1
|
Boström E, Bachhav SS, Xiong H, Zadikoff C, Li Q, Cohen E, Dreher I, Torrång A, Osswald G, Moge M, Appelkvist P, Fälting J, Odergren T. Safety, Tolerability, and Pharmacokinetics of Single Doses of Exidavnemab (BAN0805), an Anti-α-Synuclein Antibody, in Healthy Western, Caucasian, Japanese, and Han Chinese Adults. J Clin Pharmacol 2024; 64:1432-1442. [PMID: 39105497 DOI: 10.1002/jcph.6103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Exidavnemab is a monoclonal antibody (mAb) with a high affinity and selectivity for pathological aggregated forms of α-synuclein and a low affinity for physiological monomers, which is in clinical development as a disease-modifying treatment for patients with synucleinopathies such as Parkinson's disease. Safety, tolerability, pharmacokinetics, immunogenicity, and exploratory biomarkers were assessed in two separate Phase 1 single ascending dose studies, including single intravenous (IV) (100 to 6000 mg) or subcutaneous (SC) (300 mg) administration of exidavnemab in healthy volunteers (HVs). Across the two studies, a total of 98 Western, Caucasian, Japanese, and Han Chinese HVs were enrolled, of which 95 completed the study. Exidavnemab was generally well tolerated. There were no serious adverse events or safety issues identified in laboratory analyses. Headache, asymptomatic COVID-19, back pain, and post lumbar puncture syndrome were the most frequently reported treatment-emergent adverse events. Following IV infusion, the pharmacokinetics of exidavnemab was approximately dose linear in the range 100-6000 mg. The terminal half-life was approximately 30 days, and the exposure was comparable across Western, Caucasian, Japanese, and Han Chinese volunteers. The absolute SC bioavailability was ∼71%. Cerebrospinal fluid exposure relative to serum after single dose was within the range expected for mAbs (approximately 0.2%). The anti-drug antibody rates were low and there was no effect of immunogenicity on the pharmacokinetics or safety. Dose-dependent reduction of free α-synuclein in plasma was observed. In summary, exidavnemab was found to have an excellent pharmacokinetic profile and was well tolerated in HVs, supporting the continued clinical development.
Collapse
|
2
|
Liekniņa I, Reimer L, Panteļejevs T, Lends A, Jaudzems K, El-Turabi A, Gram H, Hammi A, Jensen PH, Tārs K. Structural basis of epitope recognition by anti-alpha-synuclein antibodies MJFR14-6-4-2. NPJ Parkinsons Dis 2024; 10:206. [PMID: 39463404 PMCID: PMC11514253 DOI: 10.1038/s41531-024-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Alpha-synuclein (α-syn) inclusions in the brain are hallmarks of so-called Lewy body diseases. Lewy bodies contain mainly aggregated α-syn together with some other proteins. Monomeric α-syn lacks a well-defined three-dimensional structure, but it can aggregate into oligomeric and fibrillar amyloid species, which can be detected using specific antibodies. Here we investigate the aggregate specificity of monoclonal MJFR14-6-4-2 antibodies. We conclude that partial masking of epitope in unstructured monomer in combination with a high local concentration of epitopes is the main reason for MJFR14-6-4-2 selectivity towards aggregates. Based on the structural insight, we produced mutant α-syn that when fibrillated is unable to bind MJFR14-6-4-2. Using these fibrils as a tool for seeding cellular α-syn aggregation, provides superior signal/noise ratio for detection of cellular α-syn aggregates by MJFR14-6-4-2. Our data provide a molecular level understanding of specific recognition of toxic amyloid oligomers, which is critical for the development of inhibitors against synucleinopathies.
Collapse
Affiliation(s)
- Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia
| | - Lasse Reimer
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Teodors Panteļejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Alons Lends
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
- University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| | - Aadil El-Turabi
- University of Oxford, Jenner Institute, Nuffield Department of Medicine, OX3 7DQ, Oxford, UK
| | - Hjalte Gram
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Anissa Hammi
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Poul Henning Jensen
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark.
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia.
- University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia.
| |
Collapse
|
3
|
Makey DM, Gadkari VV, Kennedy RT, Ruotolo BT. Cyclic Ion Mobility-Mass Spectrometry and Tandem Collision Induced Unfolding for Quantification of Elusive Protein Biomarkers. Anal Chem 2024; 96:6021-6029. [PMID: 38557001 PMCID: PMC11081454 DOI: 10.1021/acs.analchem.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sensitive analytical techniques that are capable of detecting and quantifying disease-associated biomolecules are indispensable in our efforts to understand disease mechanisms and guide therapeutic intervention through early detection, accurate diagnosis, and effective monitoring of disease. Parkinson's Disease (PD), for example, is one of the most prominent neurodegenerative disorders in the world, but the diagnosis of PD has primarily been based on the observation of clinical symptoms. The protein α-synuclein (α-syn) has emerged as a promising biomarker candidate for PD, but a lack of analytical methods to measure complex disease-associated variants of α-syn has prevented its widespread use as a biomarker. Antibody-based methods such as immunoassays and mass spectrometry-based approaches have been used to measure a limited number of α-syn forms; however, these methods fail to differentiate variants of α-syn that display subtle differences in only the sequence and structure. In this work, we developed a cyclic ion mobility-mass spectrometry method that combines multiple stages of activation and timed ion selection to quantify α-syn variants using both mass- and structure-based measurements. This method can allow for the quantification of several α-syn variants present at physiological levels in biological fluid. Taken together, this approach can be used to galvanize future efforts aimed at understanding the underlying mechanisms of PD and serves as a starting point for the development of future protein-structure-based diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Devin M. Makey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Cheslow L, Snook AE, Waldman SA. Biomarkers for Managing Neurodegenerative Diseases. Biomolecules 2024; 14:398. [PMID: 38672416 PMCID: PMC11048498 DOI: 10.3390/biom14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Neurological disorders are the leading cause of cognitive and physical disability worldwide, affecting 15% of the global population. Due to the demographics of aging, the prevalence of neurological disorders, including neurodegenerative diseases, will double over the next two decades. Unfortunately, while available therapies provide symptomatic relief for cognitive and motor impairment, there is an urgent unmet need to develop disease-modifying therapies that slow the rate of pathological progression. In that context, biomarkers could identify at-risk and prodromal patients, monitor disease progression, track responses to therapy, and parse the causality of molecular events to identify novel targets for further clinical investigation. Thus, identifying biomarkers that discriminate between diseases and reflect specific stages of pathology would catalyze the discovery and development of therapeutic targets. This review will describe the prevalence, known mechanisms, ongoing or recently concluded therapeutic clinical trials, and biomarkers of three of the most prevalent neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
6
|
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, Chowdhury S, Coffey C, Concha-Marambio L, Dam T, DiBiaso P, Foroud T, Frasier M, Gochanour C, Jennings D, Kieburtz K, Kopil CM, Merchant K, Mollenhauer B, Montine T, Nudelman K, Pagano G, Seibyl J, Sherer T, Singleton A, Stephenson D, Stern M, Soto C, Tanner CM, Tolosa E, Weintraub D, Xiao Y, Siderowf A, Dunn B, Marek K. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23:178-190. [PMID: 38267190 DOI: 10.1016/s1474-4422(23)00405-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Teresa Buracchio
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Campbell
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sohini Chowdhury
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | | | - Peter DiBiaso
- Patient Advisory Council, New York, NY, USA; Clinical Solutions and Strategic Partnerships, WCG Clinical, Princeton, NJ, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Gochanour
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Thomas Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Singleton
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diane Stephenson
- Critical Path for Parkinson's, Critical Path Institute, Tucson, AZ, USA
| | - Matthew Stern
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Soto
- Amprion, San Diego, CA, USA; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA; Parkinson's Disease Research Education and Clinical Center, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Weintraub
- University of Pennsylvania and the Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Yuge Xiao
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy Dunn
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
7
|
Lima MMS, Targa ADS, Dos Santos Lima GZ, Cavarsan CF, Torterolo P. Macro and micro-sleep dysfunctions as translational biomarkers for Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:187-209. [PMID: 38341229 DOI: 10.1016/bs.irn.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep disturbances are highly prevalent among patients with Parkinson's disease (PD) and often appear from the early-phase disease or prodromal stages. In this chapter, we will discuss the current evidence addressing the links between sleep dysfunctions in PD, focusing most closely on those data from animal and mathematical/computational models, as well as in human-based studies that explore the electrophysiological and molecular mechanisms by which PD and sleep may be intertwined, whether as predictors or consequences of the disease. It is possible to clearly state that leucine-rich repeat kinase 2 gene (LRRK2) is significantly related to alterations in sleep architecture, particularly affecting rapid eye movement (REM) sleep and non-REM sleep, thus impacting sleep quality. Also, decreases in gamma power, observed after dopaminergic lesions, correlates negatively with the degree of injury, which brings other levels of understanding the impacts of the disease. Besides, abnormal synchronized oscillations among basal ganglia nuclei can be detrimental for information processing considering both motor and sleep-related processes. Altogether, despite clear advances in the field, it is still difficult to definitely establish a comprehensive understanding of causality among all the sleep dysfunctions with the disease itself. Although, certainly, the search for biomarkers is helping in shortening this road towards a better and faster diagnosis, as well as looking for more efficient treatments.
