1
|
Mackels L, Aktan D, Depierreux F. Early Levodopa-Induced Motor Complications in RAB39B X-Linked Parkinsonism. Tremor Other Hyperkinet Mov (N Y) 2024; 14:58. [PMID: 39619277 PMCID: PMC11606391 DOI: 10.5334/tohm.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Background While levodopa may benefit some patients with monogenic Parkinson's Disease and parkinsonism, others may exhibit aberrant responses earlier after exposure. Reporting treatment responses in rare genetic parkinsonism will help tailor therapeutic approaches to specific patients subpopulations. Case Report We report the therapeutic response in a patient with RAB39B X-linked parkinsonism, who exhibited motor and non-motor complications within a few months of Levodopa. Discussion Severe and debilitating Levodopa-induced complications can occur very early in the treatment course of X-linked parkinsonism, highlighting the need for an individualized therapeutic approach and follow-up in rare parkinsonian syndromes.
Collapse
Affiliation(s)
- Laurane Mackels
- Neurology Department, Regional Hospital of Liege, Liege, Belgium
| | - David Aktan
- Neurology Department, University Hospital of Liege, Liege, Belgium
- GIGA –CRC in vivoimaging, Rare Movement Disorders Research Group, University of Liege, Liege, Belgium
| | | |
Collapse
|
2
|
Yuan Y, Wang Y, Liu M, Luo H, Liu X, Li L, Mao C, Yang T, Li S, Zhang X, Gao Y, Xu Y, Yang J. Peripheral cutaneous synucleinopathy characteristics in genetic Parkinson's disease. Front Neurol 2024; 15:1404492. [PMID: 38751879 PMCID: PMC11094647 DOI: 10.3389/fneur.2024.1404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Cutaneous phosphorylated alpha-synuclein (p-α-syn) deposition is an important biomarker of idiopathic Parkinson's disease (iPD). Recent studies have reported synucleinopathies in patients with common genetic forms of PD. Objective This study aimed to detect p-α-syn deposition characteristic in rare genetic PD patients with CHCHD2 or RAB39B mutations. Moreover, this study also aimed to describe peripheral alpha-synuclein prion-like activity in genetic PD patients, and acquire whether the cutaneous synucleinopathy characteristics of genetic PD are consistent with central neuropathologies. Methods We performed four skin biopsy samples from the distal leg (DL) and proximal neck (C7) of 161 participants, including four patients with CHCHD2 mutations, two patients with RAB39B mutations, 16 patients with PRKN mutations, 14 patients with LRRK2 mutations, five patients with GBA mutations, 100 iPD patients, and 20 healthy controls. We detected cutaneous synucleinopathies using immunofluorescence staining and a seeding amplification assay (SAA). A systematic literature review was also conducted, involving 64 skin biopsies and 205 autopsies of genetic PD patients with synucleinopathy. Results P-α-syn was deposited in the peripheral cutaneous nerves of PD patients with CHCHD2, LRRK2, or GBA mutations but not in those with RAB39B or PRKN mutations. There were no significant differences in the location or rate of α-syn-positive deposits between genetic PD and iPD patients. Peripheral cutaneous synucleinopathy appears to well represent brain synucleinopathy of genetic PD, especially autosomal dominant PD (AD-PD). Cutaneous α-synuclein SAA analysis of iPD and LRRK2 and GBA mutation patients revealed prion-like activity. Conclusion P-α-syn deposition in peripheral cutaneous nerves, detected using SAA and immunofluorescence staining, may serve as an accurate biomarker for genetic PD and iPD in the future.
Collapse
Affiliation(s)
- Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Guimarães TG, Parmera JB, Castro MAA, Cury RG, Barbosa ER, Kok F. X-Linked Levodopa-Responsive Parkinsonism-Epilepsy Syndrome: A Novel PGK1 Mutation and Literature Review. Mov Disord Clin Pract 2024; 11:556-566. [PMID: 38341651 PMCID: PMC11078492 DOI: 10.1002/mdc3.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Genetic underpinnings in Parkinson's disease (PD) and parkinsonian syndromes are challenging, and recent discoveries regarding their genetic pathways have led to potential gene-specific treatment trials. CASES We report 3 X-linked levodopa (l-dopa)-responsive parkinsonism-epilepsy syndrome cases due to a hemizygous variant in the phosphoglycerate kinase 1 (PGK1) gene. The likely pathogenic variant NM_000291.4 (PGK1):c.950G > A;p.(Gly317Asp) was identified in a hemizygous state. LITERATURE REVIEW Only 8 previous cases have linked this phenotype to PGK1, a gene more commonly associated with hemolytic anemia and myopathy. The unusual association of epilepsy, psychiatric symptoms, action tremor, limb dystonia, cognitive symptoms, and l-dopa-responsive parkinsonism must draw attention to PGK1 mutations, especially because this gene is absent from most commercial hereditary parkinsonism panels. CONCLUSIONS This report aims to shed light on an overlooked gene that causes hereditary parkinsonian syndromes. Further research regarding genetic pathways in PD may provide a better understanding of its pathophysiology and open possibilities for new disease-modifying trials, such as SNCA, LRRK2, PRKN, PINK1, and DJ-1 genes.
