1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Hong SW, Page R, Truman P. Smoking, coffee intake, and Parkinson's disease: Potential protective mechanisms and components. Neurotoxicology 2024; 106:48-63. [PMID: 39701424 DOI: 10.1016/j.neuro.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Environmental and lifestyle factors, such as smoking and coffee drinking, have been associated with a decreased risk for PD. However, the biological mechanisms underlying protective effects on PD are still not fully understood. It has been suggested that non-nicotine components in cigarette smoke and non-caffeine components in coffee may contribute to this protective effect. The aim of this review was to explore candidate molecules and mechanisms behind the effects of smoking and coffee drinking on PD by integrating findings from previous studies. By cross-referencing an index of tobacco constituents and a list of coffee constituents with existing literature on natural compounds and their structural analogs that show inhibitory activities against monoamine oxidase B, catechol O-methyltransferase, and α-synuclein fibrillation, we have identified tobacco and coffee components that inhibit these targets. Furthermore, tobacco and coffee components potentially play roles in suppressing neuroinflammation, activating the Nrf2 pathway as natural activators, and altering the gut microbiome. This review suggests that the phenolic compounds from tobacco and coffee investigated may contribute to the low incidence of PD in smokers and coffee drinkers, showing moderate to strong potential as therapeutic interventions. The current review suggests that multifunctional molecules found in coffee and cigarette smoke may have potential neuroprotective effects, but none of the data indicates that multifunctionality is required for these effects. This review will deepen our understanding of how smoking and coffee drinking are linked to a reduced risk of PD and will also be important in elucidating the mechanisms underlying the protective effects of smoking and coffee drinking on PD.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
3
|
Lyu Q, Chen R, Qiu Z, Wang C, Liu R. Druggable targets for Parkinson's disease: transcriptomics based Mendelian randomization study. Sci Rep 2024; 14:25763. [PMID: 39468243 PMCID: PMC11519603 DOI: 10.1038/s41598-024-77401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder. Currently available drugs for PD, can only relieve the symptoms of PD, but cannot prevent the progression of the disease and have serious side effects. Other new druggable therapeutic targets for PD are needed. First, six GEO datasets with transcriptomic data from the substantia nigra (SN) region of the brain were downloaded to find dysregulated druggable genes in PD. Then, Mendelian randomization (MR) and summary statistics-based MR (SMR) analysis were conducted using eQTL data from both brain tissue and blood to investigate the relationship between gene expression and PD. Next, the association between the expression of candidate druggable targets and disease stage was validated in an additional dataset GSE49036. Finally, a phenome-wide MR analysis was carried out to investigate the potential impact of candidate druggable genes on several other complex diseases or traits. Our study revealed 313 differentially expressed genes that may be directly targetable and have an impact on PD (FDR-p < 0.1). Through MR and SMR analysis, P2RX7 and RNASET2 were identified as feasible PD therapeutic targets, which were highly expressed in PD tissues and increased as the Braak stages increased. Phenome-wide MR analysis revealed other effects of targeting RNASET2. This study presents genetic support for the potential therapeutic properties of targeting P2RX7 and RNASET2, which will be useful for developing druggable therapeutic targets for PD.
Collapse
Affiliation(s)
- Qiong Lyu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Saarinen EK, Kuusimäki T, Lindholm K, Niemi K, Honkanen EA, Noponen T, Seppänen M, Ihalainen T, Murtomäki K, Mertsalmi T, Jaakkola E, Myller E, Eklund M, Nuuttila S, Levo R, Chaudhuri KR, Antonini A, Vahlberg T, Lehtonen M, Joutsa J, Scheperjans F, Kaasinen V. Dietary Caffeine and Brain Dopaminergic Function in Parkinson Disease. Ann Neurol 2024; 96:262-275. [PMID: 38767012 DOI: 10.1002/ana.26957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE This study was undertaken to investigate the effects of dietary caffeine intake on striatal dopamine function and clinical symptoms in Parkinson disease in a cross-sectional and longitudinal setting. METHODS One hundred sixty-three early Parkinson disease patients and 40 healthy controls were investigated with [123I]FP-CIT single photon emission computed tomography, and striatal dopamine transporter binding was evaluated in association with the level of daily coffee consumption and clinical measures. After a median interval of 6.1 years, 44 patients with various caffeine consumption levels underwent clinical and imaging reexamination including blood caffeine metabolite profiling. RESULTS Unmedicated early Parkinson disease patients with high coffee consumption had 8.3 to 15.4% lower dopamine transporter binding in all studied striatal regions than low consumers, after accounting for age, sex, and motor symptom severity. Higher caffeine consumption was further associated with a progressive decline in striatal binding over time. No significant effects of caffeine on motor function were observed. Blood analyses demonstrated a positive correlation between caffeine metabolites after recent caffeine intake and dopamine transporter binding in the ipsilateral putamen. INTERPRETATION Chronic caffeine intake prompts compensatory and cumulative dopamine transporter downregulation, consistent with caffeine's reported risk reduction in Parkinson disease. However, this decline does not manifest in symptom changes. Transiently increased dopamine transporter binding after recent caffeine intake has implications for dopaminergic imaging guidelines. ANN NEUROL 2024;96:262-275.
Collapse
Affiliation(s)
- Emmi K Saarinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Tomi Kuusimäki
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Kari Lindholm
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Kalle Niemi
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Emma A Honkanen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Tommi Noponen
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Marko Seppänen
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Toni Ihalainen
- Department of Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kirsi Murtomäki
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Tuomas Mertsalmi
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Elina Jaakkola
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Elina Myller
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Mikael Eklund
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Simo Nuuttila
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Reeta Levo
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Kallol Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence, Kings College Hospital and Kings College London, Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases, Padua Neuroscience Center, Department of Neuroscience, University of Padua, Padua, Italy
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juho Joutsa
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Zhao Z, Ji H, Pei J, Yan J, Zhang X, Yuan Y, Liu M. Transcranial Ultrasound Stimulation Improves Memory Performance of Parkinsonian Mice. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1284-1291. [PMID: 38498744 DOI: 10.1109/tnsre.2024.3378109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Cognitive impairment is one of the most common non-motor symptoms of Parkinson's disease (PD). Previous studies have demonstrated that low-intensity transcranial ultrasound stimulation can significantly suppress the motor symptoms of PD. However, whether ultrasound stimulation can improve cognitive ability in PD and the related neural oscillation mechanism remain unclear to date. To evaluate the effect of ultrasound stimulation on memory ability in PD and explore its neural oscillation mechanism. Ultrasonography was used for 7-day stimulation of the CA1 in transgenic mice with PD. The working memory ability of the PD mice was then tested using novel object discrimination, and the local field potential and spikes in the mice CA1 were recorded at the same time as in the behavioral test. We found that ultrasound stimulation of the PD mice CA1 for 4 days: 1) significantly increased their learning and memory ability, although the learning and memory ability on the 7th day after the stimulation stopped was not significantly different from that before stimulation (P>0.05); 2) significantly increased the relative power of theta, low gamma, and high gamma frequency bands of the local field potential, and the phase amplitude coupling strength between theta and low gamma and between theta and high gamma; and 3) modulated the phase-locking angle between the spike of interneuron and theta wave to a 180°-360° rise cycle. Transcranial ultrasound stimulation can improve the learning and memory abilities of PD mice, and evoking neural oscillations in the CA1 is the potential mechanism.
