1
|
Yamaguchi H, Nishimura Y, Matsuse D, Sekiya H, Masaki K, Tanaka T, Saiga T, Harada M, Kira YI, Dickson DW, Fujishima K, Matsuo E, Tanaka KF, Yamasaki R, Isobe N, Kira JI. A rapidly progressive multiple system atrophy-cerebellar variant model presenting marked glial reactions with inflammation and spreading of α-synuclein oligomers and phosphorylated α-synuclein aggregates. Brain Behav Immun 2024; 121:122-141. [PMID: 38986725 DOI: 10.1016/j.bbi.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple system atrophy (MSA) is a severe α-synucleinopathy facilitated by glial reactions; the cerebellar variant (MSA-C) preferentially involves olivopontocerebellar fibres with conspicuous demyelination. A lack of aggressive models that preferentially involve olivopontocerebellar tracts in adulthood has hindered our understanding of the mechanisms of demyelination and neuroaxonal loss, and thus the development of effective treatments for MSA. We therefore aimed to develop a rapidly progressive mouse model that recaptures MSA-C pathology. We crossed Plp1-tTA and tetO-SNCA*A53T mice to generate Plp1-tTA::tetO-SNCA*A53T bi-transgenic mice, in which human A53T α-synuclein-a mutant protein with enhanced aggregability-was specifically produced in the oligodendrocytes of adult mice using Tet-Off regulation. These bi-transgenic mice expressed mutant α-synuclein from 8 weeks of age, when doxycycline was removed from the diet. All bi-transgenic mice presented rapidly progressive motor deterioration, with wide-based ataxic gait around 22 weeks of age and death around 30 weeks of age. They also had prominent demyelination in the brainstem/cerebellum. Double immunostaining demonstrated that myelin basic protein was markedly decreased in areas in which SM132, an axonal marker, was relatively preserved. Demyelinating lesions exhibited marked ionised calcium-binding adaptor molecule 1-, arginase-1-, and toll-like receptor 2-positive microglial reactivity and glial fibrillary acidic protein-positive astrocytic reactivity. Microarray analysis revealed a strong inflammatory response and cytokine/chemokine production in bi-transgenic mice. Neuronal nuclei-positive neuronal loss and patchy microtubule-associated protein 2-positive dendritic loss became prominent at 30 weeks of age. However, a perceived decrease in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta in bi-transgenic mice compared with wild-type mice was not significant, even at 30 weeks of age. Wild-type, Plp1-tTA, and tetO-SNCA*A53T mice developed neither motor deficits nor demyelination. In bi-transgenic mice, double immunostaining revealed human α-synuclein accumulation in neurite outgrowth inhibitor A (Nogo-A)-positive oligodendrocytes beginning at 9 weeks of age; its expression was further increased at 10 to 12 weeks, and these increased levels were maintained at 12, 24, and 30 weeks. In an α-synuclein-proximity ligation assay, α-synuclein oligomers first appeared in brainstem oligodendrocytes as early as 9 weeks of age; they then spread to astrocytes, neuropil, and neurons at 12 and 16 weeks of age. α-Synuclein oligomers in the brainstem neuropil were most abundant at 16 weeks of age and decreased thereafter; however, those in Purkinje cells successively increased until 30 weeks of age. Double immunostaining revealed the presence of phosphorylated α-synuclein in Nogo-A-positive oligodendrocytes in the brainstem/cerebellum as early as 9 weeks of age. In quantitative assessments, phosphorylated α-synuclein gradually and successively accumulated at 12, 24, and 30 weeks in bi-transgenic mice. By contrast, no phosphorylated α-synuclein was detected in wild-type, tetO-SNCA*A53T, or Plp1-tTA mice at any age examined. Pronounced demyelination and tubulin polymerisation, promoting protein-positive oligodendrocytic loss, was closely associated with phosphorylated α-synuclein aggregates at 24 and 30 weeks of age. Early inhibition of mutant α-synuclein expression by doxycycline diet at 23 weeks led to fully recovered demyelination; inhibition at 27 weeks led to persistent demyelination with glial reactions, despite resolving phosphorylated α-synuclein aggregates. In conclusion, our bi-transgenic mice exhibited progressively increasing demyelination and neuroaxonal loss in the brainstem/cerebellum, with rapidly progressive motor deterioration in adulthood. These mice showed marked microglial and astrocytic reactions with inflammation that was closely associated with phosphorylated α-synuclein aggregates. These features closely mimic human MSA-C pathology. Notably, our model is the first to suggest that α-synuclein oligomers may spread from oligodendrocytes to neurons in transgenic mice with human α-synuclein expression in oligodendrocytes. This model of MSA is therefore particularly useful for elucidating the in vivo mechanisms of α-synuclein spreading from glia to neurons, and for developing therapies that target glial reactions and/or α-synuclein oligomer spreading and aggregate formation in MSA.
Collapse
Affiliation(s)
- Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; School of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, Japan.
| | - Yuji Nishimura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Dai Matsuse
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tatsunori Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Sumitomo Pharma Co., Ltd., Osaka, Japan.
| | - Toru Saiga
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masaya Harada
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yuu-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | - Kei Fujishima
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Eriko Matsuo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Translational Neuroscience Research Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan; Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka, Japan.
| |
Collapse
|
2
|
Lázaro DF, Lee VMY. Navigating through the complexities of synucleinopathies: Insights into pathogenesis, heterogeneity, and future perspectives. Neuron 2024; 112:3029-3042. [PMID: 38861985 PMCID: PMC11427175 DOI: 10.1016/j.neuron.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
The aggregation of alpha-synuclein (aSyn) represents a neuropathological hallmark observed in a group of neurodegenerative disorders collectively known as synucleinopathies. Despite their shared characteristics, these disorders manifest diverse clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to the diversity in the aSyn strains present across the diseases. In this perspective, we will explore recent findings on aSyn strains and discuss recent discoveries about Lewy bodies' composition. We further discuss the current hypothesis for aSyn spreading and emphasize the emerging biomarker field demonstrating promising results. A comprehension of these mechanisms holds substantial promise for future clinical applications. This understanding can pave the way for the development of personalized medicine strategies, specifically targeting the unique underlying causes of each synucleinopathy. Such advancements can revolutionize therapeutic approaches and significantly contribute to more effective interventions in the intricate landscape of neurodegenerative disorders.
Collapse
Affiliation(s)
- Diana F Lázaro
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Du X, Zhao H, Li Y, Dai Y, Gao L, Li Y, Fan K, Sun Z, Zhang Y. The value of PET/CT in the diagnosis and differential diagnosis of Parkinson's disease: a dual-tracer study. NPJ Parkinsons Dis 2024; 10:171. [PMID: 39256393 PMCID: PMC11387816 DOI: 10.1038/s41531-024-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) is a molecular imaging method commonly used to diagnose and differentiate Parkinson's disease (PD). This study aimed to evaluate the performance of PET/CT with 11C-2β-Carbomethoxy-3β-(4-fluorophenyl) tropane (11C-CFT) and 18F-fluorodeoxyglucose (18F-FDG) tracers in the differential diagnosis between PD, multiple system atrophy parkinsonian type (MSA-P), progressive supranuclear palsy (PSP) and vascular parkinsonism (VP) using the data of 220 patients with clinical PD-like symptoms. Of the 220 enrolled patients, 166 (PD, n = 80; MSA-P, n = 54; PSP, n = 15; VP, n = 17) completed the motor, cognitive and PET/CT assessment and were included in this study. 11C-CFT and 18F-FDG PET/CT images were analyzed using the SNBPI toolbox and CortexID Suite software. The uptake values of 11C-CFT and 18F-FDG PET/CT were compared among the groups after controlling for covariates using generalized linear models. Receiver operating characteristic (ROC) curves were generated to estimate the diagnostic values. Patients with PSP showed the most significant reduction on 11C-CFT PET/CT, while patients with PD and MSA-P showed similar reductions, and patients with VP did not show any significant reduction in 11C-CFT uptake. The areas under the curve (AUCs) for 11C-CFT PET/CT for distinguishing PD from VP, PSP, and MSA-P were 0.902, 0.830, and 0.580, respectively, and 0.728 for distinguishing advanced-stage PD from PSP. On 18F-FDG PET/CT, the AUCs for distinguishing PD from PSP and MSA-P were 0.968 and 0.963, respectively. These results suggest that 11C-CFT and 18F-FDG PET/CT complement each other in improving the accuracy in differential diagnosis of PD.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongguang Zhao
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghua Li
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuyin Dai
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lulu Gao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kangli Fan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhihui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Chen X, Chen S, Lai X, Fu J, Yang J, Ou R, Zhang L, Wei Q, Guo X, Shang H. Diagnostic value and correlation analysis of serum cytokine levels in patients with multiple system atrophy. Front Cell Neurosci 2024; 18:1459884. [PMID: 39295596 PMCID: PMC11409425 DOI: 10.3389/fncel.2024.1459884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Background The association between cytokines in peripheral blood and clinical symptoms of multiple system atrophy (MSA) has been explored in only a few studies with small sample size, and the results were obviously controversial. Otherwise, no studies have explored the diagnostic value of serum cytokines in MSA. Methods Serum cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α), were measured in 125 MSA patients and 98 healthy controls (HCs). Correlations of these serum cytokines with clinical variables were analyzed in MSA patients. Diagnostic value of cytokines for MSA was plotted by receiver operating curves. Results No significant differences were found in sex and age between the MSA group and the HCs. TNF-α in MSA patients were significantly higher than those in HCs (area under the curve (AUC) 0.768), while IL-6 and IL-8 were not. Only Hamilton Anxiety Scale (HAMA) has a positive correlation between with TNF-α in MSA patients with age and age at onset as covariates. Serum IL-6 was associated with HAMA, Hamilton Depression Scale (HAMD), the Unified MSA Rating Scale I (UMSARS I) scores, the UMSARS IV and the Instrumental Activity of Daily Living scores. However, IL-8 was not associated with all clinical variables in MSA patients. Regression analysis showed that HAMA and age at onset were significantly associated with TNF-α, and only HAMA was mild related with IL-6 levels in MSA patients. Conclusion Serum TNF-α and IL-6 levels in MSA patients may be associated with anxiety symptom; however, only TNF-α was shown to be a useful tool in distinguishing between MSA and HCs.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Lai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Guo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Kleinz T, Scholz L, Huckemann S, Rohmann R, Kühn E, Averdunk P, Kools S, Hilker L, Bieber A, Müller K, Motte J, Fisse AL, Schneider-Gold C, Gold R, Kwon EH, Tönges L, Pitarokoili K. The association of vagal atrophy with parameters of autonomic function in multiple system atrophy and progressive supranuclear palsy. Ther Adv Neurol Disord 2024; 17:17562864241267300. [PMID: 39175851 PMCID: PMC11339749 DOI: 10.1177/17562864241267300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/18/2024] [Indexed: 08/24/2024] Open
Abstract
Background Vagal atrophy is a hallmark of Parkinson's disease (PD) and has been found to be associated with autonomic dysfunction, while analyses of the vagus nerve (VN) in atypical Parkinsonian syndromes (APS) have not yet been performed. We here investigate the characteristics of the VN in multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) and, in a second step, its potential as a possible biomarker for orthostatic dysregulation. Objectives The aim was to compare the VN pathology in MSA and PSP with healthy individuals and patients with PD as a differentiating factor and to further analyse the correlation of the VN with clinical parameters and cardiovascular response. Design We conducted a monocentric, cross-sectional cohort study in 41 APS patients and compared nerve ultrasound (NUS) parameters with 90 PD patients and 39 healthy controls. Methods In addition to a detailed neurological history and examination, several clinical severity and motor scores were obtained. Autonomic symptoms were reported in the Scales for Outcomes in Parkinson's Disease - Autonomic questionnaire. Further scores were used to detect other non-motor symptoms, quality of life and cognition. Additionally, we performed a head up tilt test (HUTT) and NUS of the VN. We conducted correlation analyses of the VN cross-sectional area (CSA) with clinical scores and the heart rate and blood pressure variability parameters of the HUTT. Results The examination demonstrated a high prevalence of abnormal autonomic response in both MSA (90%) and PSP (80%). The VN CSA correlated with spectral parameters of the HUTT, which are associated with sympatho-vagal imbalance. In addition, the CSA of the VN in patients with PD and PSP were significantly smaller than in healthy controls. In MSA, however, there was no marked vagal atrophy in comparison. Conclusion The occurrence of autonomic dysfunction was high in MSA and PSP, which underlines its impact on these syndromes. Our findings indicate a connection between vagal pathology and autonomic dysfunction and might contribute to a better comprehension of APS. To further evaluate the clinical relevance and the VN as a possible marker of autonomic dysfunction in APS, prospective longitudinal observations are necessary.
