia, more precise phenotypic characterization and innovative clinical trial design that considers clinical heterogeneity, and limited available number of participants.
Collapse
Affiliation(s)
- Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medicine (IMMM), Hannover University of Music, Drama and Media, Hannover, Germany
| | - Katharine Alter
- Functional and Applied Biomechanics Section, Rehabilitation Medicine, National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA
| | - Ron L Alterman
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert Chen
- Division of Neurology, Department of Medicine (Neurology), Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Steven Frucht
- Robert and John M. Bendheim Parkinson and Movement Disorders Center, Mount Sinai Hospital, New York, NY, USA
| | - Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Teresa J Kimberley
- Department of Rehabilitation Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Cecília N Prudente
- Department of Rehabilitation Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Laforest R, Karimi M, Moerlein SM, Xu J, Flores HP, Bognar C, Li A, Mach RH, Perlmutter JS, Tu Z. Absorbed radiation dosimetry of the D 3-specific PET radioligand [ 18F]FluorTriopride estimated using rodent and nonhuman primate. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2016; 6:301-309. [PMID: 28078183 PMCID: PMC5218859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
[18F]FluorTriopride ([18F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [18F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [18F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [18F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [18F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination.
Collapse
Affiliation(s)
- Richard Laforest
- Mallinckrodt Institute of Radiology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Morvarid Karimi
- Department of Neurology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Stephen M Moerlein
- Mallinckrodt Institute of Radiology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Jinbin Xu
- Mallinckrodt Institute of Radiology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Hubert P Flores
- Department of Neurology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Christopher Bognar
- Mallinckrodt Institute of Radiology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Aixiao Li
- Mallinckrodt Institute of Radiology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Joel S Perlmutter
- Mallinckrodt Institute of Radiology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
- Department of Neurology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, School of Medicine, Washington UniversitySt. Louis, MO 63110, USA
| |
Collapse
|
16
|
Eisenstein SA, Bogdan R, Love-Gregory L, Corral-Frías NS, Koller JM, Black KJ, Moerlein SM, Perlmutter JS, Barch DM, Hershey T. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status. Synapse 2016; 70:418-31. [PMID: 27241797 DOI: 10.1002/syn.21916] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023]
Abstract
In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are nonselective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N-[(11) C]methyl)benperidol ([(11) C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in two independent samples. Sample 1 (n = 39) was composed of obese and nonobese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5 to 12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1-), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1- was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [(11) C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Latisha Love-Gregory
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110
| | - Nadia S Corral-Frías
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110
| | - Stephen M Moerlein
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Biochemistry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Joel S Perlmutter
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Programs in Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, 63110
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|
17
|
Pavese N, Tai YF. Genetic and degenerative disorders primarily causing other movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:507-523. [PMID: 27432681 DOI: 10.1016/b978-0-444-53485-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we will discuss the contributions of structural and functional imaging to the diagnosis and management of genetic and degenerative diseases that lead to the occurrence of movement disorders. We will mainly focus on Huntington's disease, Wilson's disease, dystonia, and neurodegeneration with brain iron accumulation, as they are the more commonly encountered clinical conditions within this group.
Collapse
Affiliation(s)
- Nicola Pavese
- Division of Brain Sciences, Imperial College London, UK; Aarhus University, Denmark.
| | - Yen F Tai
- Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
18
|
Zeuner KE, Knutzen A, Granert O, Sablowsky S, Götz J, Wolff S, Jansen O, Dressler D, Schneider SA, Klein C, Deuschl G, van Eimeren T, Witt K. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp. NEUROIMAGE-CLINICAL 2015; 10:63-70. [PMID: 26702397 PMCID: PMC4669532 DOI: 10.1016/j.nicl.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/28/2022]
Abstract
Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.