Collapse
|
6
|
Chen X, Zhang Y. A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson's disease. Neural Regen Res 2024; 19:324-330. [PMID: 37488885 PMCID: PMC10503617 DOI: 10.4103/1673-5374.379042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
The dichotomized brain system is a concept that was generalized from the 'dual syndrome hypothesis' to explain the heterogeneity of cognitive impairment, in which anterior and posterior brain systems are independent but partially overlap. The dopaminergic system acts on the anterior brain and is responsible for executive function, working memory, and planning. In contrast, the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function. Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson's disease. Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections. However, whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated. Furthermore, the precise role of the cerebellum in patients with Parkinson's disease and cognitive impairment remains unclear. Therefore, in this review, we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition, as reported by previous studies, and investigated the role of the cerebellum in patients with Parkinson's disease and cognitive impairment, as determined by functional neuroimaging. Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Rasool A, Manzoor R, Ullah K, Afzal R, Ul-Haq A, Imran H, Kaleem I, Akhtar T, Farrukh A, Hameed S, Bashir S. Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:852-864. [PMID: 37303175 DOI: 10.2174/1871527322666230609141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/13/2023]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress triggers the vicious cycle leading to the degeneration of dopaminergic neurons in the nigra pars compacta. ROS produced during the metabolism of dopamine is immediately neutralized by the endogenous antioxidant defense system (EADS) under physiological conditions. Aging decreases the vigilance of EADS and makes the dopaminergic neurons more vulnerable to oxidative stress. As a result, ROS left over by EADS oxidize the dopamine-derived catechols and produces a number of reactive dopamine quinones, which are precursors to endogenous neurotoxins. In addition, ROS causes lipid peroxidation, uncoupling of the electron transport chain, and DNA damage, which lead to mitochondrial dysfunction, lysosomal dysfunction, and synaptic dysfunction. The mutations in genes such as DNAJC6, SYNJ1, SH3GL2, LRRK2, PRKN, and VPS35 caused by ROS have been associated with synaptic dysfunction and the pathogenesis of Parkinson's disease (PD). The available drugs that are used against PD can only delay the progression of the disease, but they produce various side effects. Through their antioxidant activity, flavonoids can substantiate the EADS of dopaminergic neurons and disrupt the vicious cycle incepted by oxidative stress. In this review, we show how the oxidative metabolism of dopamine generates ROS and dopamine-quinones, which then exert unrestrained OS, causing mutations in several genes involved in the proper functioning of mitochondrion, synapse, and lysosome. Besides, we also present some examples of approved drugs used for the treatment of PD, therapies in the clinical trial phase, and an update on the flavonoids that have been tested to boost the EADS of dopaminergic neurons.
Collapse
Affiliation(s)
- Aamir Rasool
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
- Faculty of Marine Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal 90050, Pakistan
| | - Kaleem Ullah
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Ramsha Afzal
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Asad Ul-Haq
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hadia Imran
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | - Anum Farrukh
- Department of General Medicine, Fauji Foundation Hospital (FFH), Rawalpindi, Pakistan
| | - Sahir Hameed
- National Institute for Genomics and Advanced Biotechnology (N.I.G.A.B.) National Agriculture Research Centre Islamabad, Pakistan
| | - Shahid Bashir
- Neurosciences Center, King Fahad Specialist Hospital Dammam, P.O. Box 15215, Dammam 31444, Saudi Arabia
| |
Collapse
|
8
|
Liu Q, Wang P, Liu C, Xue F, Wang Q, Chen Y, Hou R, Chen T. An investigation of neuromelanin distribution in substantia nigra and locus coeruleus in patients with Parkinson's disease using neuromelanin-sensitive MRI. BMC Neurol 2023; 23:301. [PMID: 37580712 PMCID: PMC10424360 DOI: 10.1186/s12883-023-03350-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023] Open
Abstract
Loss of neuromelanin in the midbrain is known in Parkinson's disease(PD), which can now be directly detected by neuromelanin-sensitive MRI(NM-MRI). This case-control study was to investigate the distribution of neuromelanin in the substantia nigra(SN) and the locus coeruleus(LC) using NM-MRI technique and evaluate its potential as a diagnostic marker for PD. 10 early PD patients(H&Y stage I, II), 11 progressive PD patients(H&Y stage III-V), and 10 healthy controls matched in age and gender were recruited. All participants completed clinical and psychometric assessments as well as NM-MRI scans. Neuromelanin signal intensities in SN and LC were measured by contrast-to-noise ratios(CNRs) derived from NM-MRI scans. There were significant decreases of CNRs in SNpc(including anterior, central, and posterior) and LC in PD patients compared to controls. There were also significant differences of CNR between the left and right sides. CNR in LC had a negative correlation with the Non-Motor Symptoms Scale(NMSS) score in PD patients(|R|=0.49), whereas CNR in SNpc did not correlate with Unified Parkinson Disease Rating Scale(UPDRS) score(|R|<0.3). The receiver operating characteristic(ROC) curves revealed that the CNR in LC had a high diagnostic specificity of 90.1% in progressive patients. This study provides new evidence for the asymmetric distribution of neuromelanin in SN and the LC of patients with PD. The neuromelanin loss is bilateral and more predominately in LC than that in SN. This distinct neuromelanin distribution pattern may offer a potential diagnostic marker and a potential neuropharmacological intervention target for PD patients.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Pan Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Chenghe Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Feng Xue
- Department of Radiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Qian Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Yuqing Chen
- School of Clinical Medicine Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ruihua Hou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Teng Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China.
| |
Collapse
|
9
|
Alam MR, Singh S. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacology 2023:10.1007/s10787-023-01259-0. [PMID: 37318694 DOI: 10.1007/s10787-023-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
10
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
11
|
Canever JB, Soares ES, de Avelar NCP, Cimarosti HI. Targeting α-synuclein post-translational modifications in Parkinson's disease. Behav Brain Res 2023; 439:114204. [PMID: 36372243 DOI: 10.1016/j.bbr.2022.114204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Although the exact mechanisms underlying PD are still not completely understood, it is well accepted that α-synuclein plays key pathophysiological roles as the main constituent of the cytoplasmic inclusions known as Lewy bodies. Several post-translational modifications (PTMs), such as the best-known phosphorylation, target α-synuclein and are thus implicated in its physiological and pathological functions. In this review, we present (1) an overview of the pathophysiological roles of α-synuclein, (2) a descriptive analysis of α-synuclein PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, truncation, and O-GlcNAcylation, as well as (3) a brief summary on α-synuclein PTMs as potential biomarkers for PD. A better understanding of α-synuclein PTMs is of paramount importance for elucidating the mechanisms underlying PD and can thus be expected to improve early detection and monitoring disease progression, as well as identify promising new therapeutic targets.
Collapse
Affiliation(s)
- Jaquelini B Canever
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Núbia C P de Avelar
- Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Helena I Cimarosti
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
12
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
13
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Muacevic A, Adler JR. Does Drinking Coffee Reduce the Incidence of Parkinson's Disease? Cureus 2023; 15:e34296. [PMID: 36721713 PMCID: PMC9883660 DOI: 10.7759/cureus.34296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD) is an increasing threat to first-world nations as their population ages, with around one in 100 suffering from it by age 60. Incurable, with treatments that do little to delay disease progression, PD induces severe disability and even death in those afflicted. The search for preventative measures has revealed the widely used psychoactive stimulant caffeine, which competitively inhibits adenosine receptors to induce a wide variety of effects. The inhibition of inflammation and microglial cell activation to reduce reactive oxygen species (ROS)-induced cellular damage and the resultant mitochondrial dysfunction of the dopaminergic neurons appears to be the main pathway, inducing neuronal loss via the activation of the intrinsic pathway to apoptosis. Mouse models and human data reinforce that caffeine delays the onset of PD in a dose-dependent manner. Evidence suggests it is more beneficial in men than women and is not beneficial at all in women undergoing hormone replacement therapy (HRT). Additionally, some studies suggest that although caffeinated drinks such as cola and tea are beneficial, there may be other products in coffee that prevent the effect, though this requires further research. Although there is strong evidence that caffeine is neuroprotective, there is less evidence that it delays the onset of PD. Given the association with cardiovascular disease, it may be disadvantageous overall to the majority of the population to supplement caffeine, though still a beneficial preventative technique for individuals with a genetic predisposition to PD that may otherwise suffer early onset.