Collapse
Affiliation(s)
- Marcelo M S Lima
- Neurophysiology Laboratory, Department of Physiology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Adriano D S Targa
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Gustavo Z Dos Santos Lima
- Science and Technology School, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Clarissa F Cavarsan
- College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Pablo Torterolo
- Laboratory of Sleep Neurobiology, Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Tamvaka N, Manne S, Kondru N, Ross OA. Pick's Disease, Seeding an Answer to the Clinical Diagnosis Conundrum. Biomedicines 2023; 11:1646. [PMID: 37371741 DOI: 10.3390/biomedicines11061646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Pick's disease (PiD) is a devastating neurodegenerative disease that is characterized by dementia, frontotemporal lobar degeneration, and the aggregation of 3R tau in pathognomonic inclusions known as Pick bodies. The term PiD has adopted many meanings since its conception in 1926, but it is currently used as a strictly neuropathological term, since PiD patients cannot be diagnosed during life. Due to its rarity, PiD remains significantly understudied, and subsequently, the etiology and pathomechanisms of the disease remain to be elucidated. The study of PiD and the preferential 3R tau accumulation that is unique to PiD is imperative in order to expand the current understanding of the disease and inform future studies and therapeutic development, since the lack of intervention strategies for tauopathies remains an unmet need. Yet, the lack of an antemortem diagnostic test for the disease has further complicated the study of PiD. The development of a clinical diagnostic assay for PiD will be a vital step in the study of the disease that will greatly contribute to therapeutic research, clinical trial design and patient recruitment and ultimately improve patient outcomes. Seed aggregation assays have shown great promise for becoming ante mortem clinical diagnostic tools for many proteinopathies, including tauopathies. Future research on adapting and optimizing current seed aggregation assays to successfully detect 3R tau pathogenic forms from PiD samples will be critical in establishing a 3R tau specific seed aggregation assay that can be used for clinical diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sireesha Manne
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
9
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Brumm MC, Siderowf A, Simuni T, Burghardt E, Choi SH, Caspell-Garcia C, Chahine LM, Mollenhauer B, Foroud T, Galasko D, Merchant K, Arnedo V, Hutten SJ, O’Grady AN, Poston KL, Tanner CM, Weintraub D, Kieburtz K, Marek K, Coffey CS. Parkinson's Progression Markers Initiative: A Milestone-Based Strategy to Monitor Parkinson's Disease Progression. JOURNAL OF PARKINSON'S DISEASE 2023; 13:899-916. [PMID: 37458046 PMCID: PMC10578214 DOI: 10.3233/jpd-223433] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Identifying a meaningful progression metric for Parkinson's disease (PD) that reflects heterogeneity remains a challenge. OBJECTIVE To assess the frequency and baseline predictors of progression to clinically relevant motor and non-motor PD milestones. METHODS Using data from the Parkinson's Progression Markers Initiative (PPMI) de novo PD cohort, we monitored 25 milestones across six domains ("walking and balance"; "motor complications"; "cognition"; "autonomic dysfunction"; "functional dependence"; "activities of daily living"). Milestones were intended to be severe enough to reflect meaningful disability. We assessed the proportion of participants reaching any milestone; evaluated which occurred most frequently; and conducted a time-to-first-event analysis exploring whether baseline characteristics were associated with progression. RESULTS Half of participants reached at least one milestone within five years. Milestones within the cognitive, functional dependence, and autonomic dysfunction domains were reached most often. Among participants who reached a milestone at an annual follow-up visit and remained active in the study, 82% continued to meet criteria for any milestone at one or more subsequent annual visits and 55% did so at the next annual visit. In multivariable analysis, baseline features predicting faster time to reaching a milestone included age (p < 0.0001), greater MDS-UPDRS total scores (p < 0.0001), higher GDS-15 depression scores (p = 0.0341), lower dopamine transporter binding (p = 0.0043), and lower CSF total α-synuclein levels (p = 0.0030). Symptomatic treatment was not significantly associated with reaching a milestone (p = 0.1639). CONCLUSION Clinically relevant milestones occur frequently, even in early PD. Milestones were significantly associated with baseline clinical and biological markers, but not with symptomatic treatment. Further studies are necessary to validate these results, further assess the stability of milestones, and explore translating them into an outcome measure suitable for observational and therapeutic studies.
Collapse
Affiliation(s)
- Michael C. Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elliot Burghardt
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Lana M. Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena Klinik, Kassel, Germany
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, CA, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vanessa Arnedo
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Samantha J. Hutten
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Alyssa N. O’Grady
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, SanFrancisco, CA, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Daniel Weintraub
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departmentof Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Christopher S. Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - on behalf of the Parkinson’s Progression Markers Initiative
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of California, San Diego, CA, USA
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, SanFrancisco, CA, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Departmentof Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
11
|
Erythrocytic alpha-synuclein in early Parkinson's disease: A 3-year longitudinal study. Parkinsonism Relat Disord 2022; 104:44-48. [PMID: 36228514 DOI: 10.1016/j.parkreldis.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Early diagnosis of Parkinson's disease (PD) could significantly improve outcomes for patients and future disease-modifying treatments. Several studies have revealed that α-synuclein levels in peripheral erythrocytes are associated with PD, but the diagnostic value in early PD is still unknown. METHODS This study included both cross-sectional and longitudinal design. The subjects included 45 patients with early PD and 79 age-matched healthy controls. Participants were re-examined with repeated blood collection and clinical assessments after 3 years. The electrochemiluminescence assay was used to measure total and oligomeric α-synuclein levels respectively. The diagnostic value of erythrocytic α-synuclein for early PD was determined by receiver operator characteristic (ROC) curve. Correlations between RBC α-synuclein levels and changes over 3 years in clinical characteristic scores were further investigated with a linear regression. RESULTS Total and oligomeric α-synuclein levels in erythrocyte were significantly increased in early PD groups compared with control group (Total α-synuclein, p < 0.001; Oligomer, p < 0.001). Levels of total and oligomeric α-synuclein in erythrocytes were correlated with MDS-UPDRS III scores in early PD (Total α-synuclein, p = 0.008; Oligomer, p = 0.037). After adjusting for age, gender and dopaminergic medication, an association was found between higher erythrocytic oligomeric α-synuclein levels at baseline and greater increase in MDS-UPDRS III scores over 3 years (p = 0.007). CONCLUSION Our study suggests that total and oligomeric α-synuclein in erythrocyte were elevated even in the initial motor stage of PD. Higher erythrocytic oligomeric α-synuclein levels at baseline predicts a faster clinical decline over time in patients with early PD.
Collapse
|
12
|
Valencia J, Ferreira M, Merino-Torres JF, Marcilla A, Soriano JM. The Potential Roles of Extracellular Vesicles as Biomarkers for Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911508. [PMID: 36232833 PMCID: PMC9569867 DOI: 10.3390/ijms231911508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is a slowly progressive neurodegenerative disorder, characterized by the misfolding and aggregation of α-synuclein (α-syn) into Lewy bodies and the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The urge for an early diagnosis biomarker comes from the fact that clinical manifestations of PD are estimated to appear once the substantia nigra has deteriorated and there has been a reduction of the dopamine levels from the striatum. Nowadays, extracellular vesicles (EVs) play an important role in the pathogenesis of neuro-degenerative diseases as PD. A systematic review dated August 2022 was carried out with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses with the aim to analyze the potential role of EVs as biomarkers for PD. From a total of 610 articles retrieved, 29 were eligible. This review discusses the role of EVs biochemistry and their cargo proteins, such as α-syn and DJ-1 among others, detected by a proteomic analysis as well as miRNAs and lncRNAs, as potential biomarkers that can be used to create standardized protocols for early PD diagnosis as well as to evaluate disease severity and progression.
Collapse
Affiliation(s)
- Jessica Valencia
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
| | - Marta Ferreira
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
| | - J. Francisco Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Valencia, Spain
| | - Antonio Marcilla
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Department of Pharmacy and Pharmaceutic Technology and Parasitology, University of Valencia, 46010 Burjassot, Valencia, Spain
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Correspondence:
| |
Collapse
|
13
|
Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson's disease and other synucleinopathies. NPJ Parkinsons Dis 2022; 8:93. [PMID: 35869066 PMCID: PMC9307631 DOI: 10.1038/s41531-022-00357-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disease, develops and progresses for 10–15 years before the clinical diagnostic symptoms of the disease are manifested. Furthermore, several aspects of PD pathology overlap with other neurodegenerative diseases (NDDs) linked to alpha-synuclein (aSyn) aggregation, also called synucleinopathies. Therefore, there is an urgent need to discover and validate early diagnostic and prognostic markers that reflect disease pathophysiology, progression, severity, and potential differences in disease mechanisms between PD and other NDDs. The close association between aSyn and the development of pathology in synucleinopathies, along with the identification of aSyn species in biological fluids, has led to increasing interest in aSyn species as potential biomarkers for early diagnosis of PD and differentiate it from other synucleinopathies. In this review, we (1) provide an overview of the progress toward mapping the distribution of aSyn species in the brain, peripheral tissues, and biological fluids; (2) present comparative and critical analysis of previous studies that measured total aSyn as well as other species such as modified and aggregated forms of aSyn in different biological fluids; and (3) highlight conceptual and technical gaps and challenges that could hinder the development and validation of reliable aSyn biomarkers; and (4) outline a series of recommendations to address these challenges. Finally, we propose a combined biomarker approach based on integrating biochemical, aggregation and structure features of aSyn, in addition to other biomarkers of neurodegeneration. We believe that capturing the diversity of aSyn species is essential to develop robust assays and diagnostics for early detection, patient stratification, monitoring of disease progression, and differentiation between synucleinopathies. This could transform clinical trial design and implementation, accelerate the development of new therapies, and improve clinical decisions and treatment strategies.
Collapse
|
14
|
Petricca L, Chiki N, Hanna-El-Daher L, Aeschbach L, Burai R, Stoops E, Fares MB, Lashuel HA. Comparative Analysis of Total Alpha-Synuclein (αSYN) Immunoassays Reveals That They Do Not Capture the Diversity of Modified αSYN Proteoforms. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1449-1462. [PMID: 35527570 PMCID: PMC9398082 DOI: 10.3233/jpd-223285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: The development of therapeutics for Parkinson’s disease (PD) requires the establishment of biomarker assays to enable stratifying patients, monitoring disease progression, and assessing target engagement. Attempts to develop diagnostic assays based on detecting levels of the α-synuclein (αSYN) protein, a central player in the pathogenesis of PD, have yielded inconsistent results. Objective: To determine whether the three commercial kits that have been extensively used for total αSYN quantification in human biological fluids (from Euroimmun, MSD, and Biolegend) are capable of capturing the diversity and complexity of relevant αSYN proteoforms. Methods: We investigated and compared the ability of the different assays to detect the diversity of αSYN proteoforms using a library of αSYN proteins that comprise the majority of disease-relevant αSYN variants and post-translational modifications (PTMs). Results: Our findings showed that none of the three tested immunoassays accurately capture the totality of relevant αSYN species, and that these assays are unable to recognize most disease-associated C-terminally truncated variants of αSYN. Moreover, several N-terminal truncations and phosphorylation/nitration PTMs differentially modify the level of αSYN detection and recovery by different immunoassays, and a CSF matrix effect was observed for most of the αSYN proteoforms analyzed by the three immunoassays. Conclusion: Our results show that the tested immunoassays do not capture the totality of the relevant αSYN species and therefore may not be appropriate tools to provide an accurate measure of total αSYN levels in samples containing modified forms of the protein. This highlights the need for next generation αSYN immunoassays that capture the diversity of αSYN proteoforms.