Collapse
Affiliation(s)
| | - Arne Knutzen
- Department of Neurology, Kiel University, Germany
| | | | | | - Julia Götz
- Department of Neurology, Kiel University, Germany
| | - Stephan Wolff
- Department of Radiology and Neuroradiology, Kiel University, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, Kiel University, Germany
| | - Dirk Dressler
- Movement Disorders Section, Department of Neurology, Hannover Medical School, Germany
| | | | | | | | | | - Karsten Witt
- Department of Neurology, Kiel University, Germany
| |
Collapse
|
19
|
Eisenstein SA, Gredysa DM, Antenor–Dorsey JA, Green L, Arbeláez AM, Koller JM, Black KJ, Perlmutter JS, Moerlein SM, Hershey T. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity. PLoS One 2015; 10:e0133621. [PMID: 26192187 PMCID: PMC4507849 DOI: 10.1371/journal.pone.0133621] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Danuta M. Gredysa
- Psychology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Jo Ann Antenor–Dorsey
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Leonard Green
- Psychology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Ana Maria Arbeláez
- Pediatrics Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Jonathan M. Koller
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Kevin J. Black
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Neurology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Anatomy and Neurobiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Joel S. Perlmutter
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Neurology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Anatomy and Neurobiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Programs in Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Stephen M. Moerlein
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Biochemistry and Molecular Biophysics Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Tamara Hershey
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Neurology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
20
|
Eisenstein SA, Bischoff AN, Gredysa DM, Antenor-Dorsey JAV, Koller JM, Al-Lozi A, Pepino MY, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. Emotional Eating Phenotype is Associated with Central Dopamine D2 Receptor Binding Independent of Body Mass Index. Sci Rep 2015; 5:11283. [PMID: 26066863 PMCID: PMC4464302 DOI: 10.1038/srep11283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/21/2015] [Indexed: 01/11/2023] Open
Abstract
PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison N Bischoff
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Danuta M Gredysa
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jo Ann V Antenor-Dorsey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan M Koller
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amal Al-Lozi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marta Y Pepino
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Klein
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA [5] Departments of Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen M Moerlein
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin J Black
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Rangel-Barajas C, Malik M, Mach RH, Luedtke RR. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response movements in male DBA/2J mice: II. Effects of D3 dopamine receptor selective compounds. Neuropharmacology 2015; 93:179-90. [PMID: 25698528 DOI: 10.1016/j.neuropharm.2014.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/27/2022]
Abstract
We recently reported on the characterization of the hallucinogen 2,5-dimethoxy-4-methylamphetamine's (DOI) ability to elicit a head twitch response (HTR) in DBA/2J mice and the ability of D2 vs. D3 dopamine receptor selective compounds to modulate that response. For these studies, the ability of D3 vs. D2 dopamine receptor selective compounds to attenuate the DOI-dependent HTR was examined. WC 10, a D3 dopamine receptor weak partial agonist with 40-fold binding selectivity for D3 vs. D2 dopamine receptors, produced a dose-dependent decrease in the DOI-induced HTR (IC50 = 3.7 mg/kg). WC 44, a D3 receptor selective full agonist, also inhibited the DOI-induced HTR (IC50 = 5.1 mg/kg). The effect of two D3 receptor selective partial agonists, LAX-4-136 and WW-III-55, were also evaluated. These analogs exhibit 150-fold and 800-fold D3 vs. D2 binding selectivity, respectively. Both compounds inhibited the HTR with similar potency but with different maximum efficacies. At 10 mg/kg WW-III-55 inhibited the HTR by 95%, while LAX-4-136 administration resulted in a 50% reduction. In addition, DOI (5 mg/kg) was administered at various times after LAX-4-136 or WW-III-55 administration to compare the duration of action. The homopiperazine analog LAX-4-136 exhibited greater stability. An assessment of our test compounds on motor performance and coordination was performed using a rotarod test. None of the D3 dopamine receptor selective compounds significantly altered latency to fall, suggesting that these compounds a) did not attenuate the DOI-dependent HTR due to sedative or adverse motor effects and b) may have antipsychotic/antihallucinogenic activity.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Maninder Malik