Collapse
|
15
|
Jing XZ, Yuan XZ, Luo X, Zhang SY, Wang XP. An Update on Nondopaminergic Treatments for Motor and Non-motor Symptoms of Parkinson's Disease. Curr Neuropharmacol 2023; 21:1806-1826. [PMID: 35193486 PMCID: PMC10514518 DOI: 10.2174/1570159x20666220222150811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
Nondopaminergic neurotransmitters such as adenosine, norepinephrine, serotonin, glutamate, and acetylcholine are all involved in Parkinson's disease (PD) and promote its symptoms. Therefore, nondopaminergic receptors are key targets for developing novel preparations for the management of motor and non-motor symptoms in PD, without the potential adverse events of dopamine replacement therapy. We reviewed English-written articles and ongoing clinical trials of nondopaminergic treatments for PD patients till 2014 to summarize the recent findings on nondopaminergic preparations for the treatment of PD patients. The most promising research area of nondopaminergic targets is to reduce motor complications caused by traditional dopamine replacement therapy, including motor fluctuations and levodopa-induced dyskinesia. Istradefylline, Safinamide, and Zonisamide were licensed for the management of motor fluctuations in PD patients, while novel serotonergic and glutamatergic agents to improve motor fluctuations are still under research. Sustained- release agents of Amantadine were approved for treating levodopa induced dyskinesia (LID), and serotonin 5HT1B receptor agonist also showed clinical benefits to LID. Nondopaminergic targets were also being explored for the treatment of non-motor symptoms of PD. Pimavanserin was approved globally for the management of hallucinations and delusions related to PD psychosis. Istradefylline revealed beneficial effect on daytime sleepiness, apathy, depression, and lower urinary tract symptoms in PD subjects. Droxidopa may benefit orthostatic hypotension in PD patients. Safinamide and Zonisamide also showed clinical efficacy on certain non-motor symptoms of PD patients. Nondopaminergic drugs are not expected to replace dopaminergic strategies, but further development of these drugs may lead to new approaches with positive clinical implications.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-Yun Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xiao-Ping Wang
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Criaud M, Laurencin C, Poisson A, Metereau E, Redouté J, Thobois S, Boulinguez P, Ballanger B. Noradrenaline and Movement Initiation Disorders in Parkinson’s Disease: A Pharmacological Functional MRI Study with Clonidine. Cells 2022; 11:cells11172640. [PMID: 36078048 PMCID: PMC9454805 DOI: 10.3390/cells11172640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Slowness of movement initiation is a cardinal motor feature of Parkinson’s disease (PD) and is not fully reverted by current dopaminergic treatments. This trouble could be due to the dysfunction of executive processes and, in particular, of inhibitory control of response initiation, a function possibly associated with the noradrenergic (NA) system. The implication of NA in the network supporting proactive inhibition remains to be elucidated using pharmacological protocols. For that purpose, we administered 150 μg of clonidine to 15 healthy subjects and 12 parkinsonian patients in a double-blind, randomized, placebo-controlled design. Proactive inhibition was assessed by means of a Go/noGo task, while pre-stimulus brain activity was measured by event-related functional MRI. Acute reduction in noradrenergic transmission induced by clonidine enhanced difficulties initiating movements reflected by an increase in omission errors and modulated the activity of the anterior node of the proactive inhibitory network (dorsomedial prefrontal and anterior cingulate cortices) in PD patients. We conclude that NA contributes to movement initiation by acting on proactive inhibitory control via the α2-adrenoceptor. We suggest that targeting noradrenergic dysfunction may represent a new treatment approach in some of the movement initiation disorders seen in Parkinson’s disease.
Collapse
Affiliation(s)
- Marion Criaud
- Institute of Psychiatry Psychology & Neuroscience, Department Child & Adolescent Psychiatry, Kings College London, London SE24 9QR, UK
| | - Chloé Laurencin
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Alice Poisson
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Elise Metereau
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | | | - Stéphane Thobois
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
- CNRS UMR5229, Institute of Cognitive Science Marc Jeannerod, 69500 Bron, France
| | - Philippe Boulinguez
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Correspondence:
| |
Collapse
|
17
|
Lazarova M, Tancheva L, Chayrov R, Tzvetanova E, Alexandrova A, Popatanasov A, Uzunova D, Stefanova M, Stankova I, Kalfin R. Tyrosinyl-amantadine: A New Amantadine Derivative With an Ameliorative Effect in a 6-OHDA Experimental Model of Parkinson's Disease in Rats. J Mol Neurosci 2022; 72:900-909. [PMID: 35091981 DOI: 10.1007/s12031-021-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
The neuroprotective capacity of newly synthesized amantadine derivative tyrosinyl-amantadine (Tyr-Am) with expected antiparkinsonian properties was evaluated in a 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Male Wistar rats were divided into the following groups: sham-operated (SO), striatal 6-OHDA-lesioned control group, 6-OHDA-lesioned rats pretreated for 6 days with Tyr-Am (16 mg/kg administered intraperitoneally, i.p.), and 6-OHDA-lesioned rats pretreated for 6 days with amantadine (40 mg/kg i.p.), used as a referent. On the first, second and third week post-lesion, the animals were subjected to some behavioral tests (apomorphine-induced rotation, rotarod, and passive avoidance test). The acetylcholinesterase (AChE) activity and key oxidative stress parameters including lipid peroxidation levels (LPO) and superoxide dismutase (SOD) were measured in brain homogenates. The results showed that the neuroprotective effect of Tyr-Am was comparable to that of amantadine, improving neuromuscular coordination and learning and memory performance even at a 2.5-fold lower dose. Tyr-Am demonstrated significant antioxidant properties via decreased LPO levels but had no effect on AChE activity. We can conclude that the newly synthesized amantadine derivative Tyr-Am demonstrated significant antiparkinsonian activity in a 6-OHDA experimental model.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria.
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Radoslav Chayrov
- Department of Chemistry, South-West University "Neofit Rilski", Ivan Mihailov St. 66, Blagoevgrad,, 2700, Bulgaria
| | - Elina Tzvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Andrey Popatanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Ivanka Stankova
- Department of Chemistry, South-West University "Neofit Rilski", Ivan Mihailov St. 66, Blagoevgrad,, 2700, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria.,Faculty of Public Health, Healthcare and Sport, South-West University "Neofit Rilski", Ivan Mihailov St. 66, Blagoevgrad,, 2700, Bulgaria
| |
Collapse
|
18
|
Wei X, Wang Z, Zhang M, Li M, Chen YC, Lv H, Tuo H, Yang Z, Wang Z, Ba F. Brain Surface Area Alterations Correlate With Gait Impairments in Parkinson’s Disease. Front Aging Neurosci 2022; 14:806026. [PMID: 35153730 PMCID: PMC8828503 DOI: 10.3389/fnagi.2022.806026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease with progressive gait, cognition, and overall functional decline. Surface area changes are frequently seen with aging. In neurodegenerative diseases, the changes can be evident with disease progression. The current study aimed to study the regional microstructural alterations using surface-based morphometry to correlate with gait measures of the pace and rhythm domains in PD patients. We hypothesize that specific regional surface changes can be associated with PD gait impairments. Surface analysis might provide a useful tool for assessing PD for functional status and specific motor domains, such as gait in PD, and potentially could serve as an imaging marker in conjunction with other imaging markers. Twenty-seven PD patients and 37 healthy controls were included. The clinical assessment included Mini-Mental State Exanimation, PD motor assessment, clinical gait testing, and objective/quantitative gait assessment. For patients with PD, all motor and gait testing were performed during both OFF and ON medication states. Three Tesla MRI and high-resolution 3D structural images were acquired with an MP-RAGE pulse sequence. Structural image data preprocessing was performed using the DPABISurf toolbox. Clinical characteristics between PD and control group were compared, and correlation between the surface area and behavioral data were analyzed. At the left lateral temporal cortex (LTC) and right inferior parietal cortex (IPC), PD patients have significantly larger surface areas when compared to controls (P < 0.05) using surface-based morphometry. The surface area changes of the left LTC and right IPC were associated with the worse performance of gait assessed by Berg Balance Scale and Timed Up and Go during OFF (P < 0.01). The left LTC area changes significantly correlated with the number of steps, velocity, and the stride length of the pace domain in the ON state. Our findings suggest that PD is associated with a characteristic regional pattern of larger surface area in the left LTC and right IPC. These regional changes were associated with the pace domain of the gait in the ON state. Overall, surface-based analyses might provide a useful tool for assessing PD for functional status and specific motor domains, such as gait in PD, and potentially could serve as an imaging marker.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingkai Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Li
- Clinical Epidemiology and EBM Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv Houzhen Tuo Zhenchang Wang Fang Ba
| | - Houzhen Tuo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv Houzhen Tuo Zhenchang Wang Fang Ba
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv Houzhen Tuo Zhenchang Wang Fang Ba
| | - Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Han Lv Houzhen Tuo Zhenchang Wang Fang Ba
| |
Collapse
|
19
|
Siddique Y. Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:574-595. [PMID: 34477534 DOI: 10.2174/1871527320666210903101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 06/13/2023]
Abstract
In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson's Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.