Collapse
Affiliation(s)
| | - Nour Chiki
- ND Biosciences SA, Epalinges, Switzerland
| | - Layane Hanna-El-Daher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorène Aeschbach
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences NV, Technologiepark 94 - Bio Incubator, Gent, Belgium
| | | | - Hilal A Lashuel
- ND Biosciences SA, Epalinges, Switzerland.,Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute,Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Pons ML, Loftus N, Vialaret J, Moreau S, Lehmann S, Hirtz C. Proteomics Challenges for the Assessment of Synuclein Proteoforms as Clinical Biomarkers in Parkinson’s Disease. Front Aging Neurosci 2022; 14:818606. [PMID: 35431896 PMCID: PMC9009522 DOI: 10.3389/fnagi.2022.818606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is a complex neurodegenerative disorder resulting in a multifaceted clinical presentation which includes bradykinesia combined with either rest tremor, rigidity, or both, as well as many non-motor symptoms. The motor features of the disorder are associated with the pathological form of alpha synuclein aggregates and fibrils in Lewy bodies and loss of dopaminergic neurons in the substantia nigra. Parkinson’s disease is increasingly considered as a group of underlying disorders with unique genetic, biological, and molecular abnormalities that are likely to respond differentially to a given therapeutic approach. For this reason, it is clinically challenging to treat and at present, no therapy can slow down or arrest the progression of Parkinson’s disease. There is a clear unmet clinical need to develop reliable diagnostic and prognostic biomarkers. When disease-modifying treatments become available, prognostic biomarkers are required to support a definitive diagnosis and clinical intervention during the long prodromal period as no clinical implications or symptoms are observed. Robust diagnostic biomarkers would also be useful to monitor treatment response. Potential biomarkers for the sporadic form of Parkinson’s disease have mostly included synuclein species (monomer, oligomer, phosphorylated, Lewy Body enriched fraction and isoforms). In this review, we consider the analysis of synuclein and its proteoforms in biological samples using proteomics techniques (immunoassay and mass spectrometry) applied to neurodegenerative disease research.
Collapse
Affiliation(s)
- Marie-Laure Pons
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
- Shimadzu Corporation, Duisburg, Germany
- *Correspondence: Marie-Laure Pons,
| | - Neil Loftus
- Shimadzu Corporation, Manchester, United Kingdom
| | - Jerome Vialaret
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | | - Sylvain Lehmann
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
16
|
Norman M, Gilboa T, Walt DR. High-Sensitivity Single Molecule Array Assays for Pathological Isoforms in Parkinson’s Disease. Clin Chem 2022; 68:431-440. [DOI: 10.1093/clinchem/hvab251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Clinical trials for neurodegenerative diseases are increasingly utilizing measurements of post-translational modifications (PTMs) and pathological isoforms as surrogate markers of target engagement and therapeutic efficacy. These isoforms, however, tend to exist at femtomolar concentrations, well below the detection limit of conventional immunoassays. Therefore, highly sensitive and well-validated assays for these isoforms are needed.
Methods
We developed a novel panel of single molecule array assays for pathological isoforms and PTMs implicated in the development and pathophysiology of Parkinson’s disease. We validated this panel by measuring these analytes in the cerebrospinal fluid of a cross-sectional cohort of 100 patients with Parkinson’s disease and 100 healthy controls.
Results
When comparing patients with Parkinson’s disease to healthy controls, alpha synuclein, pSer129 alpha synuclein, DJ-1, and C-reactive protein were shown to be reduced in patients with Parkinson’s disease while p396 tau and neurofilament light chain were shown to be increased. A random forest analysis produced an area under the curve of 0.70 for the panel.
Conclusions
Measurement of post-translational modifications and pathological isoforms in patients with Parkinson’s disease improved diagnostic accuracy above that of total protein measurements, demonstrating the potential utility of these assays for monitoring patients in clinical trials.
Collapse
Affiliation(s)
- Maia Norman
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Tal Gilboa
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
von Euler Chelpin M, Söderberg L, Fälting J, Möller C, Giorgetti M, Constantinescu R, Blennow K, Zetterberg H, Höglund K. Alpha-Synuclein Protofibrils in Cerebrospinal Fluid: A Potential Biomarker for Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:1429-1442. [PMID: 33016895 DOI: 10.3233/jpd-202141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Currently, there is no established biomarker for Parkinson's disease (PD) and easily accessible biomarkers are crucial for developing disease-modifying treatments. OBJECTIVE To develop a novel method to quantify cerebrospinal fluid (CSF) levels of α-synuclein protofibrils (α-syn PF) and apply it to clinical cohorts of patients with PD and atypical parkinsonian disorders. METHODS A cohort composed of 49 patients with PD, 12 with corticobasal degeneration (CBD), 22 with progressive supranuclear palsy, and 33 controls, that visited the memory clinic but had no biomarker signs of Alzheimer's disease (AD, tau<350 pg/mL, amyloid-beta 42 (Aβ42)>530 pg/mL, and phosphorylated tau (p-tau)<60 pg/mL) was used in this study. The CSF samples were analyzed with the Single molecule array (Simoa) technology. Total α-synuclein (α-syn) levels were analyzed with a commercial ELISA-kit. RESULTS The assay is specific to α-syn PF, with no cross-reactivity to monomeric α-syn, or the β- and γ-synuclein variants. CSF α-syn PF levels were increased in PD compared with controls (62.1 and 40.4 pg/mL, respectively, p = 0.03), and CBD (62.1 and 34.2 pg/mL, respectively, p = 0.02). The accuracy of predicting PD using α-syn PF is significantly different from controls (area under the curve 0.68, p = 0.0097) with a sensitivity of 62.8% and specificity of 67.7%. Levels of total α-syn were significantly different between the PD and CBD groups (p = 0.04). CONCLUSION The developed method specifically quantifies α-syn PF in human CSF with increased concentrations in PD, but with an overlap with asymptomatic elderly controls.
Collapse
Affiliation(s)
- Marianne von Euler Chelpin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | | | | | | | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
18
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
19
|
Youssef P, Kim WS, Halliday GM, Lewis SJG, Dzamko N. Comparison of Different Platform Immunoassays for the Measurement of Plasma Alpha-Synuclein in Parkinson's Disease Patients. JOURNAL OF PARKINSONS DISEASE 2021; 11:1761-1772. [PMID: 34151860 PMCID: PMC8609717 DOI: 10.3233/jpd-212694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: The identification of reliable biomarkers in Parkinson’s disease (PD) would provide much needed diagnostic accuracy, a means of monitoring progression, objectively measuring treatment response, and potentially allowing patient stratification within clinical trials. Whilst the assessment of total alpha-synuclein in biofluids has been identified as a promising biomarker, conflicting trends in these levels across patient plasma samples relative to controls has limited its use. Different commercially available assay platforms that have been used to measure alpha-synuclein may contribute to different study outcomes. Objective: To compare different platform immunoassays for the measurement of total alpha-synuclein using the same plasma samples from 49 PD patients and 47 controls. Methods: Total plasma alpha-synuclein concentrations were assessed using the BioLegend, MesoScale Discovery, and Quanterix platform in plasma samples from PD patients and matched controls. Results: A significant increase in total plasma alpha-synuclein was observed in PD patients using the Biolegend (10%), Mesoscale Discovery (13%) and Quanterix (39%) assays. The Mesoscale Discovery and Quanterix assays showed the strongest correlations (r = 0.78, p < 0.0001) with each other, whilst the Quanterix platform demonstrated the lowest variation and highest effect size. Inclusion of age, sex and hemoglobin levels as covariates in the analysis of total alpha-synuclein improved the ability of all three immunoassays to detect a significant difference between patients and controls. Conclusion: All three immunoassays were sensitive enough to detect group level differences between PD patients and controls, with the largest effect size observed with the Quanterix assay. These results may help inform assay choices in ongoing clinical trials.
Collapse
Affiliation(s)
- Priscilla Youssef
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Woojin S Kim
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Simon J G Lewis
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
20
|
Paciotti S, Stoops E, François C, Bellomo G, Eusebi P, Vanderstichele H, Chiasserini D, Parnetti L. Cerebrospinal fluid hemoglobin levels as markers of blood contamination: relevance for α-synuclein measurement. Clin Chem Lab Med 2021; 59:1653-1661. [PMID: 33957709 DOI: 10.1515/cclm-2020-1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Cerebrospinal fluid α-synuclein (CSF α-syn) represents a possible biomarker in Parkinson's disease (PD) diagnosis. CSF blood contamination can introduce a bias in α-syn measurement. To date, CSF samples with a red blood cells (RBC) count >50 RBC × 106/L or haemoglobin (Hb) concentration >200 μg/L are excluded from biomarker studies. However, investigations for defining reliable cut-off values are missing. METHODS We evaluated the effect of blood contamination on CSF α-syn measurement by a systematic approach in a cohort of 42 patients with different neurological conditions who underwent lumbar puncture (LP) for diagnostic reasons. CSF samples were spiked with whole blood and serially diluted to 800, 400, 200, 100, 75, 50, 25, 5, 0 RBC × 106/L. CSF α-syn and Hb levels were measured by ELISA. RESULTS In neat CSF, the average concentration of α-syn was 1,936 ± 636 ng/L. This value increased gradually in spiked CSF samples, up to 4,817 ± 1,456 ng/L (+149% α-syn variation) in samples with 800 RBC × 106/L. We established different cut-offs for discriminating samples with α-syn level above 5, 10, and 20% variation, corresponding to a Hb (RBC) concentration of 1,569 μg/L (37 RBC × 106/L), 2,082 μg/L (62 RBC × 106/L), and 3,118 μg/L (87 RBC × 106/L), respectively. CONCLUSIONS Our data show the high impact of CSF blood contamination on CSF α-syn levels, highlighting the measurement of Hb concentration as mandatory when assessing CSF α-syn. The thresholds we calculated are useful to classify CSF samples for blood contamination, considering as reliable only those showing a Hb concentration <1,569 μg/L.
Collapse
Affiliation(s)
- Silvia Paciotti
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Regional Health Authority of Umbria, Epidemiology Department, Perugia, Italy
| | | | - Davide Chiasserini
- Department of Medicine and Surgery, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Doecke JD, Francois C, Fowler CJ, Stoops E, Bourgeat P, Rainey-Smith SR, Li QX, Masters CL, Martins RN, Villemagne VL, Collins SJ, Vanderstichele HM. Core Alzheimer's disease cerebrospinal fluid biomarker assays are not affected by aspiration or gravity drip extraction methods. Alzheimers Res Ther 2021; 13:79. [PMID: 33863377 PMCID: PMC8052760 DOI: 10.1186/s13195-021-00812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND CSF biomarkers are well-established for routine clinical use, yet a paucity of comparative assessment exists regarding CSF extraction methods during lumbar puncture. Here, we compare in detail biomarker profiles in CSF extracted using either gravity drip or aspiration. METHODS Biomarkers for β-amyloidopathy (Aβ1-42, Aβ1-40), tauopathy (total tau), or synapse pathology (BACE1, Neurogranin Trunc-p75, α-synuclein) were assessed between gravity or aspiration extraction methods in a sub-population of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study (cognitively normal, N = 36; mild cognitive impairment, N = 8; Alzheimer's disease, N = 6). RESULTS High biomarker concordance between extraction methods was seen (concordance correlation > 0.85). Passing Bablock regression defined low beta coefficients indicating high scalability. CONCLUSIONS Levels of these commonly assessed CSF biomarkers are not influenced by extraction method. Results of this study should be incorporated into new consensus guidelines for CSF collection, storage, and analysis of biomarkers.