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Robert H Mach
- Radiochemistry Laboratory, Neurology Department, University of Pennsylvania School of Medicine, Chemistry Building, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Robert R Luedtke
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| |
Collapse
|
22
|
Karimi M, Perlmutter JS. The role of dopamine and dopaminergic pathways in dystonia: insights from neuroimaging. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:280. [PMID: 25713747 PMCID: PMC4314610 DOI: 10.7916/d8j101xv] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
Background Dystonia constitutes a heterogeneous group of movement abnormalities, characterized by sustained or intermittent muscle contractions causing abnormal postures. Overwhelming data suggest involvement of basal ganglia and dopaminergic pathways in dystonia. In this review, we critically evaluate recent neuroimaging studies that investigate dopamine receptors, endogenous dopamine release, morphology of striatum, and structural or functional connectivity in cortico-basal ganglia-thalamo-cortical and related cerebellar circuits in dystonia. Method A PubMed search was conducted in August 2014. Results Positron emission tomography (PET) imaging offers strong evidence for altered D2/D3 receptor binding and dopaminergic release in many forms of idiopathic dystonia. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data reveal likely involvement of related cerebello-thalamo-cortical and sensory-motor networks in addition to basal ganglia. Discussion PET imaging of dopamine receptors or transmitter release remains an effective means to investigate dopaminergic pathways, yet may miss factors affecting dopamine homeostasis and related subcellular signaling cascades that could alter the function of these pathways. fMRI and DTI methods may reveal functional or anatomical changes associated with dysfunction of dopamine-mediated pathways. Each of these methods can be used to monitor target engagement for potential new treatments. PET imaging of striatal phosphodiesterase and development of new selective PET radiotracers for dopamine D3-specific receptors and Mechanistic target of rampamycin (mTOR) are crucial to further investigate dopaminergic pathways. A multimodal approach may have the greatest potential, using PET to identify the sites of molecular pathology and magnetic resonance methods to determine their downstream effects.
Collapse
Affiliation(s)
- Morvarid Karimi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA ; Department of Radiology, Neurobiology, Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
23
|
Rangel-Barajas C, Malik M, Vangveravong S, Mach RH, Luedtke RR. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response in male DBA/2J mice: I. Effects of D2/D3 and D2 dopamine receptor selective compounds. Neuropharmacology 2014; 83:18-27. [PMID: 24680675 DOI: 10.1016/j.neuropharm.2014.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 12/26/2022]
Abstract
Because of the complexity and heterogeneity of human neuropsychiatric disorders, it has been difficult to identify animal models that mimic the symptoms of these neuropathologies and can be used to screen for antipsychotic agents. For this study we selected the murine 5HT2A/2C receptor agonist-induced head twitch response (HTR) induced by the administration of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), which has been proposed as an animal model of symptoms associated with a variety of behavioral and psychiatric conditions. We investigated the DOI-induced HTR in male DBA/2J mice using a panel of D2-like (D2, D3 and D4) and D2 dopamine receptor selective compounds. When DBA/2J mice were administered a daily dose of DOI (5 mg/kg), tolerance to the DOI occurs. However, administrations of the same dose of DOI every other day (48 h) or on a weekly basis did not lead to tolerance and the ability to induce tolerance after daily administration of DOI remains intact after repeated weekly administration of DOI. Subsequently, a panel of D2-like dopamine receptor antagonists was found to effectively inhibit the DOI-induced HTR in DBA/2J mice. However, the benzamide eticlopride, which is a high affinity D2-like antagonist, was a notable exception. SV 293, SV-III-130s and N-methylbenperidol, which exhibit a high affinity for D2 versus the D3 dopamine receptor subtypes (60- to 100-fold binding selectivity), were also found to inhibit the HTR in DBA/2J mice. This observation suggests a functional interaction between dopaminergic and serotonergic systems through D2 dopamine receptors and the 5-HT2A serotonin receptors in vivo.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- University of North Texas Health Science Center, the Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Maninder Malik