Collapse
Affiliation(s)
- Thiago Gonçalves Guimarães
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
- Department of Neurology, Neurogenetics CenterUniversity of São PauloSão PauloBrazil
| | - Jacy Bezerra Parmera
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | | | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | - Fernando Kok
- Department of Neurology, Neurogenetics CenterUniversity of São PauloSão PauloBrazil
| |
Collapse
|
4
|
Dayan R, Shkedi Rafid S, Baker Erdman H, Weill C, Shag A, Meiner V, Arkadir D. Novel RAB39B Mutation Causes Parkinsonism in Males with Developmental Disorder. Mov Disord Clin Pract 2024; 11:306-308. [PMID: 38293822 PMCID: PMC10928327 DOI: 10.1002/mdc3.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Roy Dayan
- Department of Neurology, Hadassah Medical Center and the Faculty of Medicinethe Hebrew UniversityJerusalemIsrael
| | - Shiri Shkedi Rafid
- Department of Genetics, Hadassah Medical Center and the Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Halen Baker Erdman
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew UniversityJerusalemIsrael
| | - Caroline Weill
- Department of Neurology, Hadassah Medical Center and the Faculty of Medicinethe Hebrew UniversityJerusalemIsrael
| | - Avraham Shag
- Department of Genetics, Hadassah Medical Center and the Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center and the Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - David Arkadir
- Department of Neurology, Hadassah Medical Center and the Faculty of Medicinethe Hebrew UniversityJerusalemIsrael
| |
Collapse
|
5
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
6
|
Monfrini E, Arienti F, Rinchetti P, Lotti F, Riboldi GM. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24108995. [PMID: 37240341 DOI: 10.3390/ijms24108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Many conditions can present with accumulation of calcium in the brain and manifest with a variety of neurological symptoms. Brain calcifications can be primary (idiopathic or genetic) or secondary to various pathological conditions (e.g., calcium-phosphate metabolism derangement, autoimmune disorders and infections, among others). A set of causative genes associated with primary familial brain calcification (PFBC) has now been identified, and include genes such as SLC20A2, PDGFB, PDGFRB, XPR1, MYORG, and JAM2. However, many more genes are known to be linked with complex syndromes characterized by brain calcifications and additional neurologic and systemic manifestations. Of note, many of these genes encode for proteins involved in cerebrovascular and blood-brain barrier functions, which both represent key anatomical structures related to these pathological phenomena. As a growing number of genes associated with brain calcifications is identified, pathways involved in these conditions are beginning to be understood. Our comprehensive review of the genetic, molecular, and clinical aspects of brain calcifications offers a framework for clinicians and researchers in the field.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Federica Arienti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Paola Rinchetti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Francesco Lotti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY 10017, USA
| |
Collapse
|
7
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
8
|
Wang Z, Yang D, Jiang Y, Wang Y, Niu M, Wang C, Luo H, Xu H, Li J, Zhang YW, Zhang X. Loss of RAB39B does not alter MPTP-induced Parkinson's disease-like phenotypes in mice. Front Aging Neurosci 2023; 15:1087823. [PMID: 36761179 PMCID: PMC9905435 DOI: 10.3389/fnagi.2023.1087823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder with undetermined etiology. A major pathological hallmark of PD is the progressive degeneration of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in the RAB39B gene, which encodes a neuronal-specific small GTPase RAB39B, have been associated with X-linked intellectual disability and pathologically confirmed early-onset PD in multiple families. However, the role of RAB39B in PD pathogenesis remains elusive. In this study, we treated Rab39b knock-out (KO) mice with MPTP to explore whether RAB39B deficiency could alter MPTP-induced behavioral impairments and dopaminergic neuron degeneration. Surprisingly, we found that MPTP treatment impaired motor activity and led to loss of tyrosine hydroxylase-positive dopaminergic neurons and gliosis in both WT and Rab39b KO mice. However, RAB39B deficiency did not alter MPTP-induced impairments. These results suggest that RAB39B deficiency does not contribute to PD-like phenotypes through compromising dopaminergic neurons in mice; and its role in PD requires further scrutiny.
Collapse
Affiliation(s)
- Zijie Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China,Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Dingting Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China,Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Yiru Jiang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yong Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Mengxi Niu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Chong Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Jingwen Li
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Xiamen University, Xiamen, China,*Correspondence: Xian Zhang, ✉
| |
Collapse
|
9
|
Bellucci A, Longhena F, Spillantini MG. The Role of Rab Proteins in Parkinson's Disease Synaptopathy. Biomedicines 2022; 10:biomedicines10081941. [PMID: 36009486 PMCID: PMC9406004 DOI: 10.3390/biomedicines10081941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/29/2022] Open
Abstract
In patients affected by Parkinson's disease (PD), the most common neurodegenerative movement disorder, the brain is characterized by the loss of dopaminergic neurons in the nigrostriatal system, leading to dyshomeostasis of the basal ganglia network activity that is linked to motility dysfunction. PD mostly arises as an age-associated sporadic disease, but several genetic forms also exist. Compelling evidence supports that synaptic damage and dysfunction characterize the very early phases of either sporadic or genetic forms of PD and that this early PD synaptopathy drives retrograde terminal-to-cell body degeneration, culminating in neuronal loss. The Ras-associated binding protein (Rab) family of small GTPases, which is involved in the maintenance of neuronal vesicular trafficking, synaptic architecture and function in the central nervous system, has recently emerged among the major players in PD synaptopathy. In this manuscript, we provide an overview of the main findings supporting the involvement of Rabs in either sporadic or genetic PD pathophysiology, and we highlight how Rab alterations participate in the onset of early synaptic damage and dysfunction.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-380
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| |
Collapse
|
10
|
Mignogna ML, Ficarella R, Gelmini S, Marzulli L, Ponzi E, Gabellone A, Peschechera A, Alessio M, Margari L, Gentile M, D’Adamo P. Clinical characterization of a novel RAB39B nonstop mutation in a family with ASD and severe ID causing RAB39B downregulation and study of a Rab39b knock down mouse model. Hum Mol Genet 2022; 31:1389-1406. [PMID: 34761259 PMCID: PMC9071400 DOI: 10.1093/hmg/ddab320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) often exist together in patients. The RAB39B gene has been reported to be mutated in ID patients with additional clinical features ranging from ASD, macrocephaly, seizures and/or early-onset parkinsonism. Here, we describe a novel RAB39B nonstop mutation [Xq28; c.640 T > C; p.(*214Glnext*21)] in a family with ASD, severe ID and poor motor coordination, and we assessed the pathogenicity of the mutation. A heterologous cell system and a Rab39b knockdown (KD) murine model, which mimic the nonstop mutation, were used to validate the deleterious effect of the RAB39B mutation. The mutation led to RAB39B protein instability, resulting in its increased degradation and consequent downregulation. Using a Rab39b KD mouse model, we demonstrated that the downregulation of RAB39B led to increased GluA2 lacking Ca2+-permeable AMPAR composition at the hippocampal neuronal surface and increased dendritic spine density that remained in an immature filopodia-like state. These phenotypes affected behavioural performance in a disease-specific manner. Rab39b KD mice revealed impaired social behaviour but intact social recognition. They also showed normal anxiety-like, exploratory and motivational behaviours but impaired working and associative memories. In conclusion, we found a novel RAB39B nonstop variant that segregated in a family with a clinical phenotype including ID, ASD and poor motor coordination. The pathogenicity of mutations causing the downregulation of RAB39B proteins, impacting AMPAR trafficking and dendritic spine morphogenesis, reinforced the idea that AMPAR modulation and dendritic spine assets could be considered hallmarks of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- Molecular Genetics of Intellectual Disability, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Romina Ficarella
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, 70132, Bari, Italy
| | - Susanna Gelmini
- Molecular Genetics of Intellectual Disability, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Marzulli
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Emanuela Ponzi
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, 70132, Bari, Italy
| | - Alessandra Gabellone
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Antonia Peschechera
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Massino Alessio
- Proteome Biochemistry, Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Margari
- Child Neuropsychiatry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Mattia Gentile
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, 70132, Bari, Italy
| | - Patrizia D’Adamo
- Molecular Genetics of Intellectual Disability, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
11
|
Mackels L, Moïse M, Depierreux F. Multimodal imaging of a patient with RAB39B mutation. Neuroradiology 2022; 64:621-625. [PMID: 35088096 DOI: 10.1007/s00234-021-02882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Mutations in RAB39B gene have been linked to intellectual deficiency associated with parkinsonism, also referred as to Waisman syndrome. As it appears to be a very rare cause of Parkinson Disease (PD), with only few cases described in the literature, the typical clinical and radiological features are yet to be determined. In this article, we report and illustrate multimodal brain imaging by computed tomography, magnetic resonance imaging, transcranial ultrasound (US), dopamine transporter single photon emission computed tomography and [18F]-fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) in a 37-year-old man with PD features and mild mental retardation harboring a new RAB39B mutation. We then propose a comparison with data previously published regarding neuroimaging in this condition and present a summary of previous imaging reports. If our patient's results partly support previously described radiological features, they also highlight potential new characteristics of this rare syndrome. To the best of our knowledge, [18F]FDG-PET and transcranial US have never been reported before in this condition. This is therefore the first multimodal brain imaging description of a patient presenting RAB39B mutation.