Collapse
Affiliation(s)
- James D Doecke
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | | | | | | | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Stephanie R Rainey-Smith
- Australian Alzheimer's Research Foundation, Perth, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Qiao-Xin Li
- University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
22
|
Cole TA, Zhao H, Collier TJ, Sandoval I, Sortwell CE, Steece-Collier K, Daley BF, Booms A, Lipton J, Welch M, Berman M, Jandreski L, Graham D, Weihofen A, Celano S, Schulz E, Cole-Strauss A, Luna E, Quach D, Mohan A, Bennett CF, Swayze EE, Kordasiewicz HB, Luk KC, Paumier KL. α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson's disease. JCI Insight 2021; 6:135633. [PMID: 33682798 PMCID: PMC8021121 DOI: 10.1172/jci.insight.135633] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease with no approved disease-modifying therapies. Multiplications, mutations, and single nucleotide polymorphisms in the SNCA gene, encoding α-synuclein (aSyn) protein, either cause or increase risk for PD. Intracellular accumulations of aSyn are pathological hallmarks of PD. Taken together, reduction of aSyn production may provide a disease-modifying therapy for PD. We show that antisense oligonucleotides (ASOs) reduce production of aSyn in rodent preformed fibril (PFF) models of PD. Reduced aSyn production leads to prevention and removal of established aSyn pathology and prevents dopaminergic cell dysfunction. In addition, we address the translational potential of the approach through characterization of human SNCA-targeting ASOs that efficiently suppress the human SNCA transcript in vivo. We demonstrate broad activity and distribution of the human SNCA ASOs throughout the nonhuman primate brain and a corresponding decrease in aSyn cerebral spinal fluid (CSF) levels. Taken together, these data suggest that, by inhibiting production of aSyn, it may be possible to reverse established pathology; thus, these data support the development of SNCA ASOs as a potential disease-modifying therapy for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Tracy A. Cole
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Hien Zhao
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | | | | | | | | | - Alix Booms
- Michigan State University, Grand Rapids, Michigan, USA
| | - Jack Lipton
- Michigan State University, Grand Rapids, Michigan, USA
| | | | | | | | | | | | | | - Emily Schulz
- Michigan State University, Grand Rapids, Michigan, USA
| | | | - Esteban Luna
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Duc Quach
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Apoorva Mohan
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | | | | | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
23
|
Abdi IY, Majbour NK, Willemse EAJ, van de Berg WDJ, Mollenhauer B, Teunissen CE, El-Agnaf OM. Preanalytical Stability of CSF Total and Oligomeric Alpha-Synuclein. Front Aging Neurosci 2021; 13:638718. [PMID: 33762924 PMCID: PMC7982944 DOI: 10.3389/fnagi.2021.638718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The role of cerebrospinal fluid (CSF) alpha-synuclein as a potential biomarker has been challenged mainly due to variable preanalytical measures between laboratories. To evaluate the impact of the preanalytical factors contributing to such variability, the different subforms of alpha-synuclein need to be studied individually. Method: We investigated the effect of exposing CSF samples to several preanalytical sources of variability: (1) different polypropylene (PP) storage tubes; (2) use of non-ionic detergents; (3) multiple tube transfers; (4) multiple freeze-thaw cycles; and (5) delayed storage. CSF oligomeric- and total-alpha-synuclein levels were estimated using our in-house sandwich-based enzyme-linked immunosorbent assays. Results: Siliconized tubes provided the optimal preservation of CSF alpha-synuclein proteins among other tested polypropylene tubes. The use of tween-20 detergent significantly improved the recovery of oligomeric-alpha-synuclein, while multiple freeze-thaw cycles significantly lowered oligomeric-alpha-synuclein in CSF. Interestingly, oligomeric-alpha-synuclein levels remained relatively stable over multiple tube transfers and upon delayed storage. Conclusion: Our study showed for the first-time distinct impact of preanalytical factors on the different forms of CSF alpha-synuclein. These findings highlight the need for special considerations for the different forms of alpha-synuclein during CSF samples' collection and processing.
Collapse
Affiliation(s)
- Ilham Y Abdi
- Neurological Disorders Research Centre, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Nour K Majbour
- Neurological Disorders Research Centre, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Eline A J Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije University Amsterdam, Amsterdam, Netherlands
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße, Kassel, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Omar M El-Agnaf
- Neurological Disorders Research Centre, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
24
|
Constantinides VC, Majbour NK, Paraskevas GP, Abdi I, Safieh-Garabedian B, Stefanis L, El-Agnaf OM, Kapaki E. Cerebrospinal Fluid α-Synuclein Species in Cognitive and Movements Disorders. Brain Sci 2021; 11:brainsci11010119. [PMID: 33477387 PMCID: PMC7830324 DOI: 10.3390/brainsci11010119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Total CSF α-synuclein (t-α-syn), phosphorylated α-syn (pS129-α-syn) and α-syn oligomers (o-α-syn) have been studied as candidate biomarkers for synucleinopathies, with suboptimal specificity and sensitivity in the differentiation from healthy controls. Studies of α-syn species in patients with other underlying pathologies are lacking. The aim of this study was to investigate possible alterations in CSF α-syn species in a cohort of patients with diverse underlying pathologies. A total of 135 patients were included, comprising Parkinson's disease (PD; n = 13), multiple system atrophy (MSA; n = 9), progressive supranuclear palsy (PSP; n = 13), corticobasal degeneration (CBD; n = 9), Alzheimer's disease (AD; n = 51), frontotemporal degeneration (FTD; n = 26) and vascular dementia patients (VD; n = 14). PD patients exhibited higher pS129-α-syn/α-syn ratios compared to FTD (p = 0.045), after exclusion of samples with CSF blood contamination. When comparing movement disorders (i.e., MSA vs. PD vs. PSP vs. CBD), MSA patients had lower α-syn levels compared to CBD (p = 0.024). Patients with a synucleinopathy (PD and MSA) exhibited lower t-α-syn levels (p = 0.002; cut-off value: ≤865 pg/mL; sensitivity: 95%, specificity: 69%) and higher pS129-/t-α-syn ratios (p = 0.020; cut-off value: ≥0.122; sensitivity: 71%, specificity: 77%) compared to patients with tauopathies (PSP and CBD). There are no significant α-syn species alterations in non-synucleinopathies.
Collapse
Affiliation(s)
- Vasilios C. Constantinides
- Neurochemistry and Biomarkers Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, 11528 Athens, Greece; (G.P.P.); (E.K.)
- Ward of Cognitive and movement Disorders, 1st Department of Neurology, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Correspondence: ; Tel.: +30-2107289285
| | - Nour K. Majbour
- Neurological Disorders Research Centre, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (N.K.M.); (I.A.); (O.M.E.-A.)
| | - George P. Paraskevas
- Neurochemistry and Biomarkers Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, 11528 Athens, Greece; (G.P.P.); (E.K.)
| | - Ilham Abdi
- Neurological Disorders Research Centre, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (N.K.M.); (I.A.); (O.M.E.-A.)
| | | | - Leonidas Stefanis
- Ward of Cognitive and movement Disorders, 1st Department of Neurology, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Omar M. El-Agnaf
- Neurological Disorders Research Centre, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (N.K.M.); (I.A.); (O.M.E.-A.)
| | - Elisabeth Kapaki
- Neurochemistry and Biomarkers Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, 11528 Athens, Greece; (G.P.P.); (E.K.)
- Ward of Cognitive and movement Disorders, 1st Department of Neurology, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
25
|
Manne S, Kondru N, Jin H, Serrano GE, Anantharam V, Kanthasamy A, Adler CH, Beach TG, Kanthasamy AG. Blinded RT-QuIC Analysis of α-Synuclein Biomarker in Skin Tissue From Parkinson's Disease Patients. Mov Disord 2020; 35:2230-2239. [PMID: 32960470 DOI: 10.1002/mds.28242] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND An unmet clinical need in Parkinson's disease (PD) is to identify biomarkers for diagnosis, preferably in peripherally accessible tissues such as skin. Immunohistochemical studies have detected pathological α-synuclein (αSyn) in skin biopsies from PD patients albeit sensitivity needs to be improved. OBJECTIVE Our study provides the ultrasensitive detection of pathological αSyn present in the skin of PD patients, and thus, pathological αSyn in skin could be a potential biomarker for PD. METHODS The real-time quaking-induced conversion assay was used to detect pathological αSyn present in human skin tissues. Further, we optimized this ultra-sensitive and specific assay for both frozen and formalin-fixed paraffin-embedded sections of skin tissues. We determined the seeding kinetics of the αSyn present in the skin from autopsied subjects consisting of frozen skin tissues from 25 PD and 25 controls and formalin-fixed paraffin-embedded skin sections from 12 PD and 12 controls. RESULTS In a blinded study of skin tissues from autopsied subjects, we correctly identified 24/25 PD and 24/25 controls using frozen skin tissues (96% sensitivity and 96% specificity) compared to 9/12 PD and 10/12 controls using formalin-fixed paraffin-embedded skin sections (75% sensitivity and 83% specificity). CONCLUSIONS Our blinded study results clearly demonstrate the feasibility of using skin tissues for clinical diagnosis of PD by detecting pathological αSyn. Moreover, this peripheral biomarker discovery study may have broader translational value in detecting misfolded proteins in skin samples as a longitudinal progression marker. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sireesha Manne
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Naveen Kondru
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| | - Charles H Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
26
|
Chahine LM, Beach TG, Brumm MC, Adler CH, Coffey CS, Mosovsky S, Caspell-Garcia C, Serrano GE, Munoz DG, White CL, Crary JF, Jennings D, Taylor P, Foroud T, Arnedo V, Kopil CM, Riley L, Dave KD, Mollenhauer B. In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease. Neurology 2020; 95:e1267-e1284. [PMID: 32747521 PMCID: PMC7538226 DOI: 10.1212/wnl.0000000000010404] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Objective The Systemic Synuclein Sampling Study (S4) measured α-synuclein in multiple tissues and biofluids within the same patients with Parkinson disease (PD) vs healthy controls (HCs). Methods S4 was a 6-site cross-sectional observational study of participants with early, moderate, or advanced PD and HCs. Motor and nonmotor measures and dopamine transporter SPECT were obtained. Biopsies of skin, colon, submandibular gland (SMG), CSF, saliva, and blood were collected. Tissue biopsy sections were stained with 5C12 monoclonal antibody against pathologic α-synuclein; digital images were interpreted by neuropathologists blinded to diagnosis. Biofluid total α-synuclein was quantified using ELISA. Results The final cohort included 59 patients with PD and 21 HCs. CSF α-synuclein was lower in patients with PD vs HCs; sensitivity/specificity of CSF α-synuclein for PD diagnosis was 87.0%/63.2%, respectively. Sensitivity of α-synuclein immunoreactivity for PD diagnosis was 56.1% for SMG and 24.1% for skin; specificity was 92.9% and 100%, respectively. There were no significant relationships between different measures of α-synuclein within participants. Conclusions S4 confirms lower total α-synuclein levels in CSF in patients with PD compared to HCs, but specificity is low. In contrast, α-synuclein immunoreactivity in skin and SMG is specific for PD but sensitivity is low. Relationships within participants across different tissues and biofluids could not be demonstrated. Measures of pathologic forms of α-synuclein with higher accuracy are critically needed. Classification of evidence This study provides Class III evidence that total CSF α-synuclein does not accurately distinguish patients with PD from HCs, and that monoclonal antibody staining for SMG and skin total α-synuclein is specific but not sensitive for PD diagnosis.