Collapse
Affiliation(s)
- Teresa Kleinz
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 1267300 Bochum, Germany
| | - Leonard Scholz
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Sophie Huckemann
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Rachel Rohmann
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Eva Kühn
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Paulina Averdunk
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Saskia Kools
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Lovis Hilker
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Antonia Bieber
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Katharina Müller
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Anna-Lena Fisse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, Bochum, Germany
| | - Eun Hae Kwon
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Sian-Hulsmann J, Riederer P. The 'α-synucleinopathy syndicate': multiple system atrophy and Parkinson's disease. J Neural Transm (Vienna) 2024; 131:585-595. [PMID: 37227594 PMCID: PMC11192696 DOI: 10.1007/s00702-023-02653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Multiple System Atrophy (MSA) and Parkinson's diseases (PD) are elite members of the α-synucleinopathy organization. Aberrant accumulations of the protein α-synuclein characterize them. A plethora of evidence indicates the involvement of these rogue inclusions in a cascade of events that disturb cellular homeostasis resulting in neuronal dysfunction. These two neurodegenerative diseases share many features both clinically and pathologically. Cytotoxic processes commonly induced by reactive free radical species have been associated with oxidative stress and neuroinflammation, frequently reported in both diseases. However, it appears they have characteristic and distinct α-synuclein inclusions. It is glial cytoplasmic inclusions in the case of MSA while Lewy bodies manifest in PD. This is probably related to the etiology of the illness. At present, precise mechanism(s) underlying the characteristic configuration of neurodegeneration are unclear. Furthermore, the "prion-like" transmission from cell to cell prompts the suggestion that perhaps these α-synucleinopathies are prion-like diseases. The possibility of some underlying genetic foul play remains controversial. But as major culprits of pathological processes or even single triggers of PD and MSA are the same-like oxidative stress, iron-induced pathology, mitochondriopathy, loss of respiratory activity, loss of proteasomal function, microglial activation, neuroinflammation-it is not farfetched to assume that in sporadic PD and also in MSA a variety of combinations of susceptibility genes contribute to the regional specificity of pathological onset. These players of pathology, as mentioned above, in a synergistic combination, are responsible for driving the progression of PD, MSA and other neurodegenerative disorders. Elucidating the triggers and progression factors is vital for advocating disease modification or halting its progression in both, MSA and PD.
Collapse
Affiliation(s)
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
7
|
Jin J, Su D, Zhang J, Lam JST, Zhou J, Feng T. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies. Chin Med J (Engl) 2024:00029330-990000000-01086. [PMID: 38809051 DOI: 10.1097/cm9.0000000000003167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Iron deposition plays a crucial role in the pathophysiology of Parkinson's disease (PD), yet the distribution pattern of iron deposition in the subcortical nuclei has been inconsistent across previous studies. We aimed to assess the difference patterns of iron deposition detected by quantitative iron-sensitive magnetic resonance imaging (MRI) between patients with PD and patients with atypical parkinsonian syndromes (APSs), and between patients with PD and healthy controls (HCs). METHODS A systematic literature search was conducted on PubMed, Embase, and Web of Science databases to identify studies investigating the iron content in PD patients using the iron-sensitive MRI techniques (R2* and quantitative susceptibility mapping [QSM]), up until May 1, 2023. The quality assessment of case-control and cohort studies was performed using the Newcastle-Ottawa Scale, whereas diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Standardized mean differences and summary estimates of sensitivity, specificity, and area under the curve (AUC) were calculated for iron content, using a random effects model. We also conducted the subgroup-analysis based on the MRI sequence and meta-regression. RESULTS Seventy-seven studies with 3192 PD, 209 multiple system atrophy (MSA), 174 progressive supranuclear palsy (PSP), and 2447 HCs were included. Elevated iron content in substantia nigra (SN) pars reticulata (P <0.001) and compacta (P <0.001), SN (P <0.001), red nucleus (RN, P <0.001), globus pallidus (P <0.001), putamen (PUT, P = 0.009), and thalamus (P = 0.046) were found in PD patients compared with HCs. PD patients showed lower iron content in PUT (P <0.001), RN (P = 0.003), SN (P = 0.017), and caudate nucleus (P = 0.027) than MSA patients, and lower iron content in RN (P = 0.001), PUT (P <0.001), globus pallidus (P = 0.004), SN (P = 0.015), and caudate nucleus (P = 0.001) than PSP patients. The highest diagnostic accuracy distinguishing PD from HCs was observed in SN (AUC: 0.85), and that distinguishing PD from MSA was found in PUT (AUC: 0.90). In addition, the best diagnostic performance was achieved in the RN for distinguishing PD from PSP (AUC: 0.84). CONCLUSION Quantitative iron-sensitive MRI could quantitatively detect the iron content of subcortical nuclei in PD and APSs, while it may be insufficient to accurately diagnose PD. Future studies are needed to explore the role of multimodal MRI in the diagnosis of PD. REGISTRISION PROSPERO; CRD42022344413.
Collapse
Affiliation(s)
- Jianing Jin
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Junjiao Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Joyce S T Lam
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA 02131, United States
- Harvard Medical School, Boston, MA 02210, United States
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
8
|
Ishimoto T, Oono M, Kaji S, Ayaki T, Nishida K, Funakawa I, Maki T, Matsuzawa SI, Takahashi R, Yamakado H. A novel mouse model for investigating α-synuclein aggregates in oligodendrocytes: implications for the glial cytoplasmic inclusions in multiple system atrophy. Mol Brain 2024; 17:28. [PMID: 38790036 PMCID: PMC11127389 DOI: 10.1186/s13041-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
The aggregated alpha-synuclein (αsyn) in oligodendrocytes (OLGs) is one of the pathological hallmarks in multiple system atrophy (MSA). We have previously reported that αsyn accumulates not only in neurons but also in OLGs long after the administration of αsyn preformed fibrils (PFFs) in mice. However, detailed spatial and temporal analysis of oligodendroglial αsyn aggregates was technically difficult due to the background neuronal αsyn aggregates. The aim of this study is to create a novel mouse that easily enables sensitive and specific detection of αsyn aggregates in OLGs and the comparable analysis of the cellular tropism of αsyn aggregates in MSA brains. To this end, we generated transgenic (Tg) mice expressing human αsyn-green fluorescent protein (GFP) fusion proteins in OLGs under the control of the 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter (CNP-SNCAGFP Tg mice). Injection of αsyn PFFs in these mice induced distinct GFP-positive aggregates in the processes of OLGs as early as one month post-inoculation (mpi), and their number and size increased in a centripetal manner. Moreover, MSA-brain homogenates (BH) induced significantly more oligodendroglial αsyn aggregates than neuronal αsyn aggregates compared to DLB-BH in CNP-SNCAGFP Tg mice, suggestive of their potential tropism of αsyn seeds for OLGs. In conclusion, CNP-SNCAGFP Tg mice are useful for studying the development and tropism of αsyn aggregates in OLGs and could contribute to the development of therapeutics targeting αsyn aggregates in OLGs.
Collapse
Affiliation(s)
- Tomoyuki Ishimoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Miki Oono
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Seiji Kaji
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Katsuya Nishida
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, 1314 Ohara, Sanda, 669-1592, Japan
| | - Itaru Funakawa
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, 1314 Ohara, Sanda, 669-1592, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
9
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
11
|
Lobo CC, Wertheimer GS, Schmitt GS, Matos PC, Rezende TJ, Silva JM, Borba FC, Lima FD, Martinez AR, Barsottini OG, Pedroso JL, Marques W, França MC. Cranial Nerve Thinning Distinguishes RFC1-Related Disorder from Other Late-Onset Ataxias. Mov Disord Clin Pract 2024; 11:45-52. [PMID: 38291837 PMCID: PMC10828611 DOI: 10.1002/mdc3.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 11/04/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND RFC1-related disorder (RFC1/CANVAS) shares clinical features with other late-onset ataxias, such as spinocerebellar ataxias (SCA) and multiple system atrophy cerebellar type (MSA-C). Thinning of cranial nerves V (CNV) and VIII (CNVIII) has been reported in magnetic resonance imaging (MRI) scans of RFC1/CANVAS, but its specificity remains unclear. OBJECTIVES To assess the usefulness of CNV and CNVIII thinning to differentiate RFC1/CANVAS from SCA and MSA-C. METHODS Seventeen individuals with RFC1/CANVAS, 57 with SCA (types 2, 3 and 6), 11 with MSA-C and 15 healthy controls were enrolled. The Balanced Fast Field Echo sequence was used for assessment of cranial nerves. Images were reviewed by a neuroradiologist, who classified these nerves as atrophic or normal, and subsequently the CNV was segmented manually by an experienced neurologist. Both assessments were blinded to patient and clinical data. Non-parametric tests were used to assess between-group comparisons. RESULTS Atrophy of CNV and CNVIII, both alone and in combination, was significantly more frequent in the RFC1/CANVAS group than in healthy controls and all other ataxia groups. Atrophy of CNV had the highest sensitivity (82%) and combined CNV and CNVIII atrophy had the best specificity (92%) for diagnosing RFC1/CANVAS. In the quantitative analyses, CNV was significantly thinner in the RFC1/CANVAS group relative to all other groups. The cutoff CNV diameter that best identified RFC1/CANVAS was ≤2.2 mm (AUC = 0.91; sensitivity 88.2%, specificity 95.6%). CONCLUSION MRI evaluation of CNV and CNVIII using a dedicated sequence is an easy-to-use tool that helps to distinguish RFC1/CANVAS from SCA and MSA-C.