- University of North Texas Health Science Center, the Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Suwanna Vangveravong
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Robert H Mach
- Radiochemistry Laboratory, Neurology Department, University of Pennsylvania School of Medicine, Chemistry Building, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Robert R Luedtke
- University of North Texas Health Science Center, the Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| |
Collapse
|
24
|
Black KJ, Snyder AZ, Mink JW, Tolia VN, Revilla FJ, Moerlein SM, Perlmutter JS. Spatial reorganization of putaminal dopamine D2-like receptors in cranial and hand dystonia. PLoS One 2014; 9:e88121. [PMID: 24520350 PMCID: PMC3919754 DOI: 10.1371/journal.pone.0088121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/04/2014] [Indexed: 11/17/2022] Open
Abstract
The putamen has a somatotopic organization of neurons identified by correspondence of firing rates with selected body part movements, as well as by complex, but organized, differential cortical projections onto putamen. In isolated focal dystonia, whole putaminal binding of dopamine D2-like receptor radioligands is quantitatively decreased, but it has not been known whether selected parts of the putamen are differentially affected depending upon the body part affected by dystonia. The radioligand [(18)F]spiperone binds predominantly to D2-like receptors in striatum. We hypothesized that the spatial location of [(18)F]spiperone binding within the putamen would differ in patients with dystonia limited to the hand versus the face, and we tested that hypothesis using positron emission tomography and magnetic resonance imaging. To address statistical and methodological concerns, we chose a straightforward but robust image analysis method. An automated algorithm located the peak location of [(18)F]spiperone binding within the striatum, relative to a brain atlas, in each of 14 patients with cranial dystonia and 8 patients with hand dystonia. The mean (left and right) |x|, y, and z coordinates of peak striatal binding for each patient were compared between groups by t test. The location of peak [(18)F]spiperone binding within the putamen differed significantly between groups (cranial dystonia z
Collapse
Affiliation(s)
- Kevin J. Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jonathan W. Mink
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York, United States of America
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
- Department of Pediatrics, University of Rochester, Rochester, New York, United States of America
| | - Veeral N. Tolia
- Pediatrix Medical Group, Sunrise, Florida, United States of America
| | - Fredy J. Revilla
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Stephen M. Moerlein
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
25
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
26
|
Karimi M, Moerlein SM, Videen TO, Su Y, Flores HP, Perlmutter JS. Striatal dopamine D1-like receptor binding is unchanged in primary focal dystonia. Mov Disord 2013; 28:2002-6. [PMID: 24151192 PMCID: PMC4086787 DOI: 10.1002/mds.25720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Multiple studies have demonstrated decreases in striatal D2-like (D2, D3) radioligand binding in primary focal dystonias. Although most investigations have focused on D2-specific receptors (D2R), a recent study suggests that the decreased D2-like binding may be due to a D3-specific (D3R) abnormality. However, only limited data exist on the role of D1-specific receptors (D1R) and the D1R-mediated pathways within basal ganglia in dystonia. Metabolic positron emission tomography (PET) data in primary generalized dystonia suggest resting state over activity in the D1R-mediated direct pathway, leading to excessive disinhibition of motor cortical areas. This work investigated whether striatal D1-like receptors are affected in primary focal dystonias. METHODS Striatal-specific (caudate and putamen) binding of the D1-like radioligand [(11)C]NNC 112 was measured using PET in 19 patients with primary focal dystonia (cranial, cervical, or arm) and 18 controls. RESULTS No statistically significant difference was detected in striatal D1-like binding between the two groups. The study had 91% power to detect a 20% difference, indicating that false-negative results were unlikely. CONCLUSIONS Because [(11)C]NNC 112 has high affinity for D1-like receptors, very low affinity for D2-like receptors, and minimal sensitivity to endogenous dopamine levels, we conclude that D1-like receptor binding is not impaired in these primary focal dystonias.