Collapse
Affiliation(s)
- Lana M Chahine
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany.
| | - Thomas G Beach
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Michael C Brumm
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Charles H Adler
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Christopher S Coffey
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Sherri Mosovsky
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Chelsea Caspell-Garcia
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Geidy E Serrano
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - David G Munoz
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Charles L White
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - John F Crary
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Danna Jennings
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Peggy Taylor
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Tatiana Foroud
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Vanessa Arnedo
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Catherine M Kopil
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Lindsey Riley
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Kuldip D Dave
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | - Brit Mollenhauer
- From the Department of Neurology (L.M.C., S.M.), University of Pittsburgh, PA; Banner Sun Health Research Institute (T.G.B., G.E.S.), Sun City, AZ; University of Iowa (M.C.B., C.S.C., C.C.-G.), Iowa City; Department of Neurology (C.H.A.), Mayo Clinic College of Medicine, Scottsdale, AZ; St. Michael's Hospital (D.G.M.), Toronto, Canada; University of Texas Southwestern Medical School (C.L.W.), Dallas; Icahn School of Medicine at Mount Sinai (J.F.C.), New York, NY; Institute for Neurodegenerative Disorders (D.J.), New Haven, CT; BioLegend Inc. (P.T.), Dedham, MA; Indiana University (T.F.), Indianapolis; The Michael J. Fox Foundation for Parkinson's Research (V.A., C.M.K., L.R., K.D.D.), New York, NY; and Department of Neurology (B.M.), Center of Parkinsonism and Movement Disorders Paracelsus-Elena Klinik Kassel and University Medical Center Göttingen, Germany
| | | |
Collapse
|
27
|
Katayama T, Sawada J, Takahashi K, Yahara O. Cerebrospinal Fluid Biomarkers in Parkinson's Disease: A Critical Overview of the Literature and Meta-Analyses. Brain Sci 2020; 10:brainsci10070466. [PMID: 32698474 PMCID: PMC7407121 DOI: 10.3390/brainsci10070466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder; however, well-established biochemical markers have not yet been identified. This review article covers several candidate cerebrospinal fluid (CSF) biomarkers for PD based on the recent literature and meta-analysis data. The decrease of α-synuclein in PD is supported by meta-analyses with modest reproducibility, and a decrease of amyloid β42 is seen as a prognostic marker for cognitive decline. Tau, phosphorylated tau (p-tau), and neurofilament light chains have been used to discriminate PD from other neurodegenerative disorders. This article also describes more hopeful biochemical markers, such as neurotransmitters, oxidative stress markers, and other candidate biomarkers.
Collapse
Affiliation(s)
- Takayuki Katayama
- Department of Neurology, Asahikawa City Hospital, 1-1-65 Kinseicho, Asahikawa 070-8610, Japan; (K.T.); (O.Y.)
- Correspondence: ; Tel.: +81-166-24-3181; Fax: +81-166-24-1125
| | - Jun Sawada
- Department of Neurology, Asahikawa Medical University Hospital, Asahikawa 078-8510, Japan;
| | - Kae Takahashi
- Department of Neurology, Asahikawa City Hospital, 1-1-65 Kinseicho, Asahikawa 070-8610, Japan; (K.T.); (O.Y.)
| | - Osamu Yahara
- Department of Neurology, Asahikawa City Hospital, 1-1-65 Kinseicho, Asahikawa 070-8610, Japan; (K.T.); (O.Y.)
| |
Collapse
|
28
|
Mabrouk OS, Chen S, Edwards AL, Yang M, Hirst WD, Graham DL. Quantitative Measurements of LRRK2 in Human Cerebrospinal Fluid Demonstrates Increased Levels in G2019S Patients. Front Neurosci 2020; 14:526. [PMID: 32523511 PMCID: PMC7262382 DOI: 10.3389/fnins.2020.00526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) mutations are among the most significant genetic risk factors for developing late onset Parkinson’s disease (PD). To understand whether a therapeutic can modulate LRRK2 levels as a potential disease modifying strategy, it is important to have methods in place to measure the protein with high sensitivity and specificity. To date, LRRK2 measurements in cerebrospinal fluid (CSF) have used extracellular vesicle enrichment via differential ultracentrifugation and western blot detection. Our goal was to develop a methodology which could be deployed in a clinical trial, therefore throughput, robustness and sensitivity were critical. To this end, we developed a Stable Isotope Standard Capture by Anti-peptide Antibody (SISCAPA) assay which is capable of detecting LRRK2 from 1 ml of human CSF. The assay uses a commercially available LRRK2 monoclonal antibody (N241A/34) and does not require extracellular vesicle enrichment steps. The assay includes stable isotope peptide addition which allows for absolute quantitation of LRRK2 protein. We determined that the assay performed adequately for CSF measurements and that blood contamination from traumatic lumbar puncture does not pose a serious analytical challenge. We then applied this technique to 106 CSF samples from the MJFF LRRK2 Cohort Consortium which includes healthy controls, sporadic PD patients and LRRK2 mutation carriers with and without PD. Of the 105 samples that had detectable LRRK2 signal, we found that the PD group with the G2019S LRRK2 mutation had significantly higher CSF LRRK2 levels compared to all other groups. We also found that CSF LRRK2 increased with the age of the participant. Taken together, this work represents a step forward in our ability to measure LRRK2 in a challenging matrix like CSF which has implications for current and future LRRK2 therapeutic clinical trials.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Clinical Sciences, Biomarkers, Biogen, Cambridge, MA, United States
| | - Siwei Chen
- Clinical Sciences, Biomarkers, Biogen, Cambridge, MA, United States
| | - Amanda L Edwards
- Clinical Sciences, Biomarkers, Biogen, Cambridge, MA, United States
| | - Minhua Yang
- Biostatistics, Biogen, Cambridge, MA, United States
| | - Warren D Hirst
- Neurodegeneration Research Unit, Biogen, Cambridge, MA, United States
| | | |
Collapse
|
29
|
Merchant KM, Cedarbaum JM, Brundin P, Dave KD, Eberling J, Espay AJ, Hutten SJ, Javidnia M, Luthman J, Maetzler W, Menalled L, Reimer AN, Stoessl AJ, Weiner DM. A Proposed Roadmap for Parkinson's Disease Proof of Concept Clinical Trials Investigating Compounds Targeting Alpha-Synuclein. JOURNAL OF PARKINSONS DISEASE 2020; 9:31-61. [PMID: 30400107 PMCID: PMC6398545 DOI: 10.3233/jpd-181471] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The convergence of human molecular genetics and Lewy pathology of Parkinson's disease (PD) have led to a robust, clinical-stage pipeline of alpha-synuclein (α-syn)-targeted therapies that have the potential to slow or stop the progression of PD and other synucleinopathies. To facilitate the development of these and earlier stage investigational molecules, the Michael J. Fox Foundation for Parkinson's Research convened a group of leaders in the field of PD research from academia and industry, the Alpha-Synuclein Clinical Path Working Group. This group set out to develop recommendations on preclinical and clinical research that can de-risk the development of α-syn targeting therapies. This consensus white paper provides a translational framework, from the selection of animal models and associated end-points to decision-driving biomarkers as well as considerations for the design of clinical proof-of-concept studies. It also identifies current gaps in our biomarker toolkit and the status of the discovery and validation of α-syn-associated biomarkers that could help fill these gaps. Further, it highlights the importance of the emerging digital technology to supplement the capture and monitoring of clinical outcomes. Although the development of disease-modifying therapies targeting α-syn face profound challenges, we remain optimistic that meaningful strides will be made soon toward the identification and approval of disease-modifying therapeutics targeting α-syn.