Collapse
Affiliation(s)
- Yasir Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
20
|
Wu H, Zhou C, Bai X, Liu X, Chen J, Wen J, Guo T, Wu J, Guan X, Gao T, Gu L, Huang P, Xu X, Zhang B, Zhang M. Identifying a whole-brain connectome-based model in drug-naïve Parkinson's disease for predicting motor impairment. Hum Brain Mapp 2021; 43:1984-1996. [PMID: 34970835 PMCID: PMC8933250 DOI: 10.1002/hbm.25768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Identifying a whole‐brain connectome‐based predictive model in drug‐naïve patients with Parkinson's disease and verifying its predictions on drug‐managed patients would be useful in determining the intrinsic functional underpinnings of motor impairment and establishing general brain–behavior associations. In this study, we constructed a predictive model from the resting‐state functional data of 47 drug‐naïve patients by using a connectome‐based approach. This model was subsequently validated in 115 drug‐managed patients. The severity of motor impairment was assessed by calculating Unified Parkinson's Disease Rating Scale Part III scores. The predictive performance of model was evaluated using the correlation coefficient (rtrue) between predicted and observed scores. As a result, a connectome‐based model for predicting individual motor impairment in drug‐naïve patients was identified with significant performance (rtrue = .845, p < .001, ppermu = .002). Two patterns of connection were identified according to correlations between connection strength and the severity of motor impairment. The negative motor‐impairment‐related network contained more within‐network connections in the motor, visual‐related, and default mode networks, whereas the positive motor‐impairment‐related network was constructed mostly with between‐network connections coupling the motor‐visual, motor‐limbic, and motor‐basal ganglia networks. Finally, this predictive model constructed around drug‐naïve patients was confirmed with significant predictive efficacy on drug‐managed patients (r = .209, p = .025), suggesting a generalizability in Parkinson's disease patients under long‐term drug influence. In conclusion, this study identified a whole‐brain connectome‐based model that could predict the severity of motor impairment in Parkinson's patients and furthers our understanding of the functional underpinnings of the disease.
Collapse
Affiliation(s)
- Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Cui CK, Lewis SJG. Future Therapeutic Strategies for Freezing of Gait in Parkinson's Disease. Front Hum Neurosci 2021; 15:741918. [PMID: 34795568 PMCID: PMC8592896 DOI: 10.3389/fnhum.2021.741918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Freezing of gait (FOG) is a common and challenging clinical symptom in Parkinson’s disease. In this review, we summarise the recent insights into freezing of gait and highlight the strategies that should be considered to improve future treatment. There is a need to develop individualised and on-demand therapies, through improved detection and wearable technologies. Whilst there already exist a number of pharmacological (e.g., dopaminergic and beyond dopamine), non-pharmacological (physiotherapy and cueing, cognitive training, and non-invasive brain stimulation) and surgical approaches to freezing (i.e., dual-site deep brain stimulation, closed-loop programming), an integrated collaborative approach to future research in this complex area will be necessary to systematically investigate new therapeutic avenues. A review of the literature suggests standardising how gait freezing is measured, enriching patient cohorts for preventative studies, and harnessing the power of existing data, could help lead to more effective treatments for freezing of gait and offer relief to many patients.
Collapse
Affiliation(s)
- Cathy K Cui
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
22
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
23
|
Jenner P, Mori A, Aradi SD, Hauser RA. Istradefylline - a first generation adenosine A 2A antagonist for the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:317-333. [PMID: 33507105 DOI: 10.1080/14737175.2021.1880896] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction It is now accepted that Parkinson's disease (PD) is not simply due to dopaminergic dysfunction, and there is interest in developing non-dopaminergic approaches to disease management. Adenosine A2A receptor antagonists represent a new way forward in the symptomatic treatment of PD.Areas covered In this narrative review, we summarize the literature supporting the utility of adenosine A2A antagonists in PD with a specific focus on istradefylline, the most studied and only adenosine A2A antagonist currently in clinical use.Expert opinion: At this time, the use of istradefylline in the treatment of PD is limited to the management of motor fluctuations as supported by the results of randomized clinical trials and evaluation by Japanese and USA regulatory authorities. The relatively complicated clinical development of istradefylline was based on classically designed studies conducted in PD patients with motor fluctuations on an optimized regimen of levodopa plus adjunctive dopaminergic medications. In animal models, there is consensus that a more robust effect of istradefylline in improving motor function is produced when combined with low or threshold doses of levodopa rather than with high doses that produce maximal dopaminergic improvement. Exploration of istradefylline as a 'levodopa sparing' strategy in earlier PD would seem warranted.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co Ltd, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
24
|
Wasan H, Singh D, Kh R. Safinamide in neurological disorders and beyond: Evidence from preclinical and clinical studies. Brain Res Bull 2020; 168:165-177. [PMID: 33387637 DOI: 10.1016/j.brainresbull.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
The discovery and development of safinamide, an alpha-aminoamide, has been a valuable addition to the existing clinical management of Parkinson's disease (PD). The journey of safinamide dates back to the year 1983, when an alpha-aminoamide called milacemide showed a weak anticonvulsant activity. Milacemide was then structurally modified to give rise to safinamide, which in turn produced robust anticonvulsant activity. The underlying mechanism behind this action of safinamide is attributed to the inhibition of voltage gated calcium and sodium channels. Moreover, owing to the importance of ion channels in maintaining neuronal circuitry and neurotransmitter release, numerous studies explored the potential of safinamide in neurological diseases including PD, stroke, multiple sclerosis and neuromuscular disorders such as Duchenne muscular dystrophy and non-dystrophic myotonias. Nevertheless, evidence from multiple preclinical studies suggested a potent, selective and reversible inhibitory activity of safinamide against monoamine oxidase (MAO)-B enzyme which is responsible for degrading dopamine, a neurotransmitter primarily implicated in the pathophysiology of PD. Therefore, clinical studies were conducted to assess safety and efficacy of safinamide in PD. Indeed, results from various Phase 3 clinical trials suggested strong evidence of safinamide as an add-on therapy in controlling the exacerbation of PD. This review presents a thorough developmental history of safinamide in PD and provides comprehensive insight into plausible mechanisms via which safinamide can be explored in other neurological and muscular diseases.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Reeta Kh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
25
|
Nishiwaki H, Hamaguchi T, Ito M, Ishida T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson's Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder. mSystems 2020; 5:e00797-20. [PMID: 33293403 PMCID: PMC7771407 DOI: 10.1128/msystems.00797-20] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gut dysbiosis has been repeatedly reported in Parkinson's disease (PD) but only once in idiopathic rapid-eye-movement sleep behavior disorder (iRBD) from Germany. Abnormal aggregation of α-synuclein fibrils causing PD possibly starts from the intestine, although this is still currently under debate. iRBD patients frequently develop PD. Early-stage gut dysbiosis that is causally associated with PD is thus expected to be observed in iRBD. We analyzed gut microbiota in 26 iRBD patients and 137 controls by 16S rRNA sequencing (16S rRNA-seq). Our iRBD data set was meta-analyzed with the German iRBD data set and was compared with gut microbiota in 223 PD patients. Unsupervised clustering of gut microbiota by LIGER, a topic model-based tool for single-cell RNA sequencing (RNA-seq) analysis, revealed four enterotypes in controls, iRBD, and PD. Short-chain fatty acid (SCFA)-producing bacteria were conserved in an enterotype observed in controls and iRBD, whereas they were less conserved in enterotypes observed in PD. Genus Akkermansia and family Akkermansiaceae were consistently increased in both iRBD in two countries and PD in five countries. Short-chain fatty acid (SCFA)-producing bacteria were not significantly decreased in iRBD in two countries. In contrast, we previously reported that recognized or putative SCFA-producing genera Faecalibacterium, Roseburia, and Lachnospiraceae ND3007 group were consistently decreased in PD in five countries. In α-synucleinopathy, increase of mucin-layer-degrading genus Akkermansia is observed at the stage of iRBD, whereas decrease of SCFA-producing genera becomes obvious with development of PD.IMPORTANCE Twenty studies on gut microbiota in PD have been reported, whereas only one study has been reported on iRBD from Germany. iRBD has the highest likelihood ratio to develop PD. Our meta-analysis of iRBD in Japan and Germany revealed increased mucin-layer-degrading genus Akkermansia in iRBD. Genus Akkermansia may increase the intestinal permeability, as we previously observed in PD patients, and may make the intestinal neural plexus exposed to oxidative stress, which can lead to abnormal aggregation of prion-like α-synuclein fibrils in the intestine. In contrast to PD, SCFA-producing bacteria were not decreased in iRBD. As SCFA induces regulatory T (Treg) cells, a decrease of SCFA-producing bacteria may be a prerequisite for the development of PD. We propose that prebiotic and/or probiotic therapeutic strategies to increase the intestinal mucin layer and to increase intestinal SCFA potentially retard the development of iRBD and PD.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Ishida
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Aryal S, Skinner T, Bridges B, Weber JT. The Pathology of Parkinson's Disease and Potential Benefit of Dietary Polyphenols. Molecules 2020; 25:E4382. [PMID: 32987656 PMCID: PMC7582699 DOI: 10.3390/molecules25194382] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by a loss of dopaminergic neurons, leading to bradykinesia, rigidity, tremor at rest, and postural instability, as well as non-motor symptoms such as olfactory impairment, pain, autonomic dysfunction, impaired sleep, fatigue, and behavioral changes. The pathogenesis of PD is believed to involve oxidative stress, disruption to mitochondria, alterations to the protein α-synuclein, and neuroinflammatory processes. There is currently no cure for the disease. Polyphenols are secondary metabolites of plants, which have shown benefit in several experimental models of PD. Intake of polyphenols through diet is also associated with lower PD risk in humans. In this review, we provide an overview of the pathology of PD and the data supporting the potential neuroprotective capacity of increased polyphenols in the diet. Evidence suggests that the intake of dietary polyphenols may inhibit neurodegeneration and the progression of PD. Polyphenols appear to have a positive effect on the gut microbiome, which may decrease inflammation that contributes to the disease. Therefore, a diet rich in polyphenols may decrease the symptoms and increase quality of life in PD patients.