Collapse
Affiliation(s)
- Camila C. Lobo
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | | | - Gabriel S. Schmitt
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Paula C.A.A.P. Matos
- Department of Neurology and Neurosurgery, School of MedicineFederal University of São Paulo (UNIFESP)São PauloBrazil
| | - Thiago J.R. Rezende
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Joyce M. Silva
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Fabrício C. Borba
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Fabrício D. Lima
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Alberto R.M. Martinez
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Orlando G.P. Barsottini
- Department of Neurology and Neurosurgery, School of MedicineFederal University of São Paulo (UNIFESP)São PauloBrazil
| | - José Luiz Pedroso
- Department of Neurology and Neurosurgery, School of MedicineFederal University of São Paulo (UNIFESP)São PauloBrazil
| | - Wilson Marques
- Department of Neurosciences, School of MedicineUniversity of São Paulo at Ribeirão Preto (USP‐RP)Ribeirão PretoBrazil
| | - Marcondes C. França
- Department of Neurology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| |
Collapse
|
12
|
Sharma T, Kumar R, Mukherjee S. Neuronal Vulnerability to Degeneration in Parkinson's Disease and Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:715-730. [PMID: 37185323 DOI: 10.2174/1871527322666230426155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson's disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson's disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson's disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson's disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tanushree Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Molecular and Human Genetics, Banaras Hindu University Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Katunina EA, Shipilova NN, Farnieva IA, Isaeva ZS, Dzugaeva FK, Belikova LP, Batsoeva DO. [Cognitive impairment in multiple system atrophy - exclusion criteria or an integral part of the clinical picture?]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:86-91. [PMID: 38696156 DOI: 10.17116/jnevro202412404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Multiple system atrophy (MSA) is a severe, orphan disease characterized by a steady increase in symptoms of parkinsonism, cerebellar disorders, and autonomic failure. In addition to autonomic failure, which is considered the defining symptom of this type of atypical parkinsonism, there are a range of other non-motor clinical manifestations, such as sleep disorders, pain syndrome, anxiety-depressive disorders, cognitive impairment (CI). CI, especially severe CI, has long been considered as a distinctive feature of MCA. Recently, there have been many clinical studies with pathomorphological or neuroimaging confirmation, indicating a high prevalence of cognitive disorders in MCA. In this article, we discuss the pathogenetic mechanisms of the development of MCA and CI in MCA, as well as the range of clinical manifestations of cognitive dysfunction.
Collapse
Affiliation(s)
- E A Katunina
- Federal center of brain research and neurotechnologies, Moscow, Russia
- Pirogov Russian National Research Medical University Moscow, Russi, Pirogov Russian National Research Medical University Moscow, Russia
| | - N N Shipilova
- Federal center of brain research and neurotechnologies, Moscow, Russia
- Pirogov Russian National Research Medical University Moscow, Russi, Pirogov Russian National Research Medical University Moscow, Russia
| | - I A Farnieva
- North Caucasian Multidisciplinary Medical Center, Beslan, Russia
| | - Z S Isaeva
- Pirogov City Clinical Hospital No. 1, Moscow, Russia
| | - F K Dzugaeva
- North Caucasian Multidisciplinary Medical Center, Beslan, Russia
| | - L P Belikova
- Pirogov City Clinical Hospital No. 1, Moscow, Russia
| | - D O Batsoeva
- North Caucasian Multidisciplinary Medical Center, Beslan, Russia
| |
Collapse
|
14
|
Chen L, Mao L, Lu H, Liu P. Detecting ferroptosis and immune infiltration profiles in multiple system atrophy using postmortem brain tissue. Front Neurosci 2023; 17:1269996. [PMID: 38222105 PMCID: PMC10784378 DOI: 10.3389/fnins.2023.1269996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 01/16/2024] Open
Abstract
Background The importance of ferroptosis and the immune system has been mentioned in the pathogenesis of α-synucleinopathy. The α-synuclein-immunoreactive inclusions that primarily affect oligodendrocytes are the hallmark of multiple system atrophy (MSA). Limited evidence implicates that iron and immune responses are involved in the pathogenesis of MSA, which is associated with neurodegeneration and α-synuclein aggregation. Methods The RNA sequencing data were collected from the Gene Expression Omnibus database. MSA-C-related module genes were identified through weighted gene co-expression network analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict the potential molecular functions. The candidate ferroptosis-related genes associated with MSA-C were obtained using a machine-learning algorithm. CIBERSORT was used to estimate the compositional patterns of the 22 types of immune cells. Results The tissues for sequencing were extracted from postmortem cerebellar white matter tissues of 11 MSA-C patients and 47 healthy controls. The diagnostic ability of the six MSA-C-related ferroptosis-related genes in discriminating MSA-C from the healthy controls demonstrated a favorable diagnostic value, with the AUC ranging from 0.662 to 0.791. The proportion of CD8+ T cells in MSA-C was significantly higher than in the controls (P = 0.02). The proportion of NK cells resting in MSA-C was significantly higher than in the controls (P = 0.011). Conclusion Ferroptosis and T-cell infiltration may be important pathways of disease development in MSA-C, and targeting therapies for these pathways may be disease-modifying.
Collapse
Affiliation(s)
- Linxi Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
15
|
Andersen AM, Kaalund SS, Marner L, Salvesen L, Pakkenberg B, Olesen MV. Quantitative cellular changes in multiple system atrophy brains. Neuropathol Appl Neurobiol 2023; 49:e12941. [PMID: 37812040 DOI: 10.1111/nan.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.
Collapse
Affiliation(s)
- Alberte M Andersen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Sanne S Kaalund
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel V Olesen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Tamura M, Takeda T, Kitayama Y, Suichi T, Shibuya K, Harada-Kagitani S, Kishimoto T, Kuwabara S, Hirano S. Neuropathological features of levodopa-responsive parkinsonism in multiple system atrophy: an autopsy case report and comparative neuropathological study. Front Neurol 2023; 14:1293732. [PMID: 38033780 PMCID: PMC10682068 DOI: 10.3389/fneur.2023.1293732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Background In typical patients with multiple system atrophy with predominant parkinsonism (MSA-P) levodopa is ineffective. However, there are some of these patients who respond well to levodopa treatment. Levodopa efficacy in MSA-P patients is thought to be related to the degree of putaminal damage, but the pathological causation between the putaminal involvement and levodopa efficacy has not been established in detail. Objective This study aimed to evaluate the neuropathological features of the nigrostriatal dopaminergic system in a "levodopa-responsive" MSA-P patient in comparison with "levodopa-unresponsive" conventional MSA-P patients. Materials and methods Clinicopathological findings were assessed in a 53-year-old Japanese man with MSA who presented with asymmetric parkinsonism, levodopa response, and later wearing-off phenomenon. During autopsy, the nigrostriatal pathology of presynaptic and postsynaptic dopaminergic receptor density and α-synuclein status were investigated. The other two patients with MSA-P were examined using the same pathological protocol. Results Four years after the onset, the patient died of sudden cardiopulmonary arrest. On autopsy, numerous α-synuclein-positive glial cytoplasmic inclusions in the basal ganglia, pons, and cerebellum were identified. The number of neurons in the putamen and immunoreactivity for dopamine receptors were well-preserved. In contrast, significant neuronal loss and decreased dopamine receptor immunoreactivity in the putamen were observed in the "levodopa-unresponsive" MSA-P control patients. These putaminal pathology results were consistent with the findings of premortem magnetic resonance imaging (MRI). All three patients similarly exhibited severe neuronal loss in the substantia nigra and decreased immunoreactivity for dopamine transporter. Conclusion Levodopa responsiveness in patients with MSA-P may be corroborated by the normal putamen on MRI and the preserved postsynaptic nigrostriatal dopaminergic system on pathological examination. The results presented in this study may provide a rationale for continuation of levodopa treatment in patients diagnosed with MSA-P.
Collapse
Affiliation(s)
- Mitsuyoshi Tamura
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Takeda
- Department of Neurology, National Hospital Organization Chiba Higashi Hospital, Chiba, Japan
| | - Yoshihisa Kitayama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoki Suichi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Carmona-Abellan M, Del Pino R, Murueta-Goyena A, Acera M, Tijero B, Berganzo K, Gabilondo I, Gómez-Esteban JC. Multiple system atrophy: Clinical, evolutive and histopathological characteristics of a series of cases. Neurologia 2023; 38:609-616. [PMID: 37996211 DOI: 10.1016/j.nrleng.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Multiple system atrophy is a rare and fatal neurodegenerative disorder, characterized by autonomic dysfunction in association with either parkinsonism or cerebellar signs. The pathologic hallmark is the presence of alpha-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Clinically, it may be difficult to distinguish form other parkinsonisms or ataxias, particularly in the early stages of the disease. In this case series we aim to describe in detail the features of MSA patients. MATERIAL AND METHODS Unified MSA Rating Scale (UMSARS) score, structural and functional imaging and cardiovascular autonomic testing, are summarized since early stages of the disease. RESULTS UMSARS proved to be useful to perform a follow-up being longitudinal examination essential to stratify risk of poor outcome. Neuropathological diagnosis showed an overlap between parkinsonian and cerebellar subtypes, with some peculiarities that could help to distinguish from other subtypes. CONCLUSION A better description of MSA features with standardized test confirmed by means of neuropathological studies could help to increase sensitivity.