Collapse
Affiliation(s)
- Kalpana M Merchant
- Vincere Biosciences, Inc., and Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Patrik Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Jamie Eberling
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alberto J Espay
- UC Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Monica Javidnia
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Liliana Menalled
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alyssa N Reimer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
30
|
Kumar ST, Donzelli S, Chiki A, Syed MMK, Lashuel HA. A simple, versatile and robust centrifugation-based filtration protocol for the isolation and quantification of α-synuclein monomers, oligomers and fibrils: Towards improving experimental reproducibility in α-synuclein research. J Neurochem 2020; 153:103-119. [PMID: 31925956 PMCID: PMC7155127 DOI: 10.1111/jnc.14955] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that the process of alpha‐synuclein (α‐syn) aggregation from monomers into amyloid fibrils and Lewy bodies, via oligomeric intermediates plays an essential role in the pathogenesis of different synucleinopathies, including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies (DLB). However, the nature of the toxic species and the mechanisms by which they contribute to neurotoxicity and disease progression remain elusive. Over the past two decades, significant efforts and resources have been invested in studies aimed at identifying and targeting toxic species along the pathway of α‐syn fibrillization. Although this approach has helped to advance the field and provide insights into the biological properties and toxicity of different α‐syn species, many of the fundamental questions regarding the role of α‐syn aggregation in PD remain unanswered, and no therapeutic compounds targeting α‐syn aggregates have passed clinical trials. Several factors have contributed to this slow progress, including the complexity of the aggregation pathways and the heterogeneity and dynamic nature of α‐syn aggregates. In the majority of experiment, the α‐syn samples used contain mixtures of α‐syn species that exist in equilibrium and their ratio changes upon modifying experimental conditions. The failure to quantitatively account for the distribution of different α‐syn species in different studies has contributed not only to experimental irreproducibility but also to misinterpretation of results and misdirection of valuable resources. Towards addressing these challenges and improving experimental reproducibility in Parkinson's research, we describe here a simple centrifugation‐based filtration protocol for the isolation, quantification and assessment of the distribution of α‐syn monomers, oligomers and fibrils, in heterogeneous α‐syn samples of increasing complexity. The protocol is simple, does not require any special instrumentation and can be performed rapidly on multiple samples using small volumes. Here, we present and discuss several examples that illustrate the applications of this protocol and how it could contribute to improving the reproducibility of experiments aimed at elucidating the structural basis of α‐syn aggregation, seeding activity, toxicity and pathology spreading. This protocol is applicable, with slight modifications, to other amyloid‐forming proteins. ![]()
Collapse
Affiliation(s)
- Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| |
Collapse
|
31
|
Bougea A, Stefanis L, Emmanouilidou E, Vekrelis K, Kapaki E. High discriminatory ability of peripheral and CFSF biomarkers in Lewy body diseases. J Neural Transm (Vienna) 2020; 127:311-322. [PMID: 31912280 DOI: 10.1007/s00702-019-02137-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022]
Abstract
Differential diagnosis between Parkinson's disease (PD) Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), namely spectrum of Lewy bodies disorders (LBDs), may be challenging, and their common underlying pathophysiology is debated. Our aim was to examine relationships among neurodegenerative biomarkers [alpha-synuclein (α-Syn), Alzheimer's Disease (AD)-related (beta-amyloid Aβ42, tau [total τΤ and phosphorylated τp-181]), dopaminergic imaging (DATSCAN-SPECT)] and spectrum of LBD. This is a cross-sectional prospective study in 30 PD, 18 PDD, 29 DLB patients and 30 healthy controls. We compared α-Syn in CSF, plasma and serum and CSF Aβ42, τΤ and τp-181 across these groups. Correlations between such biomarkers and motor, cognitive/neuropsychiatric tests, and striatal asymmetry indexes were examined. CSF α-Syn was higher in DLB versus PD/PDD/controls, and lower in PD and PDD patients compared to controls (all p < 0.001). Serum α-Syn levels were higher in all patient groups compared to controls. After excluding those DLB patients with CSF AD profile, plasma and serum Syn levels were higher in the LBD group as a whole compared to controls. The combination of CSF α-Syn, serum α-Syn and Aβ42 for comparison between PD and DLB [AUC = 0.96 (95% CI 0.90-1.00)] was significantly better when compared to serum α-Syn alone (p < 0.001). Correlation analyses of biomarkers with cognitive/neuropsychiatric scales revealed some associations, but no consistent, cohesive picture. Peripheral biomarkers such as serum α-Syn, and CSF α-Syn and Aβ42 may contribute as potential biomarkers to separate LBDs from controls and to differentiate DLB from the other LBDs with high sensitivity and specificity among study groups.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Memory and Movement Disorder Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vassilisis Sophias Avenue 72-74, 11528, Athens, Greece. .,Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Leonidas Stefanis
- 1st Department of Neurology, Memory and Movement Disorder Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vassilisis Sophias Avenue 72-74, 11528, Athens, Greece.,Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Vekrelis
- Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, Memory and Movement Disorder Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vassilisis Sophias Avenue 72-74, 11528, Athens, Greece
| |
Collapse
|
32
|
Javidnia M, Frasier M, Shoulson I, Turkoz I, Budur K. Innovative Approaches for Slowing Disease Progression in Parkinson's Disease: Takeaways from the 14th Annual International Society for Central Nervous System Clinical Trials and Methodology Scientific Meeting. INNOVATIONS IN CLINICAL NEUROSCIENCE 2020; 17:14-19. [PMID: 32547841 PMCID: PMC7239563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The International Society for Central Nervous System Clinical Trials and Methodology (ISCTM) partnered with the Michael J. Fox Foundation for Parkinson's Research to hold a joint session on innovation in Parkinson's disease research at the ISCTM 14th Annual Scientific Meeting held February 20 to 22, 2018 in Washington, D.C. The session focused on (1) biomarkers and outcomes measures in Parkinson's disease clinical trials; 2) clinical trial designs, outcomes, and statistical approaches; and 3) the path forward. This paper aims to summarize key takeaways from the session presenters, panelists, and audience members.
Collapse
Affiliation(s)
- Monica Javidnia
- Drs. Javidnia and Shoulson are with the Center for Health + Technology and the Department of Neurology, University of Rochester Medical Center in Rochester, New York
- Dr. Shoulson is also with Grey Matter Technologies in Sarasota, Florida
- Dr. Frasier is with the Michael J. Fox Foundation for Parkinson's Research in New York, New York
- Dr. Turkoz is with Janssen Research & Development in Titusville, New Jersey
- Dr. Budur is with AbbVie in Lake Bluff, Illinois
| | - Mark Frasier
- Drs. Javidnia and Shoulson are with the Center for Health + Technology and the Department of Neurology, University of Rochester Medical Center in Rochester, New York
- Dr. Shoulson is also with Grey Matter Technologies in Sarasota, Florida
- Dr. Frasier is with the Michael J. Fox Foundation for Parkinson's Research in New York, New York
- Dr. Turkoz is with Janssen Research & Development in Titusville, New Jersey
- Dr. Budur is with AbbVie in Lake Bluff, Illinois
| | - Ira Shoulson
- Drs. Javidnia and Shoulson are with the Center for Health + Technology and the Department of Neurology, University of Rochester Medical Center in Rochester, New York
- Dr. Shoulson is also with Grey Matter Technologies in Sarasota, Florida
- Dr. Frasier is with the Michael J. Fox Foundation for Parkinson's Research in New York, New York
- Dr. Turkoz is with Janssen Research & Development in Titusville, New Jersey
- Dr. Budur is with AbbVie in Lake Bluff, Illinois
| | - Ibrahim Turkoz
- Drs. Javidnia and Shoulson are with the Center for Health + Technology and the Department of Neurology, University of Rochester Medical Center in Rochester, New York
- Dr. Shoulson is also with Grey Matter Technologies in Sarasota, Florida
- Dr. Frasier is with the Michael J. Fox Foundation for Parkinson's Research in New York, New York
- Dr. Turkoz is with Janssen Research & Development in Titusville, New Jersey
- Dr. Budur is with AbbVie in Lake Bluff, Illinois
| | - Kumar Budur
- Drs. Javidnia and Shoulson are with the Center for Health + Technology and the Department of Neurology, University of Rochester Medical Center in Rochester, New York
- Dr. Shoulson is also with Grey Matter Technologies in Sarasota, Florida
- Dr. Frasier is with the Michael J. Fox Foundation for Parkinson's Research in New York, New York
- Dr. Turkoz is with Janssen Research & Development in Titusville, New Jersey
- Dr. Budur is with AbbVie in Lake Bluff, Illinois
| |
Collapse
|
33
|
Abd Elhadi S, Grigoletto J, Poli M, Arosio P, Arkadir D, Sharon R. α-Synuclein in blood cells differentiates Parkinson's disease from healthy controls. Ann Clin Transl Neurol 2019; 6:2426-2436. [PMID: 31742923 PMCID: PMC6917335 DOI: 10.1002/acn3.50944] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To determine whether blood cells expressed α-Syn can differentiate Parkinson's disease (PD) from healthy controls (HC). METHODS The concentrations of α-Syn were determined in samples of blood cell pellets using a quantitative Lipid-ELISA assay. In addition, the levels of total protein, hemoglobin, iron and H-ferritin were determined. The study includes samples from the Biofind cohort (n = 46 PD and 45 HC) and results were validated with an additional cohort (n = 35 PD and 28 HC). RESULTS A composite biomarker consisting of the concentrations of total α-Syn, proteinase-K resistant (PKres ) α-Syn and phospho-Serine 129 α-Syn (PSer 129), is designed based on the analysis of the discovery BioFIND cohort. This composite biomarker differentiates a PD subgroup, presenting motor symptoms without dementia from a HC group, with a convincing accuracy, represented by an AUC = 0.81 (95% CI, 0.71 to 0.92). Closely similar results were obtained for the validation cohort, that is, AUC = 0.81, (95% CI, 0.70 to 0.94). INTERPRETATION Our results demonstrate the potential usefulness of blood cells expressed α-Syn as a biomarker for PD.
Collapse
Affiliation(s)
- Suaad Abd Elhadi
- Department of Biochemistry and Molecular BiologyIMRICThe Hebrew University‐Hadassah Medical SchoolEin Kerem9112001JerusalemIsrael
| | - Jessica Grigoletto
- Department of Biochemistry and Molecular BiologyIMRICThe Hebrew University‐Hadassah Medical SchoolEin Kerem9112001JerusalemIsrael
| | - Maura Poli
- Laboratory of Molecular BiologyDepartment of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Paolo Arosio
- Laboratory of Molecular BiologyDepartment of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - David Arkadir
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Ronit Sharon
- Department of Biochemistry and Molecular BiologyIMRICThe Hebrew University‐Hadassah Medical SchoolEin Kerem9112001JerusalemIsrael
| |
Collapse
|
34
|
Førland MG, Tysnes OB, Aarsland D, Maple-Grødem J, Pedersen KF, Alves G, Lange J. The value of cerebrospinal fluid α-synuclein and the tau/α-synuclein ratio for diagnosis of neurodegenerative disorders with Lewy pathology. Eur J Neurol 2019; 27:43-50. [PMID: 31293044 DOI: 10.1111/ene.14032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD), dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) are three of the most common neurodegenerative disorders. Up to 20% of these patients have the wrong diagnosis, due to overlapping symptoms and shared pathologies. A cerebrospinal fluid (CSF) biomarker panel for AD is making its way into the clinic, but an equivalent panel for PD and DLB and for improved differential diagnoses is still lacking. Using well-defined, community-based cohorts and validated analytical methods, the diagnostic value of CSF total-α-synuclein (t-α-syn) alone and in combination with total tau (t-tau) in newly diagnosed patients with PD, DLB and AD was determined. METHODS Cerebrospinal fluid concentrations of t-α-syn were assessed using our validated in-house enzyme-linked immunosorbent assay in 78 PD patients, 20 AD patients, 19 DLB patients and 32 controls. t-tau was measured using a commercial assay. Diagnostic performance was assessed by receiver operating characteristic curve analysis. RESULTS Compared to controls (mean 517 pg/ml), significantly lower levels of CSF t-α-syn in patients with PD (434 pg/ml, 16% reduction, P = 0.036), DLB (398 pg/ml, 23% reduction, P = 0.009) and AD (383 pg/ml, 26% reduction, P = 0.014) were found. t-α-syn levels did not differ significantly between PD, DLB and AD. The t-tau/t-α-syn ratio showed an improved performance compared to the single markers. CONCLUSION This is the first study to compare patients with PD, DLB and AD at the time of diagnosis. It was found that t-α-syn can contribute as a teammate with tau in a CSF biomarker panel for PD and DLB, and strengthen the existing biomarker panel for AD.