Collapse
Affiliation(s)
| | | | | | - John T. Weber
- School of Pharmacy, Memorial University, St. John’s, NL A1B 3V6, Canada; (S.A.); (T.S.); (B.B.)
| |
Collapse
|
27
|
K channel blockage with 3,4-diaminopyridine potentiates the effect of L-DOPA on dopamine release in striatal slices prepared from 6-OHDA pre-treated rats. Exp Brain Res 2020; 238:2539-2548. [PMID: 32870323 DOI: 10.1007/s00221-020-05912-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Although L-DOPA revolutionized in the treatment of Parkinson's disease, most patients developed motor complications after several years of treatment. Adjunctive therapy to L-DOPA with drugs related to dopaminergic signaling may reduce its dose without decreasing the therapeutic efficiency and thus ameliorates its adverse effects. It has been shown that 3,4-diaminopyridine (3,4-DAP), a K channel blocker, increased dopamine release from striatal slices by increasing neuronal firing in striatal dopaminergic terminals. The current study investigates whether 3,4-DAP may enhance L-DOPA-induced dopamine (DA) release from striatal slices by increasing neuronal firing in striatal dopaminergic terminals. The effects of L-DOPA and 3,4-DAP on spontaneous DA and DOPAC release were tested in vitro, on acute rat striatal slices prepared from non-treated and 6-hydroxydopamine-pre-treated rats. DA and DOPAC levels were determined by HPLC methods. When 3,4-diaminopyridine was combined with L-DOPA, the observed effect was considerably greater than the increases induced by L-DOPA or 3,4-DAP alone in normoxic and neurodegenerative conditions produced by FeSO4 and 6-hydroxydopamine. Furthermore, L-DOPA plus 3,4-DAP also ameliorated DOPAC levels in neurodegenerative conditions. These data indicate that 3,4 DAP plus L-DOPA activates striatal dopaminergic terminals by increasing the DA release and, thus, could be considered as a promising finding in treatment of acute and chronic injury in dopaminergic neurons.
Collapse
|
28
|
NMDA receptors are altered in the substantia nigra pars reticulata and their blockade ameliorates motor deficits in experimental parkinsonism. Neuropharmacology 2020; 174:108136. [DOI: 10.1016/j.neuropharm.2020.108136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
29
|
Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2020; 91:795-808. [PMID: 32576618 DOI: 10.1136/jnnp-2019-322338] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
The concept of 'idiopathic' Parkinson's disease (PD) as a single entity has been challenged with the identification of several clinical subtypes, pathogenic genes and putative causative environmental agents. In addition to classic motor symptoms, non-motor manifestations (such as rapid eye movement sleep disorder, anosmia, constipation and depression) appear at prodromic/premotor stage and evolve, along with cognitive impairment and dysautonomia, as the disease progresses, often dominating the advanced stages of the disease. The key molecular pathogenic mechanisms include α-synuclein misfolding and aggregation, mitochondrial dysfunction, impairment of protein clearance (associated with deficient ubiquitin-proteasome and autophagy-lysosomal systems), neuroinflammation and oxidative stress. The involvement of dopaminergic as well as noradrenergic, glutamatergic, serotonergic and adenosine pathways provide insights into the rich and variable clinical phenomenology associated with PD and the possibility of alternative therapeutic approaches beyond traditional dopamine replacement therapies.One of the biggest challenges in the development of potential neuroprotective therapies has been the lack of reliable and sensitive biomarkers of progression. Immunotherapies such as the use of vaccination or monoclonal antibodies directed against aggregated, toxic α-synuclein.as well as anti-aggregation or protein clearance strategies are currently investigated in clinical trials. The application of glucagon-like peptide one receptor agonists, specific PD gene target agents (such as GBA or LRRK2 modifiers) and other potential disease modifying drugs provide cautious optimism that more effective therapies are on the horizon. Emerging therapies, such as new symptomatic drugs, innovative drug delivery systems and novel surgical interventions give hope to patients with PD about their future outcomes and prognosis.
Collapse
Affiliation(s)
- Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
30
|
Hattori N, Kitabayashi H, Kanda T, Nomura T, Toyama K, Mori A. A Pooled Analysis From Phase 2b and 3 Studies in Japan of Istradefylline in Parkinson's Disease. Mov Disord 2020; 35:1481-1487. [PMID: 32501582 PMCID: PMC7496465 DOI: 10.1002/mds.28095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Characterization of patient factors associated with istradefylline efficacy may facilitate personally optimized treatment. OBJECTIVES We aimed to examine which patient factors are associated with favorable istradefylline treatment outcomes in PD patients with motor complications. METHODS We performed a pooled analysis of data from two identical phase 2b and 3 Japanese studies of istradefylline. Logistic regression models were used to assess the association of 12 patient characteristics with favorable outcomes. RESULTS Off time reduction and increased good on time with istradefylline provided a significantly favorable response in patients aged ≥65 years. Off time reduction was more favorable in patients with ≥8-hour daily off time at baseline. Improvement in UPDRS Part III was favorable in patients with UPDRS Part III baseline score ≥ 20. CONCLUSIONS Several patient factors influenced the effect of istradefylline on motor fluctuations, motor function, activities of daily living, and clinical impression. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Tomoyuki Kanda
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Takanobu Nomura
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Keizo Toyama
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo, Japan
| |
Collapse
|
31
|
Recent advances in dopaminergic strategies for the treatment of Parkinson's disease. Acta Pharmacol Sin 2020; 41:471-482. [PMID: 32112042 PMCID: PMC7471472 DOI: 10.1038/s41401-020-0365-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease worldwide. However, there is no available therapy reversing the neurodegenerative process of PD. Based on the loss of dopamine or dopaminergic dysfunction in PD patients, most of the current therapies focus on symptomatic relief to improve patient quality of life. As dopamine replacement treatment remains the most effective symptomatic pharmacotherapy for PD, herein we provide an overview of the current pharmacotherapies, summarize the clinical development status of novel dopaminergic agents, and highlight the challenge and opportunity of emerging preclinical dopaminergic approaches aimed at managing the features and progression of PD.
Collapse
|
32
|
Ghanta MK, Elango P, L V K S B. Current Therapeutic Strategies and Perspectives for Neuroprotection in Parkinson's Disease. Curr Pharm Des 2020; 26:4738-4746. [PMID: 32065086 DOI: 10.2174/1381612826666200217114658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson's disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.