Collapse
Affiliation(s)
- Morvarid Karimi
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
27
|
Eisenstein SA, Antenor-Dorsey JAV, Gredysa DM, Koller JM, Bihun EC, Ranck SA, Arbeláez AM, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse 2013; 67:748-56. [PMID: 23650017 PMCID: PMC3778147 DOI: 10.1002/syn.21680] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/20/2013] [Accepted: 04/27/2013] [Indexed: 01/11/2023]
Abstract
Previous PET imaging studies have demonstrated mixed findings regarding dopamine D2/D3 receptor availability in obese relative to nonobese humans. Nonspecific D2/D3 radioligands do not allow for separate estimation of D2 receptor (D2R) and D3 receptor (D3R) subtypes of the D2 receptor family, which may play different roles in behavior and are distributed differently throughout the brain. These radioligands are also displaceable by endogenous dopamine, confounding interpretation of differences in receptor availability with differing levels of dopamine release. The present study used PET imaging with the D2R-selective radioligand (N-[(11)C] methyl)benperidol ([(11)C]NMB), which is nondisplaceable by endogenous dopamine, to estimate D2R specific binding (BPND) and its relationship to body mass index (BMI) and age in 15 normal-weight (mean BMI = 22.6 kg/m(2)) and 15 obese (mean BMI = 40.3 kg/m(2)) men and women. Subjects with illnesses or taking medications that interfere with dopamine signaling were excluded. Striatal D2R BPND was calculated using the Logan graphical method with cerebellum as a reference region. D2R BPND estimates were higher in putamen and caudate relative to nucleus accumbens, but did not differ between normal-weight and obese groups. BMI values did not correlate with D2R BPND . Age was negatively correlated with putamen D2R BPND in both groups. These results suggest that altered D2R specific binding is not involved in the pathogenesis of obesity per se and underscore the need for additional studies evaluating the relationship between D3R, dopamine reuptake, or endogenous dopamine release and human obesity.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Jo Ann V. Antenor-Dorsey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Danuta M. Gredysa
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Jonathan M. Koller
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Emily C. Bihun
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Samantha A. Ranck
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Ana Maria Arbeláez
- Department of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Samuel Klein
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Blvd., St. Louis, MO 63108
- Program in Occupational Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Blvd., St. Louis, MO 63108
| | - Stephen M. Moerlein
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Kevin J. Black
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
28
|
Berman BD, Hallett M, Herscovitch P, Simonyan K. Striatal dopaminergic dysfunction at rest and during task performance in writer's cramp. ACTA ACUST UNITED AC 2013; 136:3645-58. [PMID: 24148273 DOI: 10.1093/brain/awt282] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Writer's cramp is a task-specific focal hand dystonia characterized by involuntary excessive muscle contractions during writing. Although abnormal striatal dopamine receptor binding has been implicated in the pathophysiology of writer's cramp and other primary dystonias, endogenous dopamine release during task performance has not been previously investigated in writer's cramp. Using positron emission tomography imaging with the D2/D3 antagonist 11C-raclopride, we analysed striatal D2/D3 availability at rest and endogenous dopamine release during sequential finger tapping and speech production tasks in 15 patients with writer's cramp and 15 matched healthy control subjects. Compared with control subjects, patients had reduced 11C-raclopride binding to D2/D3 receptors at rest in the bilateral striatum, consistent with findings in previous studies. During the tapping task, patients had decreased dopamine release in the left striatum as assessed by reduced change in 11C-raclopride binding compared with control subjects. One cluster of reduced dopamine release in the left putamen during tapping overlapped with a region of reduced 11C-raclopride binding to D2/D3 receptors at rest. During the sentence production task, patients showed increased dopamine release in the left striatum. No overlap between altered dopamine release during speech production and reduced 11C-raclopride binding to D2/D3 receptors at rest was seen. Striatal regions where D2/D3 availability at rest positively correlated with disease duration were lateral and non-overlapping with striatal regions showing reduced D2/D3 receptor availability, except for a cluster in the left nucleus accumbens, which showed a negative correlation with disease duration and overlapped with striatal regions showing reduced D2/D3 availability. Our findings suggest that patients with writer's cramp may have divergent responses in striatal dopamine release during an asymptomatic motor task involving the dystonic hand and an unrelated asymptomatic task, sentence production. Our voxel-based results also suggest that writer's cramp may be associated with reduced striatal dopamine release occuring in the setting of reduced D2/D3 receptor availability and raise the possibility that basal ganglia circuits associated with premotor cortices and those associated with primary motor cortex are differentially affected in primary focal dystonias.