Collapse
Affiliation(s)
- M G Førland
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - O-B Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Institute for Clinical Medicine, University of Bergen, Bergen, Norway
| | - D Aarsland
- Centre for Age-related Medicine, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - J Maple-Grødem
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - K F Pedersen
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - G Alves
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - J Lange
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| |
Collapse
|
35
|
α-synuclein-lipoprotein interactions and elevated ApoE level in cerebrospinal fluid from Parkinson's disease patients. Proc Natl Acad Sci U S A 2019; 116:15226-15235. [PMID: 31270237 PMCID: PMC6660770 DOI: 10.1073/pnas.1821409116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two of the most important issues in Parkinson’s disease (PD) research are the identification of mechanisms underlying α-synuclein cell-to-cell transfer in the nervous system and the discovery of early diagnostic biomarkers. Both of these issues are addressed in our current manuscript. Using multiple approaches, we present that α-synuclein interacts with lipoproteins within human cerebrospinal fluid and can be taken up by cells in such a state. Moreover, using cerebrospinal fluid samples from 3 large and independent cohorts of patients, we demonstrate that apolipoprotein E is elevated in early, not yet medicated, patients with PD. Finally, using postmortem brain tissue, we provide preliminary histological evidence that apolipoprotein E is enriched in a subpopulation of dopaminergic neurons of human substantia nigra. The progressive accumulation, aggregation, and spread of α-synuclein (αSN) are common hallmarks of Parkinson’s disease (PD) pathology. Moreover, numerous proteins interact with αSN species, influencing its toxicity in the brain. In the present study, we extended analyses of αSN-interacting proteins to cerebrospinal fluid (CSF). Using coimmunoprecipitation, followed by mass spectrometry, we found that αSN colocalize with apolipoproteins on lipoprotein vesicles. We confirmed these interactions using several methods, including the enrichment of lipoproteins with a recombinant αSN, and the subsequent uptake of prepared vesicles by human dopaminergic neuronal-like cells. Further, we report an increased level of ApoE in CSF from early PD patients compared with matched controls in 3 independent cohorts. Moreover, in contrast to controls, we observed the presence of ApoE-positive neuromelanin-containing dopaminergic neurons in substantia nigra of PD patients. In conclusion, the cooccurrence of αSN on lipoprotein vesicles, and their uptake by dopaminergic neurons along with an increase of ApoE in early PD, proposes a mechanism(s) for αSN spreading in the extracellular milieu of PD.
Collapse
|
36
|
Vaikath NN, Hmila I, Gupta V, Erskine D, Ingelsson M, El-Agnaf OMA. Antibodies against alpha-synuclein: tools and therapies. J Neurochem 2019; 150:612-625. [PMID: 31055836 DOI: 10.1111/jnc.14713] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023]
Abstract
Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Daniel Erskine
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
37
|
Markopoulou K, Compta Y. Cerebrospinal fluid levels of alpha-synuclein in PARKINSON'S disease: Another long and winding road. Parkinsonism Relat Disord 2019; 49:1-3. [PMID: 29548634 DOI: 10.1016/j.parkreldis.2018.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Katerina Markopoulou
- Movement Disorders Section, Department of Neurology, NorthShore University HealthSystem, Chicago, Evanston, USA; University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, Barcelona, Catalonia, Spain; Physiology Unit, Department of Biomedicine, Institut de Neurociències, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
38
|
Parkinson's and Lewy body dementia CSF biomarkers. Clin Chim Acta 2019; 495:318-325. [PMID: 31051162 DOI: 10.1016/j.cca.2019.04.078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022]
Abstract
The clinical diagnosis of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) is challenging due to highly variable clinical presentation and clinical and pathological overlap with other neurodegenerative diseases. Since cerebrospinal fluid (CSF) mirrors the pathological changes taking place in the brain, it represents a promising source of biomarkers. With respect to classical AD biomarkers, low CSF Aβ42 levels have shown a robust prognostic value in terms of development of cognitive impairment in PD and DLB. In the differential diagnosis between AD and DLB, a potential role of t-tau, p-tau and Aβ42/Aβ38 ratio has been demonstrated. Regarding CSF α-synuclein (α-syn) species, lower levels of total α-synuclein (t-α-syn) and higher concentration of oligomeric-α-synuclein (o-α-syn) and phosphorylated α-synuclein (p-α-syn) have been observed in PD. Furthermore, the detection of "pro-aggregating" α-synuclein has enabled the discrimination of patients affected by synucleinopathies with high sensitivity and specificity. New promising biomarkers are emerging: GCase activity (reduced in PD and DLB patients vs. controls), CSF/serum albumin ratio (increased in PD and DLB), fatty-acid-binding protein (increased in AD and DLB vs. PD), visinin-like protein-1 (increased in AD vs. DLB) and monoamines (useful in differential diagnosis among PD and DLB). These encouraging results need to be confirmed by future studies.
Collapse
|
39
|
New Era in disease modification in Parkinson's disease: Review of genetically targeted therapeutics. Parkinsonism Relat Disord 2019; 59:32-38. [DOI: 10.1016/j.parkreldis.2018.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
|
40
|
Hok-A-Hin YS, Willemse EAJ, Teunissen CE, Del Campo M. Guidelines for CSF Processing and Biobanking: Impact on the Identification and Development of Optimal CSF Protein Biomarkers. Methods Mol Biol 2019; 2044:27-50. [PMID: 31432404 DOI: 10.1007/978-1-4939-9706-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The field of neurological diseases strongly needs biomarkers for early diagnosis and optimal stratification of patients in clinical trials or to monitor disease progression. Cerebrospinal fluid (CSF) is one of the main sources for the identification of novel protein biomarkers for neurological diseases. Despite the enormous efforts employed to identify novel CSF biomarkers, the high variability observed across different studies has hampered their validation and implementation in clinical practice. Such variability is partly caused by the effect of different pre-analytical confounding factors on protein stability, highlighting the importance to develop and comply with standardized operating procedures. In this chapter, we describe the international consensus pre-analytical guidelines for CSF processing and biobanking that have been established during the last decade, with a special focus on the influence of pre-analytical confounders on the global CSF proteome. In addition, we provide novel results on the influence of different delayed storage and freeze/thaw conditions on the CSF proteome using two novel large multiplex protein arrays (SOMAscan and Olink). Compliance to consensus guidelines will likely facilitate the successful development and implementation of CSF protein biomarkers in both research and clinical settings, ultimately facilitating the successful development of disease-modifying therapies.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Eline A J Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Maass F, Schulz I, Lingor P, Mollenhauer B, Bähr M. Cerebrospinal fluid biomarker for Parkinson's disease: An overview. Mol Cell Neurosci 2018; 97:60-66. [PMID: 30543858 DOI: 10.1016/j.mcn.2018.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/01/2023] Open
Abstract
In Parkinson's disease (PD), there is a wide field of recent and ongoing search for useful biomarkers for early and differential diagnosis, disease monitoring or subtype characterization. Up to now, no biofluid biomarker has entered the daily clinical routine. Cerebrospinal fluid (CSF) is often used as a source for biomarker development in different neurological disorders because it reflects changes in central-nervous system homeostasis. This review article gives an overview about different biomarker approaches in PD, mainly focusing on CSF analyses. Current state and future perspectives regarding classical protein markers like alpha‑synuclein, but also different "omics" techniques are described. In conclusion, technical advancements in the field already yielded promising results, but further multicenter trials with well-defined cohorts, standardized protocols and integrated data analysis of different modalities are needed before successful translation into routine clinical application.
Collapse
Affiliation(s)
- Fabian Maass
- University Medical Center, Department of Neurology, Robert-Koch Strasse 40, 37075 Goettingen, Germany.