Collapse
Affiliation(s)
- Laurane Mackels
- Department of Neurology, CHR Citadelle of Liège, Liège, Belgium
| | - Martin Moïse
- Department of Radiology, University Hospital (CHU) of Liège, Liège, Belgium
| | - Frédérique Depierreux
- Department of Neurology, University Hospital (CHU) of Liège, Liège, Belgium.,GIGA - CRC in Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Guadagnolo D, Piane M, Torrisi MR, Pizzuti A, Petrucci S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front Neurol 2021; 12:648588. [PMID: 34630269 PMCID: PMC8494251 DOI: 10.3389/fneur.2021.648588] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder, usually with multifactorial etiology. It is characterized by prominent movement disorders and non-motor symptoms. Movement disorders commonly include bradykinesia, rigidity, and resting tremor. Non-motor symptoms can include behavior disorders, sleep disturbances, hyposmia, cognitive impairment, and depression. A fraction of PD cases instead is due to Parkinsonian conditions with Mendelian inheritance. The study of the genetic causes of these phenotypes has shed light onto common pathogenetic mechanisms underlying Parkinsonian conditions. Monogenic Parkinsonisms can present autosomal dominant, autosomal recessive, or even X-linked inheritance patterns. Clinical presentations vary from forms indistinguishable from idiopathic PD to severe childhood-onset conditions with other neurological signs. We provided a comprehensive description of each condition, discussing current knowledge on genotype-phenotype correlations. Despite the broad clinical spectrum and the many genes involved, the phenotype appears to be related to the disrupted cell function and inheritance pattern, and several assumptions about genotype-phenotype correlations can be made. The interest in these assumptions is not merely speculative, in the light of novel promising targeted therapies currently under development.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| |
Collapse
|
13
|
Morales-Briceno H, Fung VSC, Bhatia KP, Balint B. Parkinsonism and dystonia: Clinical spectrum and diagnostic clues. J Neurol Sci 2021; 433:120016. [PMID: 34642024 DOI: 10.1016/j.jns.2021.120016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The links between the two archetypical basal ganglia disorders, dystonia and parkinsonism, are manifold and stem from clinical observations, imaging studies, animal models and genetics. The combination of both, i.e. the syndrome of dystonia-parkinsonism, is not uncommonly seen in movement disorders clinics and has a myriad of different underlying aetiologies, upon which treatment and prognosis depend. Based on a comprehensive literature review, we delineate the clinical spectrum of disorders presenting with dystonia-parkinsonism. The clinical approach depends primarily on the age at onset, associated neurological or systemic symptoms and neuroimaging. The tempo of disease progression, and the response to L-dopa are further important clues to tailor diagnostic approaches that may encompass dopamine transporter imaging, CSF analysis and, last but not least, genetic testing. Later in life, sporadic neurodegenerative conditions are the most frequent cause, but the younger the patient, the more likely the cause is unravelled by the recent advances of molecular genetics that are focus of this review. Here, knowledge of the associated phenotypic spectrum is key to guide genetic testing and interpretation of test results. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Hugo Morales-Briceno
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Victor S C Fung
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Kailash P Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London WC1N 3BG, United Kingdom
| | - Bettina Balint
- Department of Neurology, University Hospital Heidelberg, Germany.
| |
Collapse
|
14
|
Riboldi GM, Frattini E, Monfrini E, Frucht SJ, Fonzo AD. A Practical Approach to Early-Onset Parkinsonism. JOURNAL OF PARKINSONS DISEASE 2021; 12:1-26. [PMID: 34569973 PMCID: PMC8842790 DOI: 10.3233/jpd-212815] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early-onset parkinsonism (EO parkinsonism), defined as subjects with disease onset before the age of 40 or 50 years, can be the main clinical presentation of a variety of conditions that are important to differentiate. Although rarer than classical late-onset Parkinson’s disease (PD) and not infrequently overlapping with forms of juvenile onset PD, a correct diagnosis of the specific cause of EO parkinsonism is critical for offering appropriate counseling to patients, for family and work planning, and to select the most appropriate symptomatic or etiopathogenic treatments. Clinical features, radiological and laboratory findings are crucial for guiding the differential diagnosis. Here we summarize the most important conditions associated with primary and secondary EO parkinsonism. We also proposed a practical approach based on the current literature and expert opinion to help movement disorders specialists and neurologists navigate this complex and challenging landscape.
Collapse
Affiliation(s)
- Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Emanuele Frattini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Alessio Di Fonzo
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
15
|
Sun H, Wang Z, Zhang Q, Liu Y, Yang J, Liu H, Shi C, Wang Y, Xu Y. Generation of induced pluripotent stem cell line (ZZUi027-A) derived from skin fibroblasts from a Parkinson's disease patient with RAB39B gene mutation. Stem Cell Res 2021; 55:102454. [PMID: 34247111 DOI: 10.1016/j.scr.2021.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease is a common neurogenetic degenerative disease that can be caused by a variety of genetic mutations. RAB39B gene mutations have recently been identified as a cause of Parkinson's disease. We collected skin tissue samples from a family with mutations in RAB39B for our clinical study. Additionally, we constructed patient-derived induced pluripotent stem cells (iPSCs) from the patient's uncle using an unintegrated reprogramming plasmid transfection method to create a reliable cell model for the subsequent study of Parkinson's disease.