Collapse
Affiliation(s)
- M Carmona-Abellan
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain.
| | - R Del Pino
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain
| | - A Murueta-Goyena
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain
| | - M Acera
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain
| | - B Tijero
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain; Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - K Berganzo
- Hospital Universitario de Basurto, Bilbao, Bizkaia, Spain
| | - I Gabilondo
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain; Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain; Ikerbasque, The Basque Foundation for Science, Spain
| | - J C Gómez-Esteban
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain; Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| |
Collapse
|
18
|
Craig CF, Finkelstein DI, McQuade RM, Diwakarla S. Understanding the potential causes of gastrointestinal dysfunctions in multiple system atrophy. Neurobiol Dis 2023; 187:106296. [PMID: 37714308 DOI: 10.1016/j.nbd.2023.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare, progressive neurodegenerative disorder characterised by autonomic, pyramidal, parkinsonian and/or cerebellar dysfunction. Autonomic symptoms of MSA include deficits associated with the gastrointestinal (GI) system, such as difficulty swallowing, abdominal pain and bloating, nausea, delayed gastric emptying, and constipation. To date, studies assessing GI dysfunctions in MSA have primarily focused on alterations of the gut microbiome, however growing evidence indicates other structural components of the GI tract, such as the enteric nervous system, the intestinal barrier, GI hormones, and the GI-driven immune response may contribute to MSA-related GI symptoms. Here, we provide an in-depth exploration of the physiological, structural, and immunological changes theorised to underpin GI dysfunction in MSA patients and highlight areas for future research in order to identify more suitable pharmaceutical treatments for GI symptoms in patients with MSA.
Collapse
Affiliation(s)
- Colin F Craig
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David I Finkelstein
- Parkinson's Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Rachel M McQuade
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Shanti Diwakarla
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC 3021, Australia.
| |
Collapse
|
19
|
Leńska-Mieciek M, Madetko-Alster N, Alster P, Królicki L, Fiszer U, Koziorowski D. Inflammation in multiple system atrophy. Front Immunol 2023; 14:1214677. [PMID: 37426656 PMCID: PMC10327640 DOI: 10.3389/fimmu.2023.1214677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Misfolding protein aggregation inside or outside cells is the major pathological hallmark of several neurodegenerative diseases. Among proteinopathies are neurodegenerative diseases with atypical Parkinsonism and an accumulation of insoluble fibrillary alpha-synuclein (synucleinopathies) or hyperphosphorylated tau protein fragments (tauopathies). As there are no therapies available to slow or halt the progression of these disea ses, targeting the inflammatory process is a promising approach. The inflammatory biomarkers could also help in the differential diagnosis of Parkinsonian syndromes. Here, we review inflammation's role in multiple systems atrophy pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Marta Leńska-Mieciek
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Fiszer
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
20
|
Matar E, Bhatia K. Dystonia and Parkinson's disease: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:347-411. [PMID: 37482398 DOI: 10.1016/bs.irn.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Parkinsonism and dystonia co-occur across many movement disorders and are most encountered in the setting of Parkinson's disease. Here we aim to explore the shared neurobiological underpinnings of dystonia and parkinsonism through the clinical lens of the conditions in which these movement disorders can be seen together. Foregrounding the discussion, we briefly review the circuits of the motor system and the neuroanatomical and neurophysiological aspects of motor control and highlight their relevance to the proposed pathophysiology of parkinsonism and dystonia. Insight into shared biology is then sought from dystonia occurring in PD and other forms of parkinsonism including those disorders in which both can be co-expressed simultaneously. We organize these within a biological schema along with important questions to be addressed in this space.
Collapse
Affiliation(s)
- Elie Matar
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Kailash Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom
| |
Collapse
|
21
|
Tseng FS, Foo JQX, Mai AS, Tan EK. The genetic basis of multiple system atrophy. J Transl Med 2023; 21:104. [PMID: 36765380 PMCID: PMC9912584 DOI: 10.1186/s12967-023-03905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there is a possible genetic component that is poorly understood. This review summarizes current literature on genetic risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been associated with MSA including genes related to Parkinson's disease (PD), oxidative stress, inflammation, and tandem gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that modulate MSA risk, including complex gene-gene and gene-environment interactions, which influence the disease phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification of novel pathophysiologic clues, and pave the way for translational research into the development of disease-modifying therapeutic targets.
Collapse
Affiliation(s)
- Fan Shuen Tseng
- grid.163555.10000 0000 9486 5048Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joel Qi Xuan Foo
- grid.276809.20000 0004 0636 696XDepartment of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
22
|
Okada K, Hata Y, Ichimata S, Yoshida K, Nishida N. Pathological Appearance of a Case of Preclinical Multiple System Atrophy: A Comparison With Advanced Cases. J Neuropathol Exp Neurol 2022; 81:965-974. [PMID: 36303452 DOI: 10.1093/jnen/nlac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We aimed to investigate the frequency of multiple system atrophy (MSA) in a large number of forensic autopsies and characterize the pathological appearance of preclinical MSA. We investigated a series of 1930 brains from forensic autopsies. In addition to performing immunohistochemistry for phosphorylated α-synuclein, the levels of 3 autonomic nervous system markers (catecholaminergic, serotonergic, and cholinergic) were used to assess the peripheral nerve (heart and superior cervical ganglion) and medulla oblongata. The results were compared to those of healthy control and Parkinson disease (PD) cases. Four cases (0.21%) were identified as having MSA. Cases 1-3 were symptomatic, and Case 4 was incipient; that is, although no neuronal loss was evident, the cerebellar dentate nucleus exhibited marked grumose degeneration. Immunohistochemistry revealed a marked reduction in autonomic nervous system marker levels expressed in the medulla; this reduction was more prominent in the 3 symptomatic MSA cases than in the PD case. The opposite occurred for the peripheral nerve. Case 4 exhibited mild cholinergic nerve reduction. Two cases showed possible significant pathological changes in the heart. Grumose degeneration, few oligodendroglial cytoplasmic inclusions without neuronal loss, and less reduction of autonomic nervous tissue were more prominent in the preclinical case than in symptomatic cases.
Collapse
Affiliation(s)
- Keitaro Okada
- From the Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yukiko Hata
- From the Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shojiro Ichimata
- From the Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Koji Yoshida
- From the Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Naoki Nishida
- From the Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
23
|
Matsuoka K, Ono M, Takado Y, Hirata K, Endo H, Ohfusa T, Kojima T, Yamamoto T, Onishi T, Orihara A, Tagai K, Takahata K, Seki C, Shinotoh H, Kawamura K, Shimizu H, Shimada H, Kakita A, Zhang M, Suhara T, Higuchi M. High-Contrast Imaging of α-Synuclein Pathologies in Living Patients with Multiple System Atrophy. Mov Disord 2022; 37:2159-2161. [PMID: 36041211 PMCID: PMC9804399 DOI: 10.1002/mds.29186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan,Department of PsychiatryNara Medical UniversityKashihara‐shiJapan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Kosei Hirata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Toshiyuki Ohfusa
- Neurology Tsukuba Research Department, Discovery, Medicine Creation, Eisai Co., Ltd.Tsukuba‐shiJapan
| | - Taichi Kojima
- Translational Research Laboratories, Ono Pharmaceutical Co. Ltd.Shimamoto‐cho, Mishima‐gunJapan
| | - Takeshi Yamamoto
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawa‐shiJapan
| | - Tomohiro Onishi
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawa‐shiJapan
| | - Asumi Orihara
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Chie Seki
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan,Neurology Clinic ChibaChiba‐shiJapan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigata‐shiJapan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan,Center for Integrated Human Brain Science, Brain Research InstituteNiigata UniversityNiigata‐shiJapan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigata‐shiJapan
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChiba‐shiJapan
| |
Collapse
|
24
|
Pasquini J, Firbank MJ, Ceravolo R, Silani V, Pavese N. Diffusion Magnetic Resonance Imaging Microstructural Abnormalities in Multiple System Atrophy: A Comprehensive Review. Mov Disord 2022; 37:1963-1984. [PMID: 36036378 DOI: 10.1002/mds.29195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure, ataxia, and/or parkinsonism. Its prominent pathological alterations can be investigated using diffusion magnetic resonance imaging (dMRI), a technique that exploits the characteristics of water random motion inside brain tissue. The aim of this report was to review currently available literature on the application of dMRI in MSA and to describe microstructural abnormalities, diagnostic applications, and pathophysiological correlates. Sixty-four published studies involving microstructural investigation using dMRI in MSA were included. Widespread microstructural abnormalities of white matter were described, especially in the middle cerebellar peduncle, corticospinal tract, and hemispheric fibers. Gray matter degeneration was identified as well, with diffuse involvement of subcortical structures, especially in the putamina. Diagnostic applications of dMRI were mostly explored for the differential diagnosis between MSA parkinsonism and Parkinson's disease. Recently, machine learning algorithms for image processing and disease classification have demonstrated high diagnostic accuracy, showing potential for translation into clinical practice. To a lesser extent, clinical correlates of microstructural abnormalities have also been investigated, and abnormalities related to motor, ocular, and cognitive impairments were described. dMRI in MSA has contributed to in vivo identification of known pathological abnormalities. Translation into clinical practice of the latest advancements for the differential diagnosis between MSA and other forms of parkinsonism seems feasible. Current limitations involve the possibility of correctly diagnosing MSA in the very early stages, when the clinical diagnosis is most uncertain. Furthermore, pathophysiological correlates of microstructural abnormalities remain understudied. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michael J Firbank
- Positron Emission Tomography Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
25
|
Yoo J, Cheon M. Differential diagnosis of patients with atypical Parkinsonian syndrome using 18F-FDG and 18F-FP CIT PET: A report of five cases. Radiol Case Rep 2022; 17:2765-2770. [PMID: 35677703 PMCID: PMC9167875 DOI: 10.1016/j.radcr.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 12/04/2022] Open
Abstract
We describe 5 cases of patients who presented atypical parkinsonian syndrome (APS), including gait disturbance, postural instability, decreasing facial expression, dyskinesia, and subjective cognitive impairment. The patients underwent 18F-FP-CIT PET and 18F-FDG PET consecutively for differential diagnosis of APS. Through PET imaging examination, it was possible to offer a suggestive diagnosis and determine individual strategic management for patients with APS.