Collapse
Affiliation(s)
- Mohan K Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai-600116, Tamil Nadu, India
| | - P Elango
- Department of Pharmacology, Panimalar Medical College Hospital & Research Institute, Poonamallee, Chennai-600123, Tamil Nadu, India
| | - Bhaskar L V K S
- Department of Zoology, Guru Ghasidas University, Bilaspur, 495009 (CG), India
| |
Collapse
|
33
|
Huang W, Xu Y, Zhang Y, Zhang P, Zhang Q, Zhang Z, Xu F. Metabolomics-driven identification of adenosine deaminase as therapeutic target in a mouse model of Parkinson's disease. J Neurochem 2019; 150:282-295. [PMID: 31121068 DOI: 10.1111/jnc.14774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is one of the driving forces of progressive neurodegeneration in Parkinson's disease (PD). The metabolomics approach has been proved highly useful in identifying potential therapeutic targets. Here, to identify inflammation-relevant treatment targets for PD, mass spectrometry-based untargeted metabolomics was applied to characterize metabolic changes in the striatum of mice with double-hit PD induced by lipopolysaccharide plus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Seven days after the final MPTP administration, metabolites from the purine metabolism pathway, including adenosine, 1-methyladenosine, adenine, inosine, hypoxanthine, xanthine, xanthosine, and guanosine, were found to be significantly dysregulated. The metabolite-protein interaction network and changes in the concentration ratio of these metabolites indicated that adenosine and adenosine deaminase (ADA; EC 3.5.4.4) were the most promising therapeutic targets and adenosine augmentation might be a rational approach to slow PD progression. These findings were then verified in a subacute MPTP-induced PD mouse model treated with ADA inhibition alone or in conjunction with antagonism of adenosine A2A receptors (A2A R). Behavioral, biochemical, and immunohistochemical analysis demonstrated that ADA inhibition significantly ameliorated the MPTP-mediated motor disabilities, dopamine depletion, and dopaminergic cell death. Significantly enhanced neuroprotective effects were further observed when the ADA inhibitor was utilized in conjunction with an A2A R antagonist. Together, our study indicated for the first time that ADA inhibitors protected against neurodegeneration induced by the neurotoxin MPTP, and ADA inhibitors in combination with A2A R antagonists showed additive antiparkinsonian effects.
Collapse
Affiliation(s)
- Wanqiu Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Yazhou Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Yuxin Zhang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, P. R.China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma, Japan.,Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qianqian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
34
|
Iijima M, Orimo S, Terashi H, Suzuki M, Hayashi A, Shimura H, Mitoma H, Kitagawa K, Okuma Y. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson's disease: A single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother 2019; 20:1405-1411. [PMID: 31039621 DOI: 10.1080/14656566.2019.1614167] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Gait disorders are common in Parkinson's disease patients who respond poorly to dopaminergic treatment. Blockade of adenosine A2A receptors is expected to improve gait disorders. Istradefylline is a first-in-class selective adenosine A2A receptor antagonist with benefits for motor complications associated with Parkinson's disease. Research design and methods: This multicenter, open-label, single-group, prospective interventional study evaluated changes in total gait-related scores of the Part II/III Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Freezing of Gait Questionnaire (FOG-Q) in 31 Parkinson's disease patients treated with istradefylline. Gait analysis by portable gait rhythmogram was performed. Results: MDS-UPDRS Part III gait-related total scores significantly decreased at Weeks 4-12 from baseline with significant improvements in gait, freezing of gait, and postural stability. Significant decreases in MDS-UPDRS Part II total scores and individual item scores at Week 12 indicated improved daily living activities. At Week 12, there were significant improvements in FOG-Q, new FOG-Q, and overall movement per 48 h measured by portable gait rhythmogram. Adverse events occurred in 7/31 patients. Conclusions: Istradefylline improved gait disorders in Parkinson's disease patients complicated with freezing of gait, improving their quality of life. No unexpected adverse drug reactions were identified. Trial registration: UMIN-CTR (UMIN000020288).
Collapse
Affiliation(s)
- Mutsumi Iijima
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Satoshi Orimo
- b Department of Neurology , Kanto Central Hospital , Tokyo , Japan
| | - Hiroo Terashi
- c Department of Neurology , Tokyo Medical University , Tokyo , Japan
| | - Masahiko Suzuki
- d Department of Neurology , Katsushika Medical Center, The Jikei University School of Medicine , Tokyo , Japan
| | - Akito Hayashi
- e Department of Rehabilitation , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hideki Shimura
- f Department of Neurology , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hiroshi Mitoma
- g Department of Medical Education , Tokyo Medical University , Tokyo , Japan
| | - Kazuo Kitagawa
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Yasuyuki Okuma
- h Department of Neurology , Juntendo University Shizuoka Hospital , Izunokuni , Japan
| |
Collapse
|
35
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
36
|
Chaudhuri KR, Titova N. Societal Burden and Persisting Unmet Needs of Parkinson’s Disease. ACTA ACUST UNITED AC 2019. [DOI: 10.17925/enr.2019.14.1.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
38
|
O'Hara DM, Kalia SK, Kalia LV. Emerging disease-modifying strategies targeting α-synuclein for the treatment of Parkinson's disease. Br J Pharmacol 2018; 175:3080-3089. [PMID: 29722028 PMCID: PMC6031880 DOI: 10.1111/bph.14345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder. It arises as a result of neuronal cell death in specific brain regions, notably the substantia nigra pars compacta, and is characterized by the accumulation of α-synuclein in these brain regions. Current pharmacological therapies alleviate the motor symptoms of the disease and are particularly effective in the early stages of the disease. Ongoing drug development efforts focus on disease-modifying strategies that aim to halt or slow disease progression. In this review, we explore a number of emerging disease-modifying strategies with a focus on direct and indirect targeting of α-synuclein dysfunction. We summarize newer classes of small molecules and biological agents intended to attenuate protein aggregation or to target enzymes that may increase the degradation of the pathogenic forms of α-synuclein. Finally, we discuss emerging strategies that are demonstrating the potential for disease modification at the preclinical stage.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western HospitalUniversity Health NetworkTorontoCanada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western HospitalUniversity Health NetworkTorontoCanada
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoCanada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western HospitalUniversity Health NetworkTorontoCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoCanada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western HospitalUniversity Health NetworkTorontoCanada
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada
| |
Collapse
|
39
|
Neurofeedback Control of the Human GABAergic System Using Non-invasive Brain Stimulation. Neuroscience 2018; 380:38-48. [DOI: 10.1016/j.neuroscience.2018.03.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/27/2018] [Accepted: 03/31/2018] [Indexed: 11/22/2022]
|
40
|
Wen MC, Heng HSE, Lu Z, Xu Z, Chan LL, Tan EK, Tan LCS. Differential White Matter Regional Alterations in Motor Subtypes of Early Drug-Naive Parkinson's Disease Patients. Neurorehabil Neural Repair 2018; 32:129-141. [PMID: 29347868 DOI: 10.1177/1545968317753075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Parkinson's disease (PD) can be classified into tremor dominant (TD) and postural instability and gait difficulty (PIGD) subtypes with TD considered as the benign subtype. The neural alterations of the 2 subtypes in the early stages before administration of medications remain elusive. OBJECTIVE This study assessed the subtype-related white matter (WM) microstructural features in newly diagnosed and drug-naive PD patients from the Parkinson's Progression Markers Initiative (PPMI). METHODS Sixty-five early PDs with stable subtypes (52 TD and 13 PIGD patients) and 61 controls underwent diffusion tensor imaging (DTI) scanning and clinical assessment. Tract-based special statistics (TBSS), graph-theoretical and network-based analyses were used to compare WM regional and network features between groups. RESULTS No differences in disease stages and duration were found between the 2 patient groups. TD patients showed increased fractional anisotropy (FA), but decreased radial and axial diffusivities (RD and AD) in several projection, association, and commissural tracts, compared with PIGD patients and controls. Motor severity had mild-to-moderate correlations with FA and RD of the corpus callosum (genu) in TD, but strong correlations with FA and RD of multiple association tracts in PIGD. Conversely, no significant network changes were noted. CONCLUSIONS TD patients showed regionally increased FA but decreased diffusivities, implying neural reorganization to compensate PD pathology in early stages. PIGD patients, despite having similar disease stages and duration, exhibited more WM degradation. These results demonstrate differential WM regional features between the 2 subtypes in early PD and support the notion of TD being a benign subtype.
Collapse
Affiliation(s)
| | | | - Zhonghao Lu
- 1 National Neuroscience Institute, Singapore, Singapore
| | - Zheyu Xu
- 1 National Neuroscience Institute, Singapore, Singapore
| | | | - Eng King Tan
- 1 National Neuroscience Institute, Singapore, Singapore.,3 Duke-NUS Medical School, Singapore, Singapore
| | - Louis C S Tan
- 1 National Neuroscience Institute, Singapore, Singapore.,3 Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
41
|
Bailey DC, Todt CE, Burchfield SL, Pressley AS, Denney RD, Snapp IB, Negga R, Traynor WL, Fitsanakis VA. Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:46-52. [PMID: 29190595 PMCID: PMC5803312 DOI: 10.1016/j.etap.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
Glyphosate-containing herbicides are among the most widely-used in the world. Although glyphosate itself is relatively non-toxic, growing evidence suggests that commercial herbicide formulations may lead to increased oxidative stress and mitochondrial inhibition. In order to assess these mechanisms in vivo, we chronically (24h) exposed Caenorhabditis elegans to various concentrations of the glyphosate-containing herbicide TouchDown (TD). Following TD exposure, we evaluated the function of specific mitochondrial electron transport chain complexes. Initial oxygen consumption studies demonstrated inhibition in mid- and high-TD concentration treatment groups compared to controls. Results from tetramethylrhodamine ethyl ester and ATP assays indicated reductions in the proton gradient and ATP levels, respectively. Additional studies were designed to determine whether TD exposure resulted in increased reactive oxygen species (ROS) production. Data from hydrogen peroxide, but not superoxide or hydroxyl radical, assays showed statistically significant increases in this specific ROS. Taken together, these data indicate that exposure of Caenorhabditis elegans to TD leads to mitochondrial inhibition and hydrogen peroxide production.