Collapse
Affiliation(s)
- Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhuoya Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
16
|
Di Lazzaro G, Magrinelli F, Estevez-Fraga C, Valente EM, Pisani A, Bhatia KP. X-Linked Parkinsonism: Phenotypic and Genetic Heterogeneity. Mov Disord 2021; 36:1511-1525. [PMID: 33960519 DOI: 10.1002/mds.28565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
X-linked parkinsonism encompasses rare heterogeneous disorders mainly inherited as a recessive trait, therefore being more prevalent in males. Recent developments have revealed a complex underlying panorama, including a spectrum of disorders in which parkinsonism is variably associated with additional neurological and non-neurological signs. In particular, a childhood-onset encephalopathy with epilepsy and/or cognitive disability is the most common feature. Their genetic basis is also heterogeneous, with many causative genes and different mutation types ranging from "classical" coding variants to intronic repeat expansions. In this review, we provide an updated overview of the phenotypic and genetic spectrum of the most relevant X-linked parkinsonian syndromes, namely X-linked dystonia-parkinsonism (XDP, Lubag disease), fragile X-associated tremor/ataxia syndrome (FXTAS), beta-propeller protein-associated neurodegeneration (BPAN, NBIA/PARK-WDR45), Fabry disease, Waisman syndrome, methyl CpG-binding protein 2 (MeCP2) spectrum disorder, phosphoglycerate kinase-1 deficiency syndrome (PGK1) and X-linked parkinsonism and spasticity (XPDS). All clinical and radiological features reported in the literature have been reviewed. Epilepsy occasionally represents the symptom of onset, predating parkinsonism even by a few years; action tremor is another common feature along with akinetic-rigid parkinsonism. A focus on the genetic background and its pathophysiological implications is provided. The pathogenesis of these disorders ranges from well-defined metabolic alterations (PGK1) to non-specific lysosomal dysfunctions (XPDS) and vesicular trafficking alterations (Waisman syndrome). However, in other cases it still remains poorly defined. Recognition of the phenotypic and genetic heterogeneity of X-linked parkinsonism has important implications for diagnosis, management, and genetic counseling. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Enza M Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Antonio Pisani
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
17
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
18
|
Koss DJ, Campesan S, Giorgini F, Outeiro TF. Dysfunction of RAB39B-Mediated Vesicular Trafficking in Lewy Body Diseases. Mov Disord 2021; 36:1744-1758. [PMID: 33939203 DOI: 10.1002/mds.28605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Scientific employee with a honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
19
|
Erskine D, Koss D, Korolchuk VI, Outeiro TF, Attems J, McKeith I. Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathol 2021; 141:511-526. [PMID: 33515275 PMCID: PMC7952289 DOI: 10.1007/s00401-021-02266-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Accumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.
Collapse
Affiliation(s)
- Daniel Erskine
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle upon Tyne, UK.
| | - David Koss
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Viktor I Korolchuk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tiago F Outeiro
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Max Planck Institute for Experimental Medicine, Goettingen, Germany
- Scientific Employee With an Honorary Contract at Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Johannes Attems
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian McKeith
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
RAB39B-mediated trafficking of the GluA2-AMPAR subunit controls dendritic spine maturation and intellectual disability-related behaviour. Mol Psychiatry 2021; 26:6531-6549. [PMID: 34035473 PMCID: PMC8760075 DOI: 10.1038/s41380-021-01155-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the RAB39B gene cause X-linked intellectual disability (XLID), comorbid with autism spectrum disorders or early Parkinson's disease. One of the functions of the neuronal small GTPase RAB39B is to drive GluA2/GluA3 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) maturation and trafficking, determining AMPAR subunit composition at glutamatergic postsynaptic neuronal terminals. Taking advantage of the Rab39b knockout murine model, we show that a lack of RAB39B affects neuronal dendritic spine refinement, prompting a more Ca2+-permeable and excitable synaptic network, which correlates with an immature spine arrangement and behavioural and cognitive alterations in adult mice. The persistence of immature circuits is triggered by increased hypermobility of the spine, which is restored by the Ca2+-permeable AMPAR antagonist NASPM. Together, these data confirm that RAB39B controls AMPAR trafficking, which in turn plays a pivotal role in neuronal dendritic spine remodelling and that targeting Ca2+-permeable AMPARs may highlight future pharmaceutical interventions for RAB39B-associated disease conditions.
Collapse
|
21
|
Niu M, Zheng N, Wang Z, Gao Y, Luo X, Chen Z, Fu X, Wang Y, Wang T, Liu M, Yao T, Yao P, Meng J, Zhou Y, Ge Y, Wang Z, Ma Q, Xu H, Zhang YW. RAB39B Deficiency Impairs Learning and Memory Partially Through Compromising Autophagy. Front Cell Dev Biol 2020; 8:598622. [PMID: 33364235 PMCID: PMC7753041 DOI: 10.3389/fcell.2020.598622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
RAB39B is located on the X chromosome and encodes the RAB39B protein that belongs to the RAB family. Mutations in RAB39B are known to be associated with X-linked intellectual disability (XLID), Parkinson’s disease, and autism. However, the patho/physiological functions of RAB39B remain largely unknown. In the present study, we established Rab39b knockout (KO) mice, which exhibited overall normal birth rate and morphologies as wild type mice. However, Rab39b deficiency led to reduced anxiety and impaired learning and memory in 2 months old mice. Deletion of Rab39b resulted in impairments of synaptic structures and functions, with reductions in NMDA receptors in the postsynaptic density (PSD). RAB39B deficiency also compromised autophagic flux at basal level, which could be overridden by rapamycin-induced autophagy activation. Further, treatment with rapamycin partially rescued impaired memory and synaptic plasticity in Rab39b KO mice, without affecting the PSD distribution of NMDA receptors. Together, these results suggest that RAB39B plays an important role in regulating both autophagy and synapse formation, and that targeting autophagy may have potential for treating XLID caused by RAB39B loss-of-function mutations.