Collapse
Affiliation(s)
- Brian D Berman
- 1 Department of Neurology, University of Colorado Anschutz Medical Campus, Denver, CO USA
| | | | | | | |
Collapse
|
29
|
Blood AJ. Imaging studies in focal dystonias: a systems level approach to studying a systems level disorder. Curr Neuropharmacol 2013; 11:3-15. [PMID: 23814533 PMCID: PMC3580788 DOI: 10.2174/157015913804999513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/16/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Focal dystonias are dystonias that affect one part of the body, and are sometimes task-specific. Brain imaging and transcranial magnetic stimulation techniques have been valuable in defining the pathophysiology of dystonias in general, and are particularly amenable to studying focal dystonias. Over the past few years, several common themes have emerged in the imaging literature, and this review summarizes these findings and suggests some ways in which these distinct themes might all point to one common systems-level mechanism for dystonia. These themes include (1) the role of premotor regions in focal dystonia, (2) the role of the sensory system and sensorimotor integration in focal dystonia, (3) the role of decreased inhibition/increased excitation in focal dystonia, and (4) the role of brain imaging in evaluating and guiding treatment of focal dystonias. The data across these themes, together with the features of dystonia itself, are consistent with a hypothesis that all dystonias reflect excessive output of postural control/stabilization systems in the brain, and that the mechanisms for dystonia reflect amplification of an existing functional system, rather than recruitment of the wrong motor programs. Imaging is currently being used to test treatment effectiveness, and to visually guide treatment of dystonia, such as placement of deep brain stimulation electrodes. In the future, it is hoped that imaging may be used to individualize treatments across behavioral, pharmacologic, and surgical domains, thus optimizing both the speed and effectiveness of treatment for any given individual with focal dystonia.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Laboratory of Neuroimaging and Genetics, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Jinnah HA, Berardelli A, Comella C, Defazio G, Delong MR, Factor S, Galpern WR, Hallett M, Ludlow CL, Perlmutter JS, Rosen AR. The focal dystonias: current views and challenges for future research. Mov Disord 2013; 28:926-43. [PMID: 23893450 PMCID: PMC3733486 DOI: 10.1002/mds.25567] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/11/2022] Open
Abstract
The most common forms of dystonia are those that develop in adults and affect a relatively isolated region of the body. Although these adult-onset focal dystonias are most prevalent, knowledge of their etiologies and pathogenesis has lagged behind some of the rarer generalized dystonias, in which the identification of genetic defects has facilitated both basic and clinical research. This summary provides a brief review of the clinical manifestations of the adult-onset focal dystonias, focusing attention on less well understood clinical manifestations that need further study. It also provides a simple conceptual model for the similarities and differences among the different adult-onset focal dystonias as a rationale for lumping them together as a class of disorders while at the same time splitting them into subtypes. The concluding section outlines some of the most important research questions for the future. Answers to these questions are critical for advancing our understanding of this group of disorders and for developing novel therapeutics.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu J, Vangveravong S, Li S, Fan J, Jones LA, Cui J, Wang R, Tu Z, Chu W, Perlmutter JS, Mach RH. Positron emission tomography imaging of dopamine D2 receptors using a highly selective radiolabeled D2 receptor partial agonist. Neuroimage 2013; 71:168-74. [PMID: 23333701 DOI: 10.1016/j.neuroimage.2013.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 11/16/2022] Open
Abstract
A series of microPET imaging studies were conducted in anesthetized rhesus monkeys using the dopamine D2-selective partial agonist, [(11)C]SV-III-130. There was a high uptake in regions of brain known to express a high density of D2 receptors under baseline conditions. Rapid displacement in the caudate and putamen, but not in the cerebellum, was observed after injection of the dopamine D2/3 receptor nonselective ligand S(-)-eticlopride at a low dosage (0.025mg/kg/i.v.); no obvious displacement in the caudate, putamen and cerebellum was observed after the treatment with a dopamine D3 receptor selective ligand WC-34 (0.1mg/kg/i.v.). Pretreatment with lorazepam (1mg/kg, i.v. 30min) to reduce endogenous dopamine prior to tracer injection resulted in unchanged binding potential (BP) values, a measure of D2 receptor binding in vivo, in the caudate and putamen. d-Amphetamine challenge studies indicate that there is a significant displacement of [(11)C]SV-III-130 by d-Amphetamine-induced increases in synaptic dopamine levels.