Collapse
Affiliation(s)
- Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Shelbie L Burchfield
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Wendy L Traynor
- King University, Department of Mathematics and Physics, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
42
|
Nouhi M, Zhang X, Yao N, Chergui K. CIQ, a positive allosteric modulator of GluN2C/D-containing N-methyl-d-aspartate receptors, rescues striatal synaptic plasticity deficit in a mouse model of Parkinson's disease. CNS Neurosci Ther 2017; 24:144-153. [PMID: 29230960 DOI: 10.1111/cns.12784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
AIMS To investigate if CIQ, a positive allosteric modulator of N-methyl-d-aspartate receptors (NMDARs) containing GluN2C/D subunits, rescues the loss of long-term potentiation (LTP) and forelimb-use asymmetry in a mouse model of Parkinson's disease (PD). METHODS We have used electrophysiology in brain slices and the cylinder test to examine the effect of CIQ on glutamatergic synaptic transmission, synaptic plasticity, and forelimb-use in the unilateral 6-hydroxydopamine-lesion mouse model of PD. RESULTS CIQ, applied in the perfusion solution, reversibly reduced glutamatergic synaptic transmission in the dopamine-depleted striatum and had no effect in the dopamine-intact striatum. LTP, a dopamine- and NMDAR-dependent form of synaptic plasticity, was induced in the dopamine-intact striatum but was lost in the dopamine-depleted striatum. This impaired LTP was restored in the presence of CIQ applied in the perfusion solution. This treatment, however, prevented LTP induction in control slices. In brain slices from mice which received single and chronic intraperitoneal injections of CIQ, LTP was restored in the dopamine-depleted striatum and unaffected in the dopamine-intact striatum. Forelimb-use asymmetry, a test which assesses deficits in paw usage in the unilateral lesion model of PD, was reversed by systemic chronic treatment with CIQ. CONCLUSION A positive allosteric modulator of GluN2C/D-containing NMDARs rescues LTP and forelimb-use asymmetry in a mouse model of PD. This study proposes GluN2D as a potential candidate for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Mona Nouhi
- Department of Physiology and Pharmacology, Section of Molecular Neurophysiology, The Karolinska Institute, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Physiology and Pharmacology, Section of Molecular Neurophysiology, The Karolinska Institute, Stockholm, Sweden
| | - Ning Yao
- Department of Physiology and Pharmacology, Section of Molecular Neurophysiology, The Karolinska Institute, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Section of Molecular Neurophysiology, The Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
Mograbi KDM, de Castro ACF, de Oliveira JAR, Sales PJB, Covolan L, Del Bel EA, de Souza AS. Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson's disease model in mice. Physiol Rep 2017; 5:5/6/e13081. [PMID: 28351968 PMCID: PMC5371543 DOI: 10.14814/phy2.13081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to evaluate the effects of two gamma‐amino butyric acid (GABA)a receptor antagonists on motor behavioral tasks in a pharmacological model of Parkinson disease (PD) in rodents. Ninety‐six Swiss mice received intraperitoneal injection of Haloperidol (1 mg/kg) to block dopaminergic receptors. GABAa receptors antagonists Bicuculline (1 and 5 mg/kg) and Flumazenil (3 and 6 mg/kg) were used for the assessment of the interaction among these neurotransmitters, in this PD model. The motor behavior of the animals was evaluated in the catalepsy test (30, 60, and 90 min after drugs application), through open field test (after 60 min) and trough functional gait assessment (after 60 min). Both Bicuculline and Flumazenil were able to partially reverse catalepsy induced by Haloperidol. In the open field test, Haloperidol reduced the number of horizontal and vertical exploration of the animals, which was not reversed trough application of GABAa antagonists. Furthermore, the functional gait assessment was not sensitive enough to detect motor changes in this animal model of PD. There is an interaction between dopamine and GABA in the basal ganglia and the blocking GABAa receptors may have therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Karla De Michelis Mograbi
- Laboratory of Biophysiopharmacology, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | | | - Luciene Covolan
- Laboratory of Neurophysiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | - Albert Schiaveto de Souza
- Laboratory of Biophysiopharmacology, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
44
|
Frahm S, Melis V, Horsley D, Rickard JE, Riedel G, Fadda P, Scherma M, Harrington CR, Wischik CM, Theuring F, Schwab K. Alpha-Synuclein transgenic mice, h-α-SynL62, display α-Syn aggregation and a dopaminergic phenotype reminiscent of Parkinson's disease. Behav Brain Res 2017; 339:153-168. [PMID: 29180135 DOI: 10.1016/j.bbr.2017.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
Abstract
Alpha-Synuclein (α-Syn) accumulation is considered a major risk factor for the development of synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies. We have generated mice overexpressing full-length human α-Syn fused to a membrane-targeting signal sequence under the control of the mouse Thy1-promotor. Three separate lines (L56, L58 and L62) with similar gene expression levels, but considerably heightened protein accumulation in L58 and L62, were established. In L62, there was widespread labelling of α-Syn immunoreactivity in brain including spinal cord, basal forebrain, cortex and striatum. Interestingly, there was no detectable α-Syn expression in dopaminergic neurones of the substantia nigra, but strong human α-Syn reactivity in glutamatergic synapses. The human α-Syn accumulated during aging and formed PK-resistant, thioflavin-binding aggregates. Mice displayed early onset bradykinesia and age progressive motor deficits. Functional alterations within the striatum were confirmed: L62 showed normal basal dopamine levels, but impaired dopamine release (upon amphetamine challenge) in the dorsal striatum measured by in vivo brain dialysis at 9 months of age. This impairment was coincident with a reduced response to amphetamine in the activity test. L62 further displayed greater sensitivity to low doses of the dopamine receptor 1 (D1) agonist SKF81297 but reacted normally to the D2 agonist quinpirole in the open field. Since accumulation of α-Syn aggregates in neurones and synapses and alterations in the dopaminergic tone are characteristics of PD, phenotypes reported for L62 present a good opportunity to further our understanding of motor dysfunction in PD and Lewy body dementia.
Collapse
Affiliation(s)
- Silke Frahm
- Charité-Universitätsmedizin Berlin, Institute of Pharmacology, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - David Horsley
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Janet E Rickard
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Paula Fadda
- University of Cagliari, Department of Neuroscience, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria Scherma
- University of Cagliari, Department of Neuroscience, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Franz Theuring
- Charité-Universitätsmedizin Berlin, Institute of Pharmacology, Hessische Str. 3-4, 10115 Berlin, Germany.