Collapse
Affiliation(s)
- Mengxi Niu
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Naizhen Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Zijie Wang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yue Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xianghua Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Zhicai Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xing Fu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyan Wang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ting Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Manqing Liu
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tingting Yao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Peijie Yao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Jian Meng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yunqiang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yunlong Ge
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Mohammad SS, Angiti RR, Biggin A, Morales-Briceño H, Goetti R, Perez-Dueñas B, Gregory A, Hogarth P, Ng J, Papandreou A, Bhattacharya K, Rahman S, Prelog K, Webster RI, Wassmer E, Hayflick S, Livingston J, Kurian M, Chong WK, Dale RC. Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders. Brain Commun 2020; 2:fcaa178. [PMID: 33629063 PMCID: PMC7891249 DOI: 10.1093/braincomms/fcaa178] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Bilateral basal ganglia abnormalities on MRI are observed in a wide variety of childhood disorders. MRI pattern recognition can enable rationalization of investigations and also complement clinical and molecular findings, particularly confirming genomic findings and also enabling new gene discovery. A pattern recognition approach in children with bilateral basal ganglia abnormalities on brain MRI was undertaken in this international multicentre cohort study. Three hundred and five MRI scans belonging to 201 children with 34 different disorders were rated using a standard radiological scoring proforma. In addition, literature review on MRI patterns was undertaken in these 34 disorders and 59 additional disorders reported with bilateral basal ganglia MRI abnormalities. Cluster analysis on first MRI findings from the study cohort grouped them into four clusters: Cluster 1-T2-weighted hyperintensities in the putamen; Cluster 2-T2-weighted hyperintensities or increased MRI susceptibility in the globus pallidus; Cluster 3-T2-weighted hyperintensities in the globus pallidus, brainstem and cerebellum with diffusion restriction; Cluster 4-T1-weighted hyperintensities in the basal ganglia. The 34 diagnostic categories included in this study showed dominant clustering in one of the above four clusters. Inflammatory disorders grouped together in Cluster 1. Mitochondrial and other neurometabolic disorders were distributed across clusters 1, 2 and 3, according to lesions dominantly affecting the striatum (Cluster 1: glutaric aciduria type 1, propionic acidaemia, 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome and thiamine responsive basal ganglia disease associated with SLC19A3), pallidum (Cluster 2: methylmalonic acidaemia, Kearns Sayre syndrome, pyruvate dehydrogenase complex deficiency and succinic semialdehyde dehydrogenase deficiency) or pallidum, brainstem and cerebellum (Cluster 3: vigabatrin toxicity, Krabbe disease). The Cluster 4 pattern was exemplified by distinct T1-weighted hyperintensities in the basal ganglia and other brain regions in genetically determined hypermanganesemia due to SLC39A14 and SLC30A10. Within the clusters, distinctive basal ganglia MRI patterns were noted in acquired disorders such as cerebral palsy due to hypoxic ischaemic encephalopathy in full-term babies, kernicterus and vigabatrin toxicity and in rare genetic disorders such as 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome, thiamine responsive basal ganglia disease, pantothenate kinase-associated neurodegeneration, TUBB4A and hypermanganesemia. Integrated findings from the study cohort and literature review were used to propose a diagnostic algorithm to approach bilateral basal ganglia abnormalities on MRI. After integrating clinical summaries and MRI findings from the literature review, we developed a prototypic decision-making electronic tool to be tested using further cohorts and clinical practice.
Collapse
Affiliation(s)
- Shekeeb S Mohammad
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| | - Rajeshwar Reddy Angiti
- Newborn and Peadiatric Emergency Transport Service (NETS), Bankstown, NSW, Australia
- Department of Neonatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Andrew Biggin
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| | - Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Robert Goetti
- Medical Imaging, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Belen Perez-Dueñas
- Paediatric Neurology Department, Hospital Vall d'Hebrón Universitat Autónoma de Barcelona, Vall d'Hebron Research Institute Barcelona, Barcelona, Spain
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Joanne Ng
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - Kaustuv Bhattacharya
- Western Sydney Genomics Program, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, Institute of Child Health, University College London and Metabolic Unit, Great Ormond Street Hospital, London, UK
| | - Kristina Prelog
- Medical Imaging, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Richard I Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
| | - Evangeline Wassmer
- Department of Paediatric Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Susan Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - John Livingston
- Department of Paediatric Neurology, Leeds Teaching Hospitals Trust, University of Leeds, UK
| | - Manju Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - W Kling Chong
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Russell C Dale
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
23
|
Shi CH, Fan Y, Yang J, Yuan YP, Shen S, Liu F, Mao CY, Liu H, Zhang S, Hu ZW, Fan LY, Li MJ, Fan SH, Liu XJ, Xu YM. NOTCH2NLC Intermediate-Length Repeat Expansions Are Associated with Parkinson Disease. Ann Neurol 2020; 89:182-187. [PMID: 33016348 DOI: 10.1002/ana.25925] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022]
Abstract
NOTCH2NLC GGC repeat expansions were recently identified in neuronal intranuclear inclusion disease (NIID); however, it remains unclear whether they occur in other neurodegenerative disorders. This study aimed to investigate the role of intermediate-length NOTCH2NLC GGC repeat expansions in Parkinson disease (PD). We screened for GGC repeat expansions in a cohort of 1,011 PD patients and identified 11 patients with intermediate-length repeat expansions ranging from 41 to 52 repeats, with no repeat expansions in 1,134 controls. Skin biopsy revealed phospho-alpha-synuclein deposition, confirming the PD diagnosis in 2 patients harboring intermediate-length repeat expansions instead of NIID or essential tremor. Fibroblasts from PD patients harboring intermediate-length repeat expansions revealed NOTCH2NLC upregulation and autophagic dysfunction. Our results suggest that intermediate-length repeat expansions in NOTCH2NLC are potentially associated with PD. ANN NEUROL 2021;89:182-187.
Collapse
Affiliation(s)
- Chang-He Shi
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yan-Peng Yuan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Si Shen
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fen Liu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Cheng-Yuan Mao
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zheng-Wei Hu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Li-Yuan Fan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Meng-Jie Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shi-Heng Fan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiao-Jing Liu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Santoro C, Giugliano T, Bernardo P, Palladino F, Torella A, Del Vecchio Blanco F, Onore ME, Carotenuto M, Nigro V, Piluso G. A novel RAB39B mutation and concurrent de novo NF1 mutation in a boy with neurofibromatosis type 1, intellectual disability, and autism: a case report. BMC Neurol 2020; 20:327. [PMID: 32873259 PMCID: PMC7460788 DOI: 10.1186/s12883-020-01911-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in RAB39B at Xq28 causes a rare form of X-linked intellectual disability (ID) and Parkinson's disease. Neurofibromatosis type 1 (NF1) is caused by heterozygous mutations in NF1 occurring de novo in about 50% of cases, usually due to paternal gonadal mutations. This case report describes clinical and genetic findings in a boy with the occurrence of two distinct causative mutations in NF1 and RAB39B explaining the observed phenotype. CASE PRESENTATION Here we report a 7-year-old boy with multiple café-au-lait macules (CALMs) and freckling, severe macrocephaly, peculiar facial gestalt, severe ID with absent speech, epilepsy, autistic traits, self-harming, and aggressiveness. Proband is an only child born to a father aged 47. Parents did not present signs of NF1, while a maternal uncle showed severe ID, epilepsy, and tremors.By RNA analysis of NF1, we identified a de novo splicing variant (NM_000267.3:c.6579+2T>C) in proband, which explained NF1 clinical features but not the severe ID, behavioral problems, and aggressiveness. Family history suggested an X-linked condition and massively parallel sequencing of X-exome identified a novel RAB39B mutation (NM_171998.2:c.436_447del) in proband, his mother, and affected maternal uncle, subsequently validated by Sanger sequencing in these and other family members. CONCLUSIONS The case presented here highlights how concurrent genetic defects should be considered in NF1 patients when NF1 mutations cannot reasonably explain all the observed clinical features.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Physical and Mental Health, and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Women, Children, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Giugliano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Pia Bernardo
- Department of Neurosciences, Pediatric Hospital Santobono-Pausilipon, Naples, Italy
| | - Federica Palladino
- Department of Women, Children, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Marco Carotenuto
- Department of Physical and Mental Health, and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy.