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, VHS Medical Center, Seoul 05368, Korea
| | - Miju Cheon
- Department of Nuclear Medicine, VHS Medical Center, Seoul 05368, Korea
| |
Collapse
|
26
|
Lee WW, Kim HJ, Lee HJ, Kim HB, Park KS, Sohn CH, Jeon B. Semiautomated Algorithm for the Diagnosis of Multiple System Atrophy With Predominant Parkinsonism. J Mov Disord 2022; 15:232-240. [PMID: 35880384 PMCID: PMC9536910 DOI: 10.14802/jmd.21178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Putaminal iron deposition is an important feature that helps differentiate multiple system atrophy with predominant parkinsonism (MSA-p) from Parkinson’s disease (PD). Most previous studies used visual inspection or quantitative methods with manual manipulation to perform this differentiation. We investigated the value of a new semiautomated diagnostic algorithm using 3T-MR susceptibility-weighted imaging for MSA-p. Methods This study included 26 MSA-p, 68 PD, and 41 normal control (NC) subjects. The algorithm was developed in 2 steps: 1) determine the image containing the remarkable putaminal margin and 2) calculate the phase-shift values, which reflect the iron concentration. The next step was to identify the best differentiating conditions among several combinations. The highest phase-shift value of each subject was used to assess the most effective diagnostic set. Results The raw phase-shift values were present along the lateral margin of the putamen in each group. It demonstrates an anterior-to-posterior gradient that was identified most frequently in MSA-p. The average of anterior 5 phase shift values were used for normalization. The highest area under the receiver operating characteristic curve (0.874, 80.8% sensitivity, and 86.7% specificity) of MSA-p versus PD was obtained under the combination of 3 or 4 vertical pixels and one dominant side when the normalization methods were applied. In the subanalysis for the MSA-p patients with a longer disease duration, the performance of the algorithm improved. Conclusion This algorithm detected the putaminal lateral margin well, provided insight into the iron distribution of the putaminal rim of MSA-p, and demonstrated good performance in differentiating MSA-p from PD.
Collapse
Affiliation(s)
- Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea.,Department of Neurology, Eulji University College of Medicine, Daejeon, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Hong Ji Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Han Byul Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Suk Park
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Iwabuchi K, Koyano S, Yagishita S. Simple and clear differentiation of spinocerebellar degenerations: Overview of macroscopic and low-power view findings. Neuropathology 2022; 42:379-393. [PMID: 35859519 DOI: 10.1111/neup.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/31/2022]
Abstract
Spinocerebellar degenerations (SCDs) are a diverse group of rare and slowly progressive neurological diseases that include spinocerebellar ataxia type 1 (SCA1), SCA2, SCA3, SCA6, SCA7, dentatorubral-pallidoluysian atrophy (DRPLA) and multiple system atrophy (MSA). They are often inherited, and affect the cerebellum and related pathways. The combination of clinical findings and lesion distribution has been the gold-standard for classifying SCDs. This conventional approach has not been very successful in providing a solid framework shared among researchers because their points of views have been quite variable. After identification of genetic abnormalities, classification was overwhelmed by genotyping, replacing the conventional approach far behind. In this review, we describe a stepwise operational approach that we constructed based only on macroscopic findings without microscopy to classify SCDs into three major groups: pure cerebellar type for SCA6 and SCA31; olivopontocerebellar (OPC) type for SCA1, SCA2, SCA7 and MSA; and dentatorubral-pallidoluysian (DRPL) type for SCA1, SCA3, DRPLA and progressive supranuclear palsy (PSP). Spinocerebellar tract involvement distinguishes SCA1 and SCA3 from DRPLA. Degeneration of the internal segment of the pallidum is accentuated in SCA3 and PSP, while degeneration of the external segment is accentuated in SCA1 and DRPLA. These contrasts are helpful in subdividing OPC and DRPL types to predict their genotypes. Lesion distribution represents disease-specific selective vulnerability, which is readily differentiated macroscopically using our stepwise operational approach. Precise prediction of the major genotypes will provide a basis to understand how genetic abnormalities lead to corresponding phenotypes through disease-specific selective vulnerabilities.
Collapse
Affiliation(s)
| | - Shigeru Koyano
- Department of Neurology, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Saburo Yagishita
- Department of Pathology, Sagamihara National Hospital, Sagamihara, Japan
| |
Collapse
|
28
|
Lin CR, Viswanathan A, Chen TX, Mitsumoto H, Vonsattel JP, Faust PL, Kuo S. Clinicopathological correlates of pyramidal signs in multiple system atrophy. Ann Clin Transl Neurol 2022; 9:988-994. [PMID: 35593123 PMCID: PMC9268870 DOI: 10.1002/acn3.51576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Pyramidal signs are common but often under-recognized in multiple system atrophy (MSA). The clinicopathological correlates of pyramidal signs in MSA are not well characterized. The present study aims to understand the role of pyramidal signs in MSA. METHODS We examined 40 autopsy-confirmed MSA cases in New York Brain Bank. The pyramidal signs were quantified by an established rating scale, summarized as the pyramidal score. We assessed whether pyramidal scores are associated with autonomic, parkinsonism, and cerebellar features and survival. We also examined whether the density of glial cytoplasmic inclusions (GCIs) in the motor cortex and its underlying white matter is associated with the pyramidal score. RESULTS MSA parkinsonian type cases have higher pyramidal scores compared to cerebellar type cases (p = 0.017). MSA cases with high pyramidal scores are more likely to have laryngeal stridor (OR = 4.89, p = 0.022), but less likely to have orthostatic hypotension (OR = 0.11, p = 0.006) and erectile dysfunction (OR = 0.05, p = 0.018). MSA cases with high pyramidal scores do not differ from those with low pyramidal scores in terms of bowel dysfunction, dry eyes and mouth, and survival. Finally, MSA cases with more GCIs in the motor cortex have higher pyramidal scores compared to those with few GCIs (p = 0.017). INTERPRETATION Pyramidal signs in MSA are associated with the parkinsonian subtype, laryngeal stridor, and certain autonomic dysfunction.
Collapse
Affiliation(s)
- Chi‐Ying R. Lin
- Department of NeurologyParkinson's Disease Center and Movement Disorders Clinic, Baylor College of MedicineHoustonTexasUSA
| | - Anisha Viswanathan
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tiffany X. Chen
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of Biomedical Engineering, Whiting School of EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hiroshi Mitsumoto
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Eleanor and Lou Gehrig ALS CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Jean P. Vonsattel
- Department of Pathology and Cell BiologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Phyllis L. Faust
- Department of Pathology and Cell BiologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
29
|
Zheng Y, Wang X, Zhao H, Jiang Y, Zhu Y, Chen J, Sun W, Wang Z, Sun Y. The “Black Straight-Line Sign” in the Putamen in Diffusion-Weighted Imaging: A Potential Diagnostic MRI Marker for Multiple System Atrophy. Front Neurol 2022; 13:890168. [PMID: 35665040 PMCID: PMC9161301 DOI: 10.3389/fneur.2022.890168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose The diagnosis of multiple system atrophy (MSA) remains challenging in clinical practice. This study investigated the value of hypointense signals in the putamen (“black straight-line sign”) in diffusion-weighted imaging (DWI) of brain MRI for distinguishing (MSA) from Parkinson's disease (PD). Methods We retrospectively enrolled 30 MSA patients, 30 PD patients, and 30 healthy controls who had undergone brain MRI between 2016 and 2020. Two readers independently assessed the signal intensity of the bilateral putamen on DWI. The putaminal hypointensity was scored using 4-point visual scales. Putaminal hypointensity and the presence of a “black straight-line sign” were statistically compared between MSA and PD or healthy controls. Results The mean scores of putaminal hypointensity in DWI in the MSA group were significantly higher than in both the PD (U = 315.5, P = 0.034) and healthy control groups (U = 304.0, P = 0.022). Uni- or bilateral putaminal hypointensity in DWI with a score ≥2 was identified in 53.3% (16/30), 16.7% (5/30), and 13.3% (4/30) of MSA, PD, and healthy controls, respectively, with significant differences between MSA and PD (X2 = 8.864, P = 0.003) or healthy controls (X2 = 10.800, P = 0.001). Notably, the “black straight-line sign” of the putamen was observed in 16/30 (sensitivity 53.3%) patients with MSA, while it was absent in PD and healthy controls (specificity 100%). There were no significant differences for the presence of “black straight-line sign” in the MSA-P and MSA-C groups (X2 = 0.433, P = 0.510). Conclusion The “black straight-line sign” of the putamen in DWI of head MRIs has the potential to serve as a diagnostic marker for distinguishing MSA from PD.
Collapse
Affiliation(s)
- Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Xiwen Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Huajian Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neurology, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), Shenzhen, China
| | - Yanyan Jiang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jing Chen
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- *Correspondence: Zhaoxia Wang
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Yunchuang Sun
| |
Collapse
|
30
|
Symptomatic Care in Multiple System Atrophy: State of the Art. CEREBELLUM (LONDON, ENGLAND) 2022; 22:433-446. [PMID: 35581488 PMCID: PMC10125958 DOI: 10.1007/s12311-022-01411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
Abstract
Without any disease-modifying treatment strategy for multiple system atrophy (MSA), the therapeutic management of MSA patients focuses on a multidisciplinary strategy of symptom control. In the present review, we will focus on state of the art treatment in MSA and additionally give a short overview about ongoing randomized controlled trials in this field.
Collapse
|
31
|
Cao B, Liang Y, Zhang LY, Hou YB, Ou RW, Wei QQ, Shang H. The Cold Hand Sign in Multiple System Atrophy: Frequency-Associated Factors and Its Impact on Survival. Front Aging Neurosci 2022; 13:767211. [PMID: 34987378 PMCID: PMC8722673 DOI: 10.3389/fnagi.2021.767211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Few studies have focused on the cold hand sign (CHS), a red flag symptom, in multiple system atrophy (MSA). Objective: This study aimed to investigate the frequency and correlative factors of CHS in patients with MSA and the impact of its early occurrence on the survival of these patients. Methods: A total of 483 patients with MSA were enrolled in this study, and the motor and non-motor symptoms between patients with MSA with and without CHS were compared. Moreover, patients with disease duration ≤ 3 years at baseline were followed, and the association between CHS and survival of patients with MSA was examined. Results: The frequencies of CHS in patients with MSA were 20, 15.4, and 25.3% in MSA, MSA-parkinsonian subtype (MSA-P), and MSA-cerebellar subtype (MSA-C), respectively. Higher Unified Multiple System Atrophy Rating Scale (UMSARS) scores and higher Non-Motor Symptom Scale (NMSS) scores at baseline were associated with CHS in MSA. CHS was associated with shorter survival after adjusting for baseline diagnosis subtype, age at onset, sex, orthostatic hypotension, disease duration, autonomic onset, UMSARS total score, and NMSS score (p = 0.001; HR = 3.701; 95% CI = 1.765–7.760). Conclusion: CHS is not rare in patients with MSA. Greater disease severity and more severe non-motor symptoms were associated with CHS in patients with MSA. Patients with early occurrence of CHS had a poor prognosis.