Collapse
Affiliation(s)
- Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Striatal microcircuitry and movement disorders. Trends Neurosci 2012; 35:557-64. [PMID: 22858522 DOI: 10.1016/j.tins.2012.06.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/19/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
The basal ganglia network serves to integrate information about context, actions, and outcomes to shape the behavior of an animal based on its past experience. Clinically, the basal ganglia receive the most attention for their role in movement disorders. Recent advances in technology have opened new avenues of research into the structure and function of basal ganglia circuits. One emerging theme is the importance of GABAergic interneurons in coordinating and regulating network function. Here, we discuss evidence that changes in striatal GABAergic microcircuits contribute to basal ganglia dysfunction in several movement disorders. Because interneurons are genetically and neurochemically unique from striatal projection neurons, they may provide promising therapeutic targets for the treatment of a variety of striatal-based disorders.
Collapse
|
33
|
Eisenstein SA, Koller JM, Piccirillo M, Kim A, Antenor-Dorsey JAV, Videen TO, Snyder AZ, Karimi M, Moerlein SM, Black KJ, Perlmutter JS, Hershey T. Characterization of extrastriatal D2 in vivo specific binding of [¹⁸F](N-methyl)benperidol using PET. Synapse 2012; 66:770-80. [PMID: 22535514 DOI: 10.1002/syn.21566] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022]
Abstract
PET imaging studies of the role of the dopamine D2 receptor family in movement and neuropsychiatric disorders are limited by the use of radioligands that have near-equal affinities for D2 and D3 receptor subtypes and are susceptible to competition with endogenous dopamine. By contrast, the radioligand [¹⁸F]N-methylbenperidol ([¹⁸F]NMB) has high selectivity and affinity for the D2 receptor subtype (D2R) and is not sensitive to endogenous dopamine. Although [¹⁸F]NMB has high binding levels in striatum, its utility for measuring D2R in extrastriatal regions is unknown. A composite MR-PET image was constructed across 14 healthy adult participants representing average NMB uptake 60 to 120 min after [¹⁸F]NMB injection. Regional peak radioactivity was identified using a peak-finding algorithm. FreeSurfer and manual tracing identified a priori regions of interest (ROI) on each individual's MR image and tissue activity curves were extracted from coregistered PET images. [¹⁸F]NMB binding potentials (BP(ND) s) were calculated using the Logan graphical method with cerebellum as reference region. In eight unique participants, extrastriatal BP(ND) estimates were compared between Logan graphical methods and a three-compartment kinetic tracer model. Radioactivity and BP(ND) levels were highest in striatum, lower in extrastriatal subcortical regions, and lowest in cortical regions relative to cerebellum. Age negatively correlated with striatal BP(ND) s. BP(ND) estimates for extrastriatal ROIs were highly correlated across kinetic and graphical methods. Our findings indicate that PET with [¹⁸F]NMB measures specific binding in extrastriatal regions, making it a viable radioligand to study extrastriatal D2R levels in healthy and diseased states.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jimenez-Shahed J. A new treatment for focal dystonias: incobotulinumtoxinA (Xeomin®), a botulinum neurotoxin type A free from complexing proteins. Neuropsychiatr Dis Treat 2012; 8:13-25. [PMID: 22275842 PMCID: PMC3261649 DOI: 10.2147/ndt.s16085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dystonia is a movement disorder of uncertain pathogenesis that is characterized by involuntary and inappropriate muscle contractions which cause sustained abnormal postures and movements of multiple or single (focal) body regions. The most common focal dystonias are cervical dystonia (CD) and blepharospasm (BSP). The first-line recommended treatment for CD and BSP is injection with botulinum toxin (BoNT), of which two serotypes are available: BoNT type A (BoNT/A) and BoNT type B (BoNT/B). Conventional BoNT formulations include inactive complexing proteins, which may increase the risk for antigenicity, possibly leading to treatment failure. IncobotulinumtoxinA (Xeomin(®); Merz Pharmaceuticals GmbH, Frankfurt, Germany) is a BoNT/A agent that has been recently Food and Drug Administration-approved