| | - Karima Schwab
- Charité-Universitätsmedizin Berlin, Institute of Pharmacology, Hessische Str. 3-4, 10115 Berlin, Germany
| |
Collapse
|
45
|
Studer V, Maestri R, Clerici I, Spina L, Zivi I, Ferrazzoli D, Frazzitta G. Treadmill Training with Cues and Feedback Improves Gait in People with More Advanced Parkinson’s Disease. JOURNAL OF PARKINSONS DISEASE 2017; 7:729-739. [DOI: 10.3233/jpd-171126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Valeria Studer
- Department of Parkinson’s Disease, Movement Disorders and Brain Injury Rehabilitation, “Moriggia-Pelascini” Hospital, Gravedona ed Uniti, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri Spa Società Benefit, IRCCS Montescano, Montescano (Pavia), Italy
| | - Ilaria Clerici
- Department of Parkinson’s Disease, Movement Disorders and Brain Injury Rehabilitation, “Moriggia-Pelascini” Hospital, Gravedona ed Uniti, Italy
| | - Letizia Spina
- Department of Parkinson’s Disease, Movement Disorders and Brain Injury Rehabilitation, “Moriggia-Pelascini” Hospital, Gravedona ed Uniti, Italy
| | - Ilaria Zivi
- Department of Parkinson’s Disease, Movement Disorders and Brain Injury Rehabilitation, “Moriggia-Pelascini” Hospital, Gravedona ed Uniti, Italy
| | - Davide Ferrazzoli
- Department of Parkinson’s Disease, Movement Disorders and Brain Injury Rehabilitation, “Moriggia-Pelascini” Hospital, Gravedona ed Uniti, Italy
| | - Giuseppe Frazzitta
- Department of Parkinson’s Disease, Movement Disorders and Brain Injury Rehabilitation, “Moriggia-Pelascini” Hospital, Gravedona ed Uniti, Italy
| |
Collapse
|
46
|
Morató X, Luján R, López-Cano M, Gandía J, Stagljar I, Watanabe M, Cunha RA, Fernández-Dueñas V, Ciruela F. The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A 2A receptor controlling its cell surface expression and function in vivo. Sci Rep 2017; 7:9452. [PMID: 28842709 PMCID: PMC5573386 DOI: 10.1038/s41598-017-10147-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptor 37 (GPR37) is an orphan receptor associated to Parkinson’s disease (PD) neuropathology. Here, we identified GPR37 as an inhibitor of adenosine A2A receptor (A2AR) cell surface expression and function in vivo. In addition, we showed that GPR37 and A2AR do oligomerize in the striatum. Thus, a close proximity of GPR37 and A2AR at the postsynaptic level of striatal synapses was observed by double-labelling post-embedding immunogold detection. Indeed, the direct receptor-receptor interaction was further substantiated by proximity ligation in situ assay. Interestingly, GPR37 deletion promoted striatal A2AR cell surface expression that correlated well with an increased A2AR agonist-mediated cAMP accumulation, both in primary striatal neurons and nerve terminals. Furthermore, GPR37−/− mice showed enhanced A2AR agonist-induced catalepsy and an increased response to A2AR antagonist-mediated locomotor activity. Overall, these results revealed a key role for GPR37 controlling A2AR biology in the striatum, which may be relevant for PD management.
Collapse
Affiliation(s)
- Xavier Morató
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Luján
- IDINE, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Marc López-Cano
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Gandía
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Igor Stagljar
- Donnelly Centre, Department of Molecular Genetics, Department of Biochemistry, University of Toronto, Toronto, M5S 3E1, Canada
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-0818, Japan
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain. .,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain. .,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
47
|
Altered adenosine 2A and dopamine D2 receptor availability in the 6-hydroxydopamine-treated rats with and without levodopa-induced dyskinesia. Neuroimage 2017; 157:209-218. [PMID: 28583881 DOI: 10.1016/j.neuroimage.2017.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/22/2022] Open
Abstract
Several lines of evidence imply alterations in adenosine signaling in Parkinson's disease (PD). Here, we investigated cerebral changes in adenosine 2A receptor (A2AR) availability in 6-hydroxydopamine (6-OHDA)-lesioned rats with and without levodopa-induced dyskinesia (LID) using positron-emission tomography (PET) with [11C]preladenant. In parallel dopamine type 2 receptor (D2R) imaging with [11C]raclopride PET and behavioral tests for motor and cognitive function were performed. METHODS Parametric A2AR and D2R binding potential (BPND) images were reconstructed using reference tissue models with midbrain and cerebellum as reference tissue, respectively. All images were anatomically standardized to Paxinos space and analyzed using volume-of-interest (VOI) and voxel-based approaches. The behavioral alternations were assessed with the open field test, Y-maze, novel object recognition test, cylinder test, and abnormal involuntary movement (AIM) score. In total, 28 female Wistar rats were included. RESULTS On the behavioral level, 6-OHDA-lesioned rats showed asymmetry in forepaw use and deficits in spatial memory and explorative behavior as compared to the sham-operated animals. 15-Days of levodopa (L-DOPA) treatment induced dyskinesia but did not alleviate motor deficits in PD rats. Intranigral 6-OHDA injection significantly increased D2R binding in the lesioned striatum (BPND: 2.69 ± 0.40 6-OHDA vs. 2.31 ± 0.18 sham, + 16.6%; p = 0.03), whereas L-DOPA treatment did not affect the D2R binding in the ipsilateral striatum of the PD rats. In addition, intranigral 6-OHDA injection tended to decrease the A2AR availability in the lesioned striatum. The decrease became significant when data were normalized to the non-affected side (BPND: 4.32 ± 0.41 6-OHDA vs. 4.58 ± 0.89 sham; NS, ratio: 0.94 ± 0.03 6-OHDA vs. 1.00 ± 0.02 sham; - 6.1%; p = 0.01). L-DOPA treatment significantly increased A2AR binding in the affected striatum (BPND: 6.02 ± 0.91 L-DOPA vs. 4.90 ± 0.76 saline; + 23.4%; p = 0.02). In PD rats with LID, positive correlations were found between D2R and A2AR BPND values in the ipsilateral striatum (r = 0.88, ppeak = 8.56.10-4 uncorr), and between AIM score and the D2R BPND in the contralateral striatum (r = 0.98; ppeak = 9.55.10-5 uncorr). CONCLUSION A2AR availability changed in drug-naïve and in L-DOPA-treated PD rats. The observed correlations of striatal D2R availability with A2AR availability and with AIM score may provide new knowledge on striatal physiology and new possibilities to further unravel the functions of these targets in the pathophysiology of PD.
Collapse
|
48
|
Dalfampridine in Parkinson's disease related gait dysfunction: A randomized double blind trial. J Neurol Sci 2017; 379:7-11. [PMID: 28716283 DOI: 10.1016/j.jns.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 05/05/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Disease-related gait dysfunction causes extensive disability for persons with Parkinson's disease (PD), with no effective therapies currently available. The potassium channel blocker dalfampridine has been used in multiple neurological conditions and improves walking in persons with multiple sclerosis. OBJECTIVES We aimed to evaluate the effect of dalfampridine extended release (D-ER) 10mg tablets twice daily on different domains of walking in participants with PD. METHODS Twenty-two participants with PD and gait dysfunction were randomized to receive D-ER 10mg twice daily or placebo for 4weeks in a crossover design with a 2-week washout period. The primary outcomes were change in the gait velocity and stride length. RESULTS At 4weeks, gait velocity was not significantly different between D-ER (0.89m/s±0.33) and placebo (0.93m/s±0.27) conditions. The stride length was also similar between conditions: 0.96m±0.38 for D-ER versus 1.06m±0.33 for placebo. D-ER was generally well tolerated with the most frequent side effects being dizziness, nausea and balance problems. CONCLUSIONS D-ER is well tolerated in PD patients, however it did not show significant benefit for gait impairment.
Collapse
|
49
|
Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Prog Neurobiol 2017; 156:69-89. [PMID: 28457671 DOI: 10.1016/j.pneurobio.2017.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored.
Collapse
Affiliation(s)
- Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
50
|
Mishina M, Ishii K, Kimura Y, Suzuki M, Kitamura S, Ishibashi K, Sakata M, Oda K, Kobayashi S, Kimura K, Ishiwata K. Adenosine A1receptors measured with11C-MPDX PET in early Parkinson's disease. Synapse 2017; 71. [DOI: 10.1002/syn.21979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Masahiro Mishina
- Department of Neuro-pathophysiological Imaging, Graduate School of Medicine; Nippon Medical School; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Neurology; Nippon Medical School, Musashi Kosugi Hospital; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
| | - Kenji Ishii
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Yuichi Kimura
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology; Kinki University; 930 Nishimitani Kinokawa Wakayama 649-6493 Japan
| | - Masahiko Suzuki
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Neurology; Katsushika Medical Center, The Jikei University School of Medicine; 6-41-2 Aoto Katsushika Tokyo 125-850 Japan
| | - Shin Kitamura
- Department of Neurology; Nippon Medical School, Musashi Kosugi Hospital; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Keiichi Oda
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Radiological Technology, Faculty of Health Sciences; Hokkaido University of Science; 7-Jo 15-4-1 Maeda, Teine Sapporo Hokkaido 006-8585 Japan
| | - Shiro Kobayashi
- Department of Neurosurgery; Nippon Medical School, Chiba Hokusoh Hospital; 1715 Kamagari Inzai Chiba 270-1694 Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine; Nippon Medical School; 1-1-5 Sendagi Bunkyo Tokyo 113-8602 Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience; 7-1 15 Yatsuyamada Koriyama Fukushima 963-8563 Japan
- Department of Biofunctional Imaging; Fukushima Medical University; 1 Hikariga-oka Fukushima Fukushima 960-1295 Japan
| |
Collapse
|