| |
Collapse
|
25
|
Koss DJ, Bondarevaite O, Adams S, Leite M, Giorgini F, Attems J, Outeiro TF. RAB39B is redistributed in dementia with Lewy bodies and is sequestered within aβ plaques and Lewy bodies. Brain Pathol 2020; 31:120-132. [PMID: 32762091 PMCID: PMC8018064 DOI: 10.1111/bpa.12890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Loss of function mutations within the vesicular trafficking protein Ras analogy in brain 39B (RAB39B) are associated with rare X‐linked Parkinson’s disease (PD). Physiologically, RAB39B is localized to Golgi vesicles and recycling endosomes and is required for glutamatergic receptor maturation but also for alpha‐Synuclein (aSyn) homeostasis and the inhibition of its aggregation. Despite evidence linking RAB39B to neurodegeneration, the involvement of the protein in idiopathic neurodegenerative diseases remains undetermined. Here, analysis of the spatial distribution and expression of RAB39B was conducted in post‐mortem human brain tissue from cases of dementia with Lewy bodies (DLB, n = 10), Alzheimer’s disease (AD, n = 12) and controls (n = 12). Assessment of cortical RAB39B immunoreactivity using tissue microarrays revealed an overall reduction in the area of RAB39B positive gray matter in DLB cases when compared to controls and AD cases. Strikingly, RAB39B co‐localized with beta‐amyloid (Aβ) plaques in all cases examined and was additionally present in a subpopulation of Lewy bodies (LBs) in DLB. Biochemical measures of total RAB39B levels within the temporal cortex were unchanged between DLB, AD and controls. However, upon subcellular fractionation, a reduction of RAB39B in the cytoplasmic pool was found in DLB cases, alongside an increase of phosphorylated aSyn and Aβ in whole tissue lysates. The reduction of cytoplasmic RAB39B is consistent with an impaired reserve capacity for RAB39B‐associated functions, which in turn may facilitate LB aggregation and synaptic impairment. Collectively, our data support the involvement of RAB39B in the pathogenesis of DLB and the co‐aggregation of RAB39B with Aβ in plaques suggests that age‐associated cerebral Aβ pathology may be contributory to the loss of RAB39B. Thus RAB39B, its associated functional pathways and its entrapment in aggregates may be considered as future targets for therapeutic interventions to impede the overall pathological burden and cellular dysfunction in Lewy body diseases.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Odeta Bondarevaite
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Sara Adams
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marta Leite
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
26
|
Tang BL. RAB39B's role in membrane traffic, autophagy, and associated neuropathology. J Cell Physiol 2020; 236:1579-1592. [PMID: 32761840 DOI: 10.1002/jcp.29962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Neuropathological disorders are increasingly associated with dysfunctions in neuronal membrane traffic and autophagy, with defects among members of the Rab family of small GTPases implicated. Mutations in the human Xq28 localized gene RAB39B have been associated with X-linked neurodevelopmental defects including macrocephaly, intellectual disability, autism spectrum disorder (ASD), as well as rare cases of early-onset Parkinson's disease (PD). Despite the finding that RAB39B regulates GluA2 trafficking and could thus influence synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit composition, reasons for the wide-ranging neuropathological consequences associated with RAB39B defects have been unclear. Recent studies have now unraveled possible mechanisms underlying the neuropathological roles of this brain-enriched small GTPase. Studies in RAB39B knockout mice showed that RAB39B interacts with components of Class I phosphatidylinositol-3-kinase (PI3K) signaling. In its absence, the PI3K-AKT-mechanistic target of rapamycin signaling pathway in neural progenitor cells (NPCs) is hyperactivated, which promotes NPC proliferation, leading to macrocephaly and ASD. Pertaining to early-onset PD, a complex of C9orf72, Smith-Magenis syndrome chromosome region candidate 8 and WD repeat domain 41 that functions in autophagy has been identified as a guanine nucleotide exchange factor of RAB39B. Here, recent findings that have shed light on our mechanistic understanding of RAB39B's role in neurodevelopmental and neurodegenerative pathologies are reviewed. Caveats and unanswered questions are also discussed, and future perspectives outlined.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
27
|
Gao Y, Martínez-Cerdeño V, Hogan KJ, McLean CA, Lockhart PJ. Clinical and Neuropathological Features Associated With Loss of RAB39B. Mov Disord 2020; 35:687-693. [PMID: 31951675 DOI: 10.1002/mds.27951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/10/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pathogenic variants in the small GTPase Ras Analogue in Brain 39b (RAB39B) have been linked to the development of early-onset parkinsonism. The study was aimed at delineating the clinical and neuropathological features associated with a previously reported pathogenic variant in RAB39B (c.503C>A p.T168K) and testing for dysregulation of RAB39B in idiopathic PD. METHODS Clinical details of a male individual hemizygous for the T168K variant were collected by systematic review of medical records. Neuropathological studies of fixed brain tissue were performed and steady-state RAB39B levels were determined by western blot analysis. RESULTS Neuropathological examination showed extensive dopaminergic neuron loss, widespread Lewy pathology, and iron accumulation in the substantia nigra. Additional pathology was observed in the hippocampus and thalamus. Western blot analysis demonstrated that the T168K variant results in loss of RAB39B. In individuals with idiopathic PD (n = 10, 6 male/4 female), steady-state RAB39B was significantly reduced in the prefrontal cortex and substantia nigra. CONCLUSIONS T168K RAB39B is unstable in vivo and associated with dopaminergic neuron loss and Lewy pathology. Dysregulation of RAB39B in the prefrontal cortex and substantia nigra of individuals with idiopathic PD potentially implicates the protein more broadly in the pathological mechanisms underlying PD and related Lewy body disorders. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Davis, California, USA
- MIND Institute, UC Davis Medical Center, Davis, California, USA
| | - Kirk J Hogan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Catriona A McLean
- Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Morales-Briceño H, Mohammad SS, Post B, Fois AF, Dale RC, Tchan M, Fung VSC. Clinical and neuroimaging phenotypes of genetic parkinsonism from infancy to adolescence. Brain 2019; 143:751-770. [DOI: 10.1093/brain/awz345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractGenetic early-onset parkinsonism presenting from infancy to adolescence (≤21 years old) is a clinically diverse syndrome often combined with other hyperkinetic movement disorders, neurological and imaging abnormalities. The syndrome is genetically heterogeneous, with many causative genes already known. With the increased use of next-generation sequencing in clinical practice, there have been novel and unexpected insights into phenotype-genotype correlations and the discovery of new disease-causing genes. It is now recognized that mutations in a single gene can give rise to a broad phenotypic spectrum and that, conversely different genetic disorders can manifest with a similar phenotype. Accurate phenotypic characterization remains an essential step in interpreting genetic findings in undiagnosed patients. However, in the past decade, there has been a marked expansion in knowledge about the number of both disease-causing genes and phenotypic spectrum of early-onset cases. Detailed knowledge of genetic disorders and their clinical expression is required for rational planning of genetic and molecular testing, as well as correct interpretation of next-generation sequencing results. In this