Collapse
Affiliation(s)
- Bei Cao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Liang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Bing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ru-Wei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian-Qian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Plasma Metabolite Markers of Parkinson's Disease and Atypical Parkinsonism. Metabolites 2021; 11:metabo11120860. [PMID: 34940618 PMCID: PMC8706715 DOI: 10.3390/metabo11120860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 01/26/2023] Open
Abstract
Differentiating between Parkinson’s disease (PD) and the atypical Parkinsonian disorders of multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) is difficult clinically due to overlapping symptomatology, especially at early disease stages. Consequently, there is a need to identify metabolic markers for these diseases and to develop them into viable biomarkers. In the present investigation, solution nuclear magnetic resonance and mass spectrometry metabolomics were used to quantitatively characterize the plasma metabolomes (a total of 167 metabolites) of a cohort of 94 individuals comprising 34 PD, 12 MSA, and 17 PSP patients, as well as 31 control subjects. The distinct and statistically significant differences observed in the metabolite concentrations of the different disease and control groups enabled the identification of potential plasma metabolite markers of each disorder and enabled the differentiation between the disorders. These group-specific differences further implicate disturbances in specific metabolic pathways. The two metabolites, formic acid and succinate, were altered similarly in all three disease groups when compared to the control group, where a reduced level of formic acid suggested an effect on pyruvate metabolism, methane metabolism, and/or the kynurenine pathway, and an increased succinate level suggested an effect on the citric acid cycle and mitochondrial dysfunction.
Collapse
|
33
|
Su WM, Gu XJ, Hou YB, Zhang LY, Cao B, Ou RW, Wu Y, Chen XP, Song W, Zhao B, Shang HF, Chen YP. Association Analysis of WNT3, HLA-DRB5 and IL1R2 Polymorphisms in Chinese Patients With Parkinson's Disease and Multiple System Atrophy. Front Genet 2021; 12:765833. [PMID: 34868249 PMCID: PMC8636743 DOI: 10.3389/fgene.2021.765833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The association between inflammation and neurodegeneration has long been observed in parkinson's disease (PD) and multiple system atrophy (MSA). Previous genome-wide association studies (GWAS) and meta-analyses have identified several risk loci in inflammation-associated genes associated with PD. Objective: To investigate whether polymorphisms in some inflammation-associated genes could modulate the risk of developing PD and MSA in a Southwest Chinese population. Methods: A total of 2,706 Chinese subjects comprising 1340 PD, 483 MSA and 883 healthy controls were recruited in the study. Three polymorphisms (rs2074404 GG/GT/TT, rs17425622 CC/CT/TT, rs34043159 CC/CT/TT) in genes linked to inflammation in all the subjects were genotyped by using the Sequenom iPLEX Assay. Results: The allele G of WNT3 rs2074404 can increase risk on PD (OR: 1.048, 95% CI: 1.182-1.333, p = 0.006), exclusively in the LOPD subgroup (OR: 1.166, 95% CI:1.025-1.327, p = 0.019), but not in EOPD or MSA. And the recessive model analysis also demonstrated an increased PD risk in GG genotype of this locus (OR = 1.331, p = 0.007). However, no significant differences were observed in the genotype distributions and alleles of HLA-DRB5 rs17425622 and IL1R2 rs34043159 between the PD patients and controls, between the MSA patients and controls, or between subgroups of PD or MSA and controls. Conclusion: Our results suggested the allele G of WNT3 rs2074404 have an adverse effect on PD and particularly, on the LOPD subgroup among a Chinese population.
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Jing Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Bing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ru-Wei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Seniaray N, Verma R, Ranjan R, Belho E, Mahajan H. Comprehensive Functional Evaluation of the Spectrum of Multi-System Atrophy with 18F-FDG PET/CT and 99mTc TRODAT-1 SPECT: 5 Year's Experience from a Tertiary Care Center. Ann Indian Acad Neurol 2021; 24:490-494. [PMID: 34728939 PMCID: PMC8513977 DOI: 10.4103/aian.aian_1222_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
Aim: To elucidate the patterns of characteristic hypometabolism on 18F- fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in multisystem atrophy (MSA) and their correlation with the patterns of uptake on dopamine transporter imaging with 99mTc TRODAT-1 SPECT. Material and Methods: A retrospective analysis of 67 patients with clinically diagnosed MSA was performed. All the subjects underwent 99mTc TRODAT-1 SPECT and 18F-FDG PET/CT scanning on two separate days. The 99mTc-TRODAT-1 scans were analyzed visually for asymmetry and rostro-caudal gradient. The FDG uptake patterns were recorded, and areas of hypometabolism that were two standard deviations from the mean were considered abnormal. Results: All the subjects had an abnormal pattern of FDG uptake on PET scan, both on a visual inspection and semiquantitative analysis. In MSA-P subjects (n = 29), diffuse predominant hypometabolism of the globus pallidus-putamen complex was noted, with relative sparing of the caudate nuclei. In MSA-C subjects (n = 25), characteristic hypometabolism was noted in the cerebellum and brainstem. In mixed subtypes (n = 13), variable involvement of the basal ganglia, cerebellum, and brainstem was noted with frontoparietal hypometabolism. A statistically significant difference between MSA-P and MSA-C for gradient reduction and asymmetry with gradient reduction was observed. Conclusion: Dopamine transporter imaging with 99mTc TRODAT-1 SPECT not only helps in confirmation of parkinsonian disorders but also demonstrates varying patterns of distribution in different subtypes of MSA. Characteristic patterns of hypometabolism in 18F-FDG PET may help in the differentiation of the subtypes of MSA in the presence of clinically overlapping symptoms.
Collapse
Affiliation(s)
- Nikhil Seniaray
- Department of Nuclear Medicine and PET/CT, Mahajan Imaging Centre, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, India
| | - Ritu Verma
- Department of Nuclear Medicine and PET/CT, Mahajan Imaging Centre, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, India
| | - Rajeev Ranjan
- Department of Neurology, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, India
| | - Ethel Belho
- Department of Nuclear Medicine and PET/CT, Mahajan Imaging Centre, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, India
| | - Harsh Mahajan
- Department of Nuclear Medicine and PET/CT, Mahajan Imaging Centre, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, India
| |
Collapse
|
35
|
van Onselen R, Downing TG. Neonatal Reserpine Administration Produces Widespread Neuronal Losses and ⍺-Synuclein Inclusions in a Rat Model. Neurotox Res 2021; 39:1762-1770. [PMID: 34727322 DOI: 10.1007/s12640-021-00434-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Historically, reserpine was widely used as an antihypertensive drug. However, severe motor and non-motor symptoms such as dyskinesia and depression led to the discontinuation of reserpine as a first-line treatment for hypertension. Reserpine functions by inhibiting vesicular monoamine transporter 2 (VMAT2), reducing sequestration of monoamines into synaptic vesicles. The consequent reduction in monoamines, most notably dopamine, serotonin and norepinephrine, in the central nervous system, causes well-defined symptoms such as catalepsy, hypoactivity and sedation in animals, and these motor and non-motor symptoms are well defined for reserpine treatment. However, no gross neuropathological changes in response to reserpine treatment have been reported previously in any animal model. In contrast, reducing VMAT2 expression in genetically modified VMAT2 LO mice leads to the production of ⍺-synuclein-positive aggregates and progressive nigrostriatal neuronal loss. These VMAT2 LO mice have reduced VMAT2 functionality during critical brain developmental stages and this could be the key to producing a reserpine model with matching histopathologies. The aim of this study was therefore to investigate the effect of neonatal reserpine administration on brain histology. We report here that a single dose of 5 mg kg-1 reserpine administered subcutaneously to neonatal rats on postnatal day 3 leads to widespread neuronal loss in various brain regions including the substantia nigra pars compacta, ventral tegmental area, striatum, hippocampus, locus coeruleus, amygdala and cerebral cortex, and the presence of ⍺-synuclein-positive inclusions in the substantia nigra pars compacta and the dorsal striatum within 30 days of administration.
Collapse
Affiliation(s)
- Rianita van Onselen
- Department of Microbiology and Biochemistry, Nelson Mandela University, Port Elizabeth, 6019, South Africa
| | - Tim G Downing
- Department of Microbiology and Biochemistry, Nelson Mandela University, Port Elizabeth, 6019, South Africa.
| |
Collapse
|
36
|
Marmion DJ, Peelaerts W, Kordower JH. A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. J Neural Transm (Vienna) 2021; 128:1507-1527. [PMID: 34613484 PMCID: PMC8528759 DOI: 10.1007/s00702-021-02419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA), and dysautonomia with cerebellar ataxia or parkinsonian motor features. Isolated autonomic dysfunction with predominant genitourinary dysfunction and orthostatic hypotension and REM sleep behavior disorder are common characteristics of a prodromal phase, which may occur years prior to motor-symptom onset. MSA is a unique synucleinopathy, in which alpha-synuclein (aSyn) accumulates and forms insoluble inclusions in the cytoplasm of oligodendrocytes, termed glial cytoplasmic inclusions (GCIs). The origin of, and precise mechanism by which aSyn accumulates in MSA are unknown, and, therefore, disease-modifying therapies to halt or slow the progression of MSA are currently unavailable. For these reasons, much focus in the field is concerned with deciphering the complex neuropathological mechanisms by which MSA begins and progresses through the course of the disease. This review focuses on the history, etiopathogenesis, neuropathology, as well as cell and animal models of MSA.
Collapse
Affiliation(s)
- David J Marmion
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
37
|
Ebina J, Hara K, Watanabe H, Kawabata K, Yamashita F, Kawaguchi A, Yoshida Y, Kato T, Ogura A, Masuda M, Ohdake R, Mori D, Maesawa S, Katsuno M, Kano O, Sobue G. Individual voxel-based morphometry adjusting covariates in multiple system atrophy. Parkinsonism Relat Disord 2021; 90:114-119. [PMID: 34481140 DOI: 10.1016/j.parkreldis.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION This study aimed to evaluate whether novel individual voxel-based morphometry adjusting covariates (iVAC), such as age, sex, and total intracranial volume, could increase the accuracy of a diagnosis of multiple system atrophy (MSA) and enable the differentiation of MSA from Parkinson's disease (PD). METHODS We included 53 MSA patients (MSA-C: 33, MSA-P: 20), 53 PD patients, and 189 healthy controls in this study. All participants underwent high-resolution T1-weighted imaging (WI) and T2-WI with a 3.0-T MRI scanner. We evaluated the occurrence of significant atrophic findings in the pons/middle cerebellar peduncle (MCP) and putamen on iVAC and compared these findings with characteristic changes on T2-WI. RESULTS On iVAC, abnormal findings were observed in the pons/MCP of 96.2% of MSA patients and in the putamen of 80% of MSA patients; however, on T2-WI, they were both observed at a frequency of 60.4% in MSA patients. On iVAC, all but one MSA-P patient (98.1%) showed significant atrophic changes in the pons/MCP or putamen. By contrast, 69.8% of patients with MSA showed abnormal signal changes in the pons/MCP or putamen on T2-WI. iVAC yielded 95.0% sensitivity and 96.2% specificity for differentiating MSA-P from PD. CONCLUSION iVAC enabled us to recognize the morphological characteristics of MSA visually and with high accuracy compared to T2-WI, indicating that iVAC is a potential diagnostic screening tool for MSA.