| | - Isabel Schulz
- University of Southampton, Faculty of Medicine, 12 University Rd, Southampton SO17 1BJ, United Kingdom
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Brit Mollenhauer
- University Medical Center, Department of Neurology, Robert-Koch Strasse 40, 37075 Goettingen, Germany; Paracelsus-Elena-Klinik, Klinikstrasse 16, 24128 Kassel, Germany
| | - Mathias Bähr
- University Medical Center, Department of Neurology, Robert-Koch Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
42
|
Kalia LV. Diagnostic biomarkers for Parkinson's disease: focus on α-synuclein in cerebrospinal fluid. Parkinsonism Relat Disord 2018; 59:21-25. [PMID: 30466800 DOI: 10.1016/j.parkreldis.2018.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Diagnostic biomarkers are measures that detect or confirm the presence of a disease or identify individuals with a subtype of the disease. For Parkinson's disease, unlike other neurodegenerative diseases such as Alzheimer's disease and Creutzfeldt-Jakob disease, diagnostic biomarkers remain elusive as none are yet available or approved for clinical use. A biomarker to diagnose early or prodromal Parkinson's disease with high accuracy would significantly enhance clinical practice as well as advance clinical therapeutic trials. Multiple lines of evidence support a role of α-synuclein in the pathophysiology of Parkinson's disease and hence major ongoing efforts to identify biomarkers for Parkinson's disease are aimed at measuring α-synuclein in peripheral tissues and biofluids, including cerebrospinal fluid. This work is still in the early stages of biomarker development and has been accompanied by both losses and victories. Here, α-synuclein in cerebrospinal fluid as a diagnostic marker for Parkinson's disease is reviewed, including measures of total α-synuclein, oligomeric and phosphorylated α-synuclein, and seeding activity of α-synuclein.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Division of Neurology, Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto; Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Department of Medicine and Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
43
|
Brinkmalm A, Portelius E, Brinkmalm G, Pannee J, Dahlén R, Gobom J, Blennow K, Zetterberg H. Fluid-based proteomics targeted on pathophysiological processes and pathologies in neurodegenerative diseases. J Neurochem 2018; 151:417-434. [PMID: 30238462 DOI: 10.1111/jnc.14594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/05/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative dementias constitute a broad group of diseases in which abnormally folded proteins accumulate in specific brain regions and result in tissue reactions that eventually cause neuronal dysfunction and degeneration. Depending on where in the brain this happens, symptoms appear which may be used to classify the disorders on clinical grounds. However, brain changes in neurodegenerative dementias start to accumulate many years prior to symptom onset and there is a poor correlation between the clinical picture and what pathology that is the most likely to cause it. Thus, novel drug candidates having disease-modifying effects that is targeting the underlying pathology and changes the course of the disease needs to be defined using objective biomarker-based measures since the clinical symptoms are often non-specific and overlap between different disorders. Furthermore, the treatment should ideally be initiated as soon as symptoms are evident or when biomarkers confirm an underlying pathology (pre-clinical phase of the disease) to reduce irreversible damage to, for example, neurons, synapses and axons. Clinical trials in the pre-clinical phase bring a greater importance to biomarkers since by definition the clinical effects are difficult or slow to discern in a population that is not yet clinically affected. Here, we discuss neuropathological changes that may underlie neurodegenerative dementias, including how they can be detected and quantified using currently available biofluid-based biomarkers and how more of them could be identified using targeted proteomics approaches. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Josef Pannee
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rahil Dahlén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
44
|
Napp A, Houbart V, Demelenne A, Merville MP, Crommen J, Dumoulin M, Garraux G, Servais AC, Fillet M. Separation and determination of alpha-synuclein monomeric and oligomeric species using two electrophoretic approaches. Electrophoresis 2018; 39:3022-3031. [PMID: 30157293 DOI: 10.1002/elps.201800224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a frequent degenerative disorder that is diagnosed based on clinical symptoms. When the first symptoms appear, more than 70% of the dopaminergic cells are already lost. Therefore, it is of utmost importance to have reliable biomarkers to diagnose much earlier PD. In this context, alpha-synuclein (aSyn) is a protein of high interest because of its tendency to form oligomers and amyloid fibrils. The oligomeric forms seem to play a critical pathological role in PD. To date, most of studies aiming at detecting and quantifying aSyn oligomers were performed by immunoassays, mainly by ELISA using specific antibodies. In this study a capillary gel electrophoresis (CGE) coupled with fluorescence detection method was developed to detect and quantify the oligomeric forms of aSyn formed in vitro. All the results obtained were supported by SDS-PAGE analysis, a widely used and well-known technique but exhibiting a main drawback since it is not an automated technique. The repeatability and the intermediate precision of the method were evaluated, as well as the stability of the labeled and non-labeled aSyn samples. After careful screening and optimization of various labeling reagents, 4-fluoro-7-nitrobenzofurazan (NBD-F) was selected and used to establish a calibration curve with monomeric fluorescently-labeled aSyn. Finally, the method was used to study the effect of doxycycline on the oligomerization process. Altogether, our results show that CGE is a very promising automated technique to analyze aSyn monomers, as well as small oligomers.
Collapse
Affiliation(s)
- Aurore Napp
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Virginie Houbart
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Marie-Paule Merville
- Department of Clinical Chemistry, CIRM, University Hospital Center, University of Liège, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding Centre for Protein Engineering (CIP), University of Liège, Liège, Belgium
| | - Gaëtan Garraux
- Department of Neurology, University Hospital Center, Liège, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
45
|
Cerri S, Ghezzi C, Sampieri M, Siani F, Avenali M, Dornini G, Zangaglia R, Minafra B, Blandini F. The Exosomal/Total α-Synuclein Ratio in Plasma Is Associated With Glucocerebrosidase Activity and Correlates With Measures of Disease Severity in PD Patients. Front Cell Neurosci 2018; 12:125. [PMID: 29867358 PMCID: PMC5968118 DOI: 10.3389/fncel.2018.00125] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/19/2018] [Indexed: 11/24/2022] Open
Abstract
Intensive research efforts in the field of Parkinson’s disease (PD) are focusing on identifying reliable biomarkers which possibly help physicians in predicting disease onset, diagnosis, and progression as well as evaluating the response to disease-modifying treatments. Given that abnormal alpha-synuclein (α-syn) accumulation is a primary component of PD pathology, this protein has attracted considerable interest as a potential biomarker for PD. Alpha-synuclein can be detected in several body fluids, including plasma, where it can be found as free form or in association with exosomes, small membranous vesicles secreted by virtually all cell types. Together with α-syn accumulation, lysosomal dysfunctions seem to play a central role in the pathogenesis of PD, given the crucial role of lysosomes in the α-syn degradation. In particular, heterozygous mutations in the GBA1 gene encoding lysosomal enzyme glucocerebrosidase (GCase) are currently considered as the most important risk factor for PD. Different studies have found that GCase deficiency leads to accumulation of α-syn; whereas at the same time, increased α-syn may inhibit GCase function, thus inducing a bidirectional pathogenic loop. In this study, we investigated whether changes in plasma total and exosome-associated α-syn could correlate with disease status and clinical parameters in PD and their relationship with GCase activity. We studied 39 PD patients (mean age: 65.2 ± 8.9; men: 25), without GBA1 mutations, and 33 age-matched controls (mean age: 61.9 ± 6.2; men: 15). Our results showed that exosomes from PD patients contain a greater amount of α-syn compared to healthy subjects (25.2 vs. 12.3 pg/mL, p < 0.001) whereas no differences were found in plasma total α-syn levels (15.7 vs. 14.8 ng/mL, p = 0.53). Moreover, we highlighted a significant increase of plasma exosomal α-syn/total α-syn ratio in PD patients (1.69 vs. 0.89, p < 0.001), which negatively correlates with disease severity (p = 0.014). Intriguingly, a significant inverse correlation between GCase activity and this ratio in PD subjects was found (p = 0.006). Additional and large-scale studies comparing GCase activity and pathological protein levels will be clearly needed to corroborate these data and determine whether the association between key players in the lysosomal system and α-syn can be used as diagnostic or prognostic biomarkers for PD.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Maria Sampieri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Francesca Siani
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Micol Avenali
- Neurological Rehabilitation Unit, IRCCS Mondino Foundation Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Gianluca Dornini
- Immunohemeatology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo Pavia, Italy
| | - Roberta Zangaglia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation Pavia, Italy
| | - Brigida Minafra
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation Pavia, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| |
Collapse
|
46
|
Sardi SP, Cedarbaum JM, Brundin P. Targeted Therapies for Parkinson's Disease: From Genetics to the Clinic. Mov Disord 2018; 33:684-696. [PMID: 29704272 PMCID: PMC6282975 DOI: 10.1002/mds.27414] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
The greatest unmet medical need in Parkinson's disease (PD) is treatments that slow the relentless progression of symptoms. The discovery of genetic variants causing and/or increasing the risk for PD has provided the field with a new arsenal of potential therapies ready to be tested in clinical trials. We highlight 3 of the genetic discoveries (α-synuclein, glucocerebrosidase, and leucine-rich repeat kinase) that have prompted new therapeutic approaches now entering the clinical stages. We are at an exciting juncture in the journey to developing disease-modifying treatments based on knowledge of PD genetics and pathology. This review focuses on therapeutic paradigms that are under clinical development and highlights a wide range of key outstanding questions in PD. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Patrik Brundin
- Center for Neurodegenerative ScienceVan Andel Research InstituteGrand RapidsMIUSA
| |
Collapse
|
47
|
Groveman BR, Orrù CD, Hughson AG, Raymond LD, Zanusso G, Ghetti B, Campbell KJ, Safar J, Galasko D, Caughey B. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol Commun 2018; 6:7. [PMID: 29422107 PMCID: PMC5806364 DOI: 10.1186/s40478-018-0508-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/25/2022] Open
Abstract
The diagnosis and treatment of synucleinopathies such as Parkinson disease and dementia with Lewy bodies would be aided by the availability of assays for the pathogenic disease-associated forms of α-synuclein (αSynD) that are sufficiently sensitive, specific, and practical for analysis of accessible diagnostic specimens. Two recent αSynD seed amplification tests have provided the first prototypes for ultrasensitive and specific detection of αSynD in patients' cerebrospinal fluid. These prototypic assays require 5-13 days to perform. Here, we describe an improved α-synuclein real time quaking-induced conversion (αSyn RT-QuIC) assay that has similar sensitivity and specificity to the prior assays, but can be performed in 1-2 days with quantitation. Blinded analysis of cerebrospinal fluid from 29 synucleinopathy cases [12 Parkinson's and 17 dementia with Lewy bodies] and 31 non-synucleinopathy controls, including 16 Alzheimer's cases, yielded 93% diagnostic sensitivity and 100% specificity for this test so far. End-point dilution analyses allowed quantitation of relative amounts of αSynD seeding activity in cerebrospinal fluid samples, and detection in as little as 0.2 μL. These results confirm that αSynD seeding activity is present in cerebrospinal fluid. We also demonstrate that it can be rapidly detected, and quantitated, even in early symptomatic stages of synucleinopathy.
Collapse
Affiliation(s)
- Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Christina D Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Katrina J Campbell
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jiri Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California-San Diego, La Jolla, CA, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
48
|
Oeckl P, Steinacker P, Otto M. Comparison of Internal Standard Approaches for SRM Analysis of Alpha-Synuclein in Cerebrospinal Fluid. J Proteome Res 2017; 17:516-523. [PMID: 29183121 DOI: 10.1021/acs.jproteome.7b00660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Absolute protein quantification by selected reaction monitoring (SRM, also MRM) is an alternative to immunoassays, and the gold standard here is the addition of stable-isotope labeled (SIL) proteins (PSAQ). Cerebrospinal fluid (CSF) is the preferred source of biomarkers for neurological diseases, and recent improvements in mass spectrometry enable the quantification of disease-relevant proteins in CSF. We used alpha-synuclein SRM to investigate alternatives to the PSAQ approach in human CSF regarding precision and accuracy, including SIL peptides, winged SIL (WiSIL) peptides, and quantitative protein epitope signature tags (QPrESTs). All approaches yielded precise results in CSF with CV values <15% in several runs for all four measured peptides. PSAQ and QPrEST also showed good accuracy (deviation ≤15%), whereas SIL and WiSIL peptides yielded deviations up to 54% that greatly depended on the measured peptide. Total protein concentration in CSF did not affect precision and accuracy. Thus, our study indicates that all four approaches are suitable for relative quantification of alpha-synuclein in CSF. QPrESTs are a valuable alternative to PSAQ in terms of precision and accuracy, although SIL and WiSIL peptides can yield accurate results as well when peptides are selected consciously.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| |
Collapse
|
49
|
Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298:225-235. [PMID: 28987463 DOI: 10.1016/j.expneurol.2017.10.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
Starting two decades ago