review we examine the relevant literature of genetic parkinsonism with ≤21 years onset, extracting data on associated movement disorders as well as other neurological and imaging features, to delineate syndromic patterns associated with early-onset parkinsonism. Excluding PRKN (parkin) mutations, >90% of the presenting phenotypes have a complex or atypical presentation, with dystonia, abnormal cognition, pyramidal signs, neuropsychiatric disorders, abnormal imaging and abnormal eye movements being the most common features. Furthermore, several imaging features and extraneurological manifestations are relatively specific for certain disorders and are important diagnostic clues. From the currently available literature, the most commonly implicated causes of early-onset parkinsonism have been elucidated but diagnosis is still challenging in many cases. Mutations in ∼70 different genes have been associated with early-onset parkinsonism or may feature parkinsonism as part of their phenotypic spectrum. Most of the cases are caused by recessively inherited mutations, followed by dominant and X-linked mutations, and rarely by mitochondrially inherited mutations. In infantile-onset parkinsonism, the phenotype of hypokinetic-rigid syndrome is most commonly caused by disorders of monoamine synthesis. In childhood and juvenile-onset cases, common genotypes include PRKN, HTT, ATP13A2, ATP1A3, FBX07, PINK1 and PLA2G6 mutations. Moreover, Wilson’s disease and mutations in the manganese transporter are potentially treatable conditions and should always be considered in the differential diagnosis in any patient with early-onset parkinsonism.
Collapse
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Shekeeb S Mohammad
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Bart Post
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC) Nijmegen, The Netherlands
| | - Alessandro F Fois
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Russell C Dale
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
- Department of Genetic Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
29
|
Niemann N, Jankovic J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 2019; 67:74-89. [DOI: 10.1016/j.parkreldis.2019.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
|
30
|
Coppola U, Ristoratore F, Albalat R, D'Aniello S. The evolutionary landscape of the Rab family in chordates. Cell Mol Life Sci 2019; 76:4117-4130. [PMID: 31028425 PMCID: PMC11105323 DOI: 10.1007/s00018-019-03103-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy
- Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy.
| |
Collapse
|
31
|
Donzuso G, Mostile G, Nicoletti A, Zappia M. Basal ganglia calcifications (Fahr's syndrome): related conditions and clinical features. Neurol Sci 2019; 40:2251-2263. [PMID: 31267306 PMCID: PMC6817747 DOI: 10.1007/s10072-019-03998-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Basal ganglia calcifications could be incidental findings up to 20% of asymptomatic patients undergoing CT or MRI scan. The presence of neuropsychiatric symptoms associated with bilateral basal ganglia calcifications (which could occur in other peculiar brain structures, such as dentate nuclei) identifies a clinical picture defined as Fahr's Disease. This denomination mainly refers to idiopathic forms in which no metabolic or other underlying causes are identified. Recently, mutations in four different genes (SLC20A2, PDGFRB, PDGFB, and XPR1) were identified, together with novel mutations in the Myogenic Regulating Glycosylase gene, causing the occurrence of movement disorders, cognitive decline, and psychiatric symptoms. On the other hand, secondary forms, also identified as Fahr's syndrome, have been associated with different conditions: endocrine abnormalities of PTH, such as hypoparathyroidism, other genetically determined conditions, brain infections, or toxic exposure. The underlying pathophysiology seems to be related to an abnormal calcium/phosphorus homeostasis and transportation and alteration of the blood-brain barrier.
Collapse
Affiliation(s)
- Giulia Donzuso
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giovanni Mostile
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Mario Zappia
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
32
|
Monin M, Lesage S, Brice A. Basi molecolari della malattia di Parkinson. Neurologia 2019. [DOI: 10.1016/s1634-7072(18)41584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Zhang X, Huang TY, Yancey J, Luo H, Zhang YW. Role of Rab GTPases in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:828-838. [PMID: 30261139 DOI: 10.1021/acschemneuro.8b00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) comprises two major pathological hallmarks: extraneuronal deposition of β-amyloid (Aβ) peptides ("senile plaques") and intraneuronal aggregation of the microtubule-associated protein tau ("neurofibrillary tangles"). Aβ is derived from sequential cleavage of the β-amyloid precursor protein by β- and γ-secretases, while aggregated tau is hyperphosphorylated in AD. Mounting evidence suggests that dysregulated trafficking of these AD-related proteins contributes to AD pathogenesis. Rab proteins are small GTPases that function as master regulators of vesicular transport and membrane trafficking. Multiple Rab GTPases have been implicated in AD-related protein trafficking, and their expression has been observed to be altered in postmortem AD brain. Here we review current implicated roles of Rab GTPase dysregulation in AD pathogenesis. Further elucidation of the pathophysiological role of Rab GTPases will likely reveal novel targets for AD therapeutics.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Joel Yancey
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
34
|
Gao Y, Wilson GR, Bozaoglu K, Elefanty AG, Stanley EG, Dottori M, Lockhart PJ. Generation of RAB39B knockout isogenic human embryonic stem cell lines to model RAB39B-mediated Parkinson's disease. Stem Cell Res 2018; 28:161-164. [DOI: 10.1016/j.scr.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
|
35
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:196-207. [DOI: 10.1002/mds.27270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Gabrielle R. Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Matthew J. Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre of Applied Neurogenetics, Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
36
|
Wang Y, Sun H, Wang Z, Yang Z, Shi M, Yang J, Liu Y, Liu H, Zhang S, Shi C, Xu Y. Generation of induced pluripotent stem cell line (ZZUi005-A) from a 21-year-old patient with a novel RAB39B gene mutation in X-linked juvenile parkinsonism. Stem Cell Res 2017; 25:132-135. [DOI: 10.1016/j.scr.2017.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022] Open
|
37
|
Abstract
PURPOSE OF REVIEW This article reviews was to review genes where putative or confirmed pathogenic mutations causing Parkinson's disease or Parkinsonism have been identified since 2012, and summarizes the clinical and pathological picture of the associated disease subtypes. RECENT FINDINGS Newly reported genes for dominant Parkinson's disease are DNAJC13, CHCHD2, and TMEM230. However, the evidence for a disease-causing role is not conclusive, and further genetic and functional studies are warranted. RIC3 mutations have been reported from one family but not yet encountered in other patients. New genes for autosomal recessive disease include SYNJ1, DNAJC6, VPS13C, and PTRHD1. Deletions of a region on chromosome 22 (22q11.2del) are also associated with early-onset PD, but the mode of inheritance and the underlying causative gene remain unclear. PODXL mutations were reported in autosomal recessive PD, but their roles remain to be confirmed. Mutations in RAB39B cause an X-linked Parkinsonian disorder. Mutations in the new dominant PD genes have generally been found in medium- to late-onset Parkinson's disease. Many mutations in the new recessive and X-chromosomal genes cause severe atypical juvenile Parkinsonism, but less devastating mutations in these genes may cause PD.