Collapse
Affiliation(s)
- Junya Ebina
- Brain and Mind Research Center, Nagoya University, Aichi, Japan; Division of Neurology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Aichi, Japan; Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan.
| | - Kazuya Kawabata
- Brain and Mind Research Center, Nagoya University, Aichi, Japan; Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Fumio Yamashita
- Division of Ultrahigh-Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yusuke Yoshida
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Aichi, Japan; Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Aichi, Japan
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Aichi, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Osamu Kano
- Division of Neurology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Aichi, Japan.
| |
Collapse
|
38
|
Current experimental disease-modifying therapeutics for multiple system atrophy. J Neural Transm (Vienna) 2021; 128:1529-1543. [PMID: 34398313 PMCID: PMC8528757 DOI: 10.1007/s00702-021-02406-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Multiple system atrophy (MSA) is a challenging neurodegenerative disorder with a difficult and often inaccurate early diagnosis, still lacking effective treatment. It is characterized by a highly variable clinical presentation with parkinsonism, cerebellar ataxia, autonomic dysfunction, and pyramidal signs, with a rapid progression and an aggressive clinical course. The definite MSA diagnosis is only possible post-mortem, when the presence of distinctive oligodendroglial cytoplasmic inclusions (GCIs), mainly composed of misfolded and aggregated α-Synuclein (α-Syn) is demonstrated. The process of α-Syn accumulation and aggregation within oligodendrocytes is accepted one of the main pathological events underlying MSA. However, MSA is considered a multifactorial disorder with multiple pathogenic events acting together including neuroinflammation, oxidative stress, and disrupted neurotrophic support, among others. The discussed here treatment approaches are based on our current understanding of the pathogenesis of MSA and the results of preclinical and clinical therapeutic studies conducted over the last 2 decades. We summarize leading disease-modifying approaches for MSA including targeting α-Syn pathology, modulation of neuroinflammation, and enhancement of neuroprotection. In conclusion, we outline some challenges related to the need to overcome the gap in translation between preclinical and clinical studies towards a successful disease modification in MSA.
Collapse
|
39
|
Campese N, Fanciulli A, Stefanova N, Haybaeck J, Kiechl S, Wenning GK. Neuropathology of multiple system atrophy: Kurt Jellinger`s legacy. J Neural Transm (Vienna) 2021; 128:1481-1494. [PMID: 34319460 PMCID: PMC8528766 DOI: 10.1007/s00702-021-02383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023]
Abstract
Multiple System Atrophy (MSA) is a rare, fatal neurodegenerative disorder. Its etiology and exact pathogenesis still remain poorly understood and currently no disease-modifying therapy is available to halt or slow down this detrimental neurodegenerative process. Hallmarks of the disease are α-synuclein rich glial cytoplasmic inclusions (GCIs). Neuropathologically, various degrees of striatonigral degeneration (SND) and olivopontocerebellar atrophy (OPCA) can be observed. Since the original descriptions of this multifaceted disorder, several steps forward have been made to clarify its neuropathological hallmarks and key pathophysiological mechanisms. The Austrian neuropathologist Kurt Jellinger substantially contributed to the understanding of the underlying neuropathology of this disease, to its standardized assessment and to a broad systematical clinic-pathological correlation. On the occasion of his 90th birthday, we reviewed the current state of the art in the field of MSA neuropathology, highlighting Prof. Jellinger’s substantial contribution.
Collapse
Affiliation(s)
- Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.,Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alessandra Fanciulli
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstrasse 44, 6020, Innsbruck, Austria.,Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
40
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
41
|
Davis AA, Inman CE, Wargel ZM, Dube U, Freeberg BM, Galluppi A, Haines JN, Dhavale DD, Miller R, Choudhury FA, Sullivan PM, Cruchaga C, Perlmutter JS, Ulrich JD, Benitez BA, Kotzbauer PT, Holtzman DM. APOE genotype regulates pathology and disease progression in synucleinopathy. Sci Transl Med 2021; 12:12/529/eaay3069. [PMID: 32024799 DOI: 10.1126/scitranslmed.aay3069] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Apolipoprotein E (APOE) ε4 genotype is associated with increased risk of dementia in Parkinson's disease (PD), but the mechanism is not clear, because patients often have a mixture of α-synuclein (αSyn), amyloid-β (Aβ), and tau pathologies. APOE ε4 exacerbates brain Aβ pathology, as well as tau pathology, but it is not clear whether APOE genotype independently regulates αSyn pathology. In this study, we generated A53T αSyn transgenic mice (A53T) on Apoe knockout (A53T/EKO) or human APOE knockin backgrounds (A53T/E2, E3, and E4). At 12 months of age, A53T/E4 mice accumulated higher amounts of brainstem detergent-insoluble phosphorylated αSyn compared to A53T/EKO and A53T/E3; detergent-insoluble αSyn in A53T/E2 mice was undetectable. By immunohistochemistry, A53T/E4 mice displayed a higher burden of phosphorylated αSyn and reactive gliosis compared to A53T/E2 mice. A53T/E2 mice exhibited increased survival and improved motor performance compared to other APOE genotypes. In a complementary model of αSyn spreading, striatal injection of αSyn preformed fibrils induced greater accumulation of αSyn pathology in the substantia nigra of A53T/E4 mice compared to A53T/E2 and A53T/EKO mice. In two separate cohorts of human patients with PD, APOE ε4/ε4 individuals showed the fastest rate of cognitive decline over time. Our results demonstrate that APOE genotype directly regulates αSyn pathology independent of its established effects on Aβ and tau, corroborate the finding that APOE ε4 exacerbates pathology, and suggest that APOE ε2 may protect against αSyn aggregation and neurodegeneration in synucleinopathies.
Collapse
Affiliation(s)
- Albert A Davis
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA. .,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Casey E Inman
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Zachary M Wargel
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Umber Dube
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Brittany M Freeberg
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Alexander Galluppi
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Jessica N Haines
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Dhruva D Dhavale
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Rebecca Miller
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Fahim A Choudhury
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Patrick M Sullivan
- Department of Medicine, Duke University Medical Center, Durham VAMC and Geriatric Research Clinical Center, Durham, NC 27705, USA
| | - Carlos Cruchaga
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA.,Departments of Neuroscience and Radiology, Programs in Physical and Occupational Therapy, Washington University, St. Louis, MO 63110, USA
| | - Jason D Ulrich
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Bruno A Benitez
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Paul T Kotzbauer
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA.,Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110, USA. .,Department of Neurology, Washington University, St. Louis, MO 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Peelaerts W, Brito F, Van den Haute C, Barber Janer A, Steiner JA, Brundin P, Baekelandt V. Widespread, Specific, and Efficient Transgene Expression in Oligodendrocytes After Intracerebral and Intracerebroventricular Delivery of Viral Vectors in Rodent Brain. Hum Gene Ther 2021; 32:616-627. [PMID: 34006117 DOI: 10.1089/hum.2021.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several neurodegenerative disorders are characterized by oligodendroglial pathology and myelin loss. Oligodendrogliopathies are a group of rare diseases for which there currently is no therapy. Gene delivery through viral vectors to oligodendrocytes is a potential strategy to deliver therapeutic molecules to oligodendrocytes for disease modification. However, targeting oligodendroglial cells in vivo is challenging due to their widespread distribution in white and gray matter. In this study, we aimed to address several of these difficulties by designing and testing different oligodendroglial targeting vectors in rat and mouse brain, utilizing different promoters, serotypes, and delivery routes. We found that different oligodendroglial promoters (myelin basic protein [MBP], cytomegalovirus-enhanced MBP, and myelin-associated glycoprotein [MAG]) vary considerably in their ability to drive oligodendroglial transgene expression and different viral vector serotypes (rAAV2/7, rAAV2/8, and rAAV2/9) exhibit varying efficacies in transducing oligodendrocytes. Different administration routes through intracerebral or intraventricular injection allow widespread targeting of mature oligodendrocytes. Delivery of rAAV2/9-MAG-GFP into the cerebrospinal fluid results in GFP expression along the entire rostrocaudal axis of the spinal cord. Collectively, these results show that oligodendrocytes can be targeted with high specificity and widespread expression, which will be useful for gene therapeutic interventions or disease modeling purposes.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Filipa Brito
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core (LVVC), Leuven, Belgium
| | - Anna Barber Janer
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Carmona-Abellan M, Del Pino R, Murueta-Goyena A, Acera M, Tijero B, Berganzo K, Gabilondo I, Gómez-Esteban JC. Multiple system atrophy: Clinical, evolutive and histopathological characteristics of a series of cases. Neurologia 2021; 38:S0213-4853(21)00073-6. [PMID: 34052041 DOI: 10.1016/j.nrl.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Multiple system atrophy is a rare and fatal neurodegenerative disorder, characterized by autonomic dysfunction in association with either parkinsonism or cerebellar signs. The pathologic hallmark is the presence of alpha-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Clinically, it may be difficult to distinguish form other parkinsonisms or ataxias, particularly in the early stages of the disease. In this case series we aim to describe in detail the features of MSA patients. MATERIAL AND METHODS Unified MSA Rating Scale (UMSARS) score, structural and functional imaging and cardiovascular autonomic testing, are summarized since early stages of the disease. RESULTS UMSARS proved to be useful to perform a follow-up being longitudinal examination essential to stratify risk of poor outcome. Neuropathological diagnosis showed an overlap between parkinsonian and cerebellar subtypes, with some peculiarities that could help to distinguish from other subtypes. CONCLUSION A better description of MSA features with standardized test confirmed by means of neuropathological studies could help to increase sensitivity.
Collapse
Affiliation(s)
- M Carmona-Abellan
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain.
| | - R Del Pino
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain
| | - A Murueta-Goyena
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain
| | - M Acera
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain
| | - B Tijero
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain; Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - K Berganzo
- Hospital Universitario de Basurto, Bilbao, Bizkaia, Spain
| | - I Gabilondo
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain; Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain; Ikerbasque, The Basque Foundation for Science, Spain
| | - J C Gómez-Esteban
- Neurodegenerative Diseases Division, Health Research Institute Biocruces, Barakaldo, Bizkaia, Spain; Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| |
Collapse
|
44
|
Xian WB, Shi XC, Luo GH, Yi C, Zhang XS, Pei Z. Co-registration Analysis of Fluorodopa and Fluorodeoxyglucose Positron Emission Tomography for Differentiating Multiple System Atrophy Parkinsonism Type From Parkinson's Disease. Front Aging Neurosci 2021; 13:648531. [PMID: 33958998 PMCID: PMC8093399 DOI: 10.3389/fnagi.2021.648531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to differentiate between Parkinson's disease and multiple system atrophy parkinsonian subtype (MSA-P) because of the overlap of their signs and symptoms. Enormous efforts have been made to develop positron emission tomography (PET) imaging to differentiate these diseases. This study aimed to investigate the co-registration analysis of 18F-fluorodopa and 18F-flurodeoxyglucose PET images to visualize the difference between Parkinson's disease and MSA-P. We enrolled 29 Parkinson's disease patients, 28 MSA-P patients, and 10 healthy controls, who underwent both 18F-fluorodopa and 18F-flurodeoxyglucose PET scans. Patients with Parkinson's disease and MSA-P exhibited reduced bilateral striatal 18F-fluorodopa uptake (p < 0.05, vs. healthy controls). Both regional specific uptake ratio analysis and statistical parametric mapping analysis of 18F-flurodeoxyglucose PET revealed hypometabolism in the bilateral putamen of MSA-P patients and hypermetabolism in the bilateral putamen of Parkinson's disease patients. There was a significant positive correlation between 18F-flurodeoxyglucose uptake and 18F-fluorodopa uptake in the contralateral posterior putamen of MSA-P patients (rs = 0.558, p = 0.002). Both 18F-flurodeoxyglucose and 18F-fluorodopa PET images showed that the striatum was rabbit-shaped in the healthy control group segmentation analysis. A defective rabbit-shaped striatum was observed in the 18F-fluorodopa PET image of patients with Parkinson's disease and MSA-P. In the segmentation analysis of 18F-flurodeoxyglucose PET image, an intact rabbit-shaped striatum was observed in Parkinson's disease patients, whereas a defective rabbit-shaped striatum was observed in MSA-P patients. These findings suggest that there were significant differences in the co-registration analysis of 18F-flurodeoxyglucose and 18F-fluorodopa PET images, which could be used in the individual analysis to differentiate Parkinson's disease from MSA-P.
Collapse
Affiliation(s)
- Wen-Biao Xian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xin-Chong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan-Hua Luo
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Yi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Song Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
45
|
Mechanisms of Neurodegeneration in Various Forms of Parkinsonism-Similarities and Differences. Cells 2021; 10:cells10030656. [PMID: 33809527 PMCID: PMC7999195 DOI: 10.3390/cells10030656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world’s aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.
Collapse
|
46
|
Khadzieva KI, Chernikova IV, Milyutina NP, Plotnikov AA. [Clinical and biochemical heterogeneity of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:80-85. [PMID: 33459545 DOI: 10.17116/jnevro202012012180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study correlations between oxidative stress (OS) and clinical changes in patients with neurodegenerative Parkinson's and to identify clinical/biochemical subtypes of the disease. MATERIAL AND METHODS One hundred and nine people were studied, including 91 patients with neurodegenerative Parkinson's (72 patients with Parkinson's disease (PD); 10 with multiple system atrophy (MSA); 9 with corticobasal degeneration (CBD), average age 61.1±7.2 years), and 18 clinically healthy people (average age 55.1±9.2). OS indexes were detected for scoring of redox state in peripheral blood of patients with PD and healthy people (control group). Detection of biochemical indexes was performed in erythrocytes and mononuclear fraction and blood. The activity of glutathione reductase (GR), myeloperoxidase (MPO) and content of reduced glutathione (GSH) was estimated. RESULTS AND CONCLUSIONS OS is a universal mechanism and is observed in many neurodegenerative diseases. However it is possible to identify quite typical changes of redox state with group selection and their correlations with definite subtypes and PD progress, it gives opportunity, in particular, to make the differential diagnosis with atypical Parkinsonism.
Collapse
|
47
|
Gastrointestinal dysfunction in the synucleinopathies. Clin Auton Res 2020; 31:77-99. [PMID: 33247399 DOI: 10.1007/s10286-020-00745-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Interest in gastrointestinal dysfunction in Parkinson's disease has blossomed over the past 30 years and has generated a wealth of investigation into this non-motor aspect of the disorder, research that has encompassed its pathophysiology, its clinical features, and its impact on quality of life. The question of gastrointestinal dysfunction in the other synucleinopathies has not received nearly as much attention, but information and knowledge are growing. In this review, the current knowledge, controversies, and gaps in our understanding of the pathophysiology of gastrointestinal dysfunction in Parkinson's disease and the other synucleinopathies will be addressed, and extended focus will be directed toward the clinical problems involving saliva management, swallowing, gastric emptying, small intestinal function, and bowel function that are so problematic in these disorders.
Collapse
|
48
|
Marmion DJ, Rutkowski AA, Chatterjee D, Hiller BM, Werner MH, Bezard E, Kirik D, McCown T, Gray SJ, Kordower JH. Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. Neurobiol Dis 2020; 148:105184. [PMID: 33221532 DOI: 10.1016/j.nbd.2020.105184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare and extremely debilitating progressive neurodegenerative disease characterized by variable combinations of parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal dysfunction. MSA is a unique synucleinopathy, in which alpha synuclein-rich aggregates are present in the cytoplasm of oligodendroglia. The precise origin of the alpha synuclein (aSyn) found in the glial cytoplasmic inclusions (GCIs) as well the mechanisms of neurodegeneration in MSA remain unclear. Despite this fact, cell and animal models of MSA rely on oligodendroglial overexpression of aSyn. In the present study, we utilized a novel oligotrophic AAV, Olig001, to overexpress aSyn specifically in striatal oligodendrocytes of rats and nonhuman primates in an effort to further characterize our novel viral vector-mediated MSA animal models. Using two cohorts of animals with 10-fold differences in Olig001 vector titers, we show a dose-dependent formation of MSA-like pathology in rats. High titer of Olig001-aSyn in these animals were required to produce the formation of pS129+ and proteinase K resistant aSyn-rich GCIs, demyelination, and neurodegeneration. Using this knowledge, we injected high titer Olig001 in the putamen of cynomolgus macaques. After six months, histological analysis showed that oligodendroglial overexpression of aSyn resulted in the formation of hallmark GCIs throughout the putamen, demyelination, a 44% reduction of striatal neurons and a 12% loss of nigral neurons. Furthermore, a robust inflammatory response similar to MSA was produced in Olig001-aSyn NHPs, including microglial activation, astrogliosis, and a robust infiltration of T cells into the CNS. Taken together, oligodendroglial-specific viral vector-mediated overexpression of aSyn in rats and nonhuman primates faithfully reproduces many of the pathological disease hallmarks found in MSA. Future studies utilizing these large animal models of MSA would prove extremely valuable as a pre-clinical platform to test novel therapeutics that are so desperately needed for MSA.
Collapse
Affiliation(s)
- David J Marmion
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Angela A Rutkowski
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Diptaman Chatterjee
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin M Hiller
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Erwan Bezard
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France; CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, Lund 221 00, Sweden
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Jeon YM, Kwon Y, Jo M, Lee S, Kim S, Kim HJ. The Role of Glial Mitochondria in α-Synuclein Toxicity. Front Cell Dev Biol 2020; 8:548283. [PMID: 33262983 PMCID: PMC7686475 DOI: 10.3389/fcell.2020.548283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) aggregates in neurons and glial cells is widely known to be associated with many neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple system atrophy (MSA). Mitochondrial dysfunction in neurons and glia is known as a key feature of α-syn toxicity. Studies aimed at understanding α-syn-induced toxicity and its role in neurodegenerative diseases have primarily focused on neurons. However, a growing body of evidence demonstrates that glial cells such as microglia and astrocytes have been implicated in the initial pathogenesis and the progression of α-Synucleinopathy. Glial cells are important for supporting neuronal survival, synaptic functions, and local immunity. Furthermore, recent studies highlight the role of mitochondrial metabolism in the normal function of glial cells. In this work, we review the complex relationship between glial mitochondria and α-syn-mediated neurodegeneration, which may provide novel insights into the roles of glial cells in α-syn-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
50
|
Dai DL, Tropea TF, Robinson JL, Suh E, Hurtig H, Weintraub D, Van Deerlin V, Lee EB, Trojanowski JQ, Chen-Plotkin AS. ADNC-RS, a clinical-genetic risk score, predicts Alzheimer's pathology in autopsy-confirmed Parkinson's disease and Dementia with Lewy bodies. Acta Neuropathol 2020; 140:449-461. [PMID: 32749525 PMCID: PMC7864557 DOI: 10.1007/s00401-020-02199-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests overlap between Alzheimer's disease (AD) and Parkinson's disease (PD) pathophysiology in a subset of patients. Indeed, 50-80% of autopsy cases with a primary clinicopathological diagnosis of Lewy body disease (LBD)-most commonly manifesting during life as PD-have concomitant amyloid-beta and tau pathology, the defining pathologies of AD. Here we evaluated common genetic variants in genome-wide association with AD as predictors of concomitant AD pathology in the brains of people with a primary clinicopathological diagnosis of PD or Dementia with Lewy Bodies (DLB), diseases both characterized by neuronal Lewy bodies. In the first stage of our study, 127 consecutive autopsy-confirmed cases of PD or DLB from a single center were assessed for AD neuropathological change (ADNC), and these same cases were genotyped at 20 single nucleotide polymorphisms (SNPs) found by genome-wide association study to associate with risk for AD. In these 127 training set individuals, we developed a logistic regression model predicting the presence of ADNC, using backward stepwise regression for model selection and tenfold cross-validation to estimate performance. The best-fit model generated a risk score for ADNC (ADNC-RS) based on age at disease onset and genotype at three SNPs (APOE, BIN1, and SORL1 loci), with an area under the receiver operating curve (AUC) of 0.751 in our training set. In the replication stage of our study, we assessed model performance in a separate test set of the next 81 individuals genotyped in our center. In the test set, the AUC was 0.781, and individuals with ADNC-RS in the top quintile had four-fold increased likelihood of having AD pathology at autopsy compared with those in each of the lowest two quintiles. Finally, in the validation stage of our study, we applied our ADNC-RS model to 70 LBD individuals from 20 Alzheimer's Disease Research Centers (ADRC) whose autopsy and genetic data were available in the National Alzheimer's Coordinating Center (NACC) database. In this validation set, the AUC was 0.754. Thus, in patients with autopsy-confirmed PD or DLB, a simple model incorporating three AD-risk SNPs and age at disease onset substantially enriches for concomitant AD pathology at autopsy, with implications for identifying LBD patients in which targeting amyloid-beta or tau is a therapeutic strategy.
Collapse
Affiliation(s)
- David L Dai
- Departments of Neurology, University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Thomas F Tropea
- Departments of Neurology, University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - John L Robinson
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eunran Suh
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard Hurtig
- Departments of Neurology, University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Daniel Weintraub
- Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson's Disease and Mental Illness Research, Education and Clinical Centers (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Vivianna Van Deerlin
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Departments of Neurology, University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|