for the treatment of adults with CD and adults with BSP previously treated with onabotulinumtoxinA (Botox(®); Allergen, Inc, Irvine, CA) - a conventional BoNT/A. IncobotulinumtoxinA is the only BoNT product that is free of complexing proteins. The necessity of complexing proteins for the effectiveness of botulinum toxin treatment has been challenged by preclinical and clinical studies with incobotulinumtoxinA. These studies have also suggested that incobotulinumtoxinA is associated with a lower risk for stimulating antibody formation than onabotulinumtoxinA. In phase 3 noninferiority trials, incobotulinumtoxinA demonstrated significant improvements in CD and BSP symptoms in both primary and secondary measures, compared with baseline, and met criteria for noninferiority versus onabotulinumtoxinA. In placebo-controlled trials, incobotulinumtoxinA also significantly improved the symptoms of CD and BSP, with robust outcomes in both primary and secondary measures. The use of incobotulinumtoxinA has been well tolerated in all trials, with an adverse event profile similar to that of onabotulinumtoxinA. Based on these data, incobotulinumtoxinA is a safe and effective BoNT/A for the treatment of CD and BSP, and may pose a lower risk for immunogenicity leading to treatment failure compared with other available BoNT agents. This paper reviews the treatment of focal dystonias with BoNTs, in particular, incobotulinumtoxinA. Controlled trials from the existing incobotulinumtoxinA literature are summarized.
Collapse
|
35
|
Sadnicka A, Hoffland BS, Bhatia KP, van de Warrenburg BP, Edwards MJ. The cerebellum in dystonia - help or hindrance? Clin Neurophysiol 2011; 123:65-70. [PMID: 22078259 DOI: 10.1016/j.clinph.2011.04.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/21/2011] [Accepted: 04/05/2011] [Indexed: 10/15/2022]
Abstract
Dystonia has historically been considered a disorder of the basal ganglia. This review aims to critically examine the evidence for a role of the cerebellum in the pathophysiology of dystonia. We compare and attempt to link the information available from both clinical and experimental studies; work detailing cerebellar connectivity in primates; data that suggests a role for the cerebellum in the genesis of dystonia in murine models; clinical observation in humans with structural lesions and heredodegenerative disorders of the cerebellum; and imaging studies of patients with dystonia. The typical electrophysiological findings in dystonia are the converse to those found in cerebellar lesions. However, certain subtypes of dystonia mirror cerebellar patterns of increased cortical inhibition. Furthermore, altered cerebellar function can be demonstrated in adult onset focal dystonia with impaired cerebellar inhibition of motor cortex and abnormal eyeblink classical conditioning. We propose that abnormal, likely compensatory activity of the cerebellum is an important factor within pathophysiological models of dystonia. Work in this exciting area has only just begun but it is likely that the cerebellum will have a key place within future models of dystonia.
Collapse
Affiliation(s)
- A Sadnicka
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute for Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
36
|
Mach RH, Tu Z, Xu J, Li S, Jones LA, Taylor M, Luedtke RR, Derdeyn CP, Perlmutter JS, Mintun MA. Endogenous dopamine (DA) competes with the binding of a radiolabeled D₃ receptor partial agonist in vivo: a positron emission tomography study. Synapse 2011; 65:724-32. [PMID: 21132811 DOI: 10.1002/syn.20891] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/04/2010] [Indexed: 11/08/2022]
Abstract
A series of microPET imaging studies were conducted in anesthetized rhesus monkeys using the dopamine D₃-selective partial agonist, [¹⁸F]5. There was variable uptake in regions of brain known to express a high density of D₃ receptors under baseline conditions. Pretreatment with lorazepam (1 mg/kg, i.v. 30 min) to reduce endogenous dopamine activity before tracer injection resulted in a dramatic increase in uptake in the caudate, putamen, and thalamus, and an increase in the binding potential (BP) values, a measure of D₃ receptor binding in vivo. These data indicate that there is a high level of competition between [¹⁸F]5 and endogenous dopamine for D₃ receptors in vivo.
Collapse
Affiliation(s)
- Robert H Mach
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|