Collapse
Affiliation(s)
- Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden.
- Department for Neurology, Skåne University Hospital, Getingevägen 4, 224 67, Lund, Sweden.
| |
Collapse
|
38
|
Ciammola A, Carrera P, Di Fonzo A, Sassone J, Villa R, Poletti B, Ferrari M, Girotti F, Monfrini E, Buongarzone G, Silani V, Cinnante CM, Mignogna ML, D'Adamo P, Bonati MT. X-linked Parkinsonism with Intellectual Disability caused by novel mutations and somatic mosaicism in RAB39B gene. Parkinsonism Relat Disord 2017; 44:142-146. [PMID: 28851564 DOI: 10.1016/j.parkreldis.2017.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND RAB39B pathogenic variants cause X-linked Parkinsonism associated with Intellectual Disability, known as Waisman syndrome, a very rare disorder that has been mainly identified through exome sequencing in large Parkinson's disease cohorts. In this study we searched for pathogenic variants in RAB39B in two Italian families affected by X-linked early-onset Parkinsonism and Intellectual Disability. METHODS Three patients received neurological evaluation and underwent RAB39B sequencing. RESULTS Two novel RAB39B frameshift variants were found to result in the absence of RAB39B protein (family 1: c.137dupT; family 2: c.371delA). Patients showed unilateral rest tremor and bradykinesia; one of them also displayed an early-onset postural tremor. Paramagnetic substance deposition in the substantia nigra, globus pallidi, red nucleus, putamen and pulvinar was assessed by brain imaging. Two patients also showed moderate calcification of globus pallidi. CONCLUSION In this study we highlight the evidence that X-linked early-onset Parkinsonism associated with Intellectual Disability occurs as a pattern of clinical and neuroimaging features attributable to RAB39B pathogenic variants.
Collapse
Affiliation(s)
- Andrea Ciammola
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Milan, Italy
| | - Paola Carrera
- IRCCS San Raffaele Scientific Institute, Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, Milan, Italy; IRCCS San Raffaele Scientific Institute Laboratory of Clinical Molecular Biology, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jenny Sassone
- San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Roberta Villa
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Milan, Italy
| | - Maurizio Ferrari
- IRCCS San Raffaele Scientific Institute Laboratory of Clinical Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Chair of Clinical Pathology, Milan, Italy
| | - Floriano Girotti
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriele Buongarzone
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Vincenzo Silani
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Maria Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Lidia Mignogna
- Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia D'Adamo
- Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
39
|
Shi MM, Shi CH, Xu YM. Rab GTPases: The Key Players in the Molecular Pathway of Parkinson's Disease. Front Cell Neurosci 2017; 11:81. [PMID: 28400718 PMCID: PMC5369176 DOI: 10.3389/fncel.2017.00081] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive movement disorder with multiple non-motor symptoms. Although family genetic mutations only account for a small proportion of the cases, these mutations have provided several lines of evidence for the pathogenesis of PD, such as mitochondrial dysfunction, protein misfolding and aggregation, and the impaired autophagy-lysosome system. Recently, vesicle trafficking defect has emerged as a potential pathogenesis underlying this disease. Rab GTPases, serving as the core regulators of cellular membrane dynamics, may play an important role in the molecular pathway of PD through the complex interplay with numerous factors and PD-related genes. This might shed new light on the potential therapeutic strategies. In this review, we emphasize the important role of Rab GTPases in vesicle trafficking and summarize the interactions between Rab GTPases and different PD-related genes.
Collapse
Affiliation(s)
- Meng-Meng Shi
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| | - Chang-He Shi
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, The first affiliated Hospital, Zhengzhou University Zhengzhou, China
| |
Collapse
|
40
|
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci 2017; 18:E551. [PMID: 28273839 PMCID: PMC5372567 DOI: 10.3390/ijms18030551] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most important age-related neurodegenerative disorder in developed societies, after Alzheimer's disease, with a prevalence ranging from 41 per 100,000 in the fourth decade of life to over 1900 per 100,000 in people over 80 years of age. As a movement disorder, the PD phenotype is characterized by rigidity, resting tremor, and bradykinesia. Parkinson's disease -related neurodegeneration is likely to occur several decades before the onset of the motor symptoms. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. Parkinson's disease neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta, with widespread involvement of other central nervous system (CNS) structures and peripheral tissues. Pathogenic mechanisms associated with genomic, epigenetic and environmental factors lead to conformational changes and deposits of key proteins due to abnormalities in the ubiquitin-proteasome system together with dysregulation of mitochondrial function and oxidative stress. Conventional pharmacological treatments for PD are dopamine precursors (levodopa, l-DOPA, l-3,4 dihidroxifenilalanina), and other symptomatic treatments including dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine), monoamine oxidase (MAO) inhibitors (selegiline, rasagiline), and catechol-O-methyltransferase (COMT) inhibitors (entacapone, tolcapone). The chronic administration of antiparkinsonian drugs currently induces the "wearing-off phenomenon", with additional psychomotor and autonomic complications. In order to minimize these clinical complications, novel compounds have been developed. Novel drugs and bioproducts for the treatment of PD should address dopaminergic neuroprotection to reduce premature neurodegeneration in addition to enhancing dopaminergic neurotransmission. Since biochemical changes and therapeutic outcomes are highly dependent upon the genomic profiles of PD patients, personalized treatments should rely on pharmacogenetic procedures to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
| |
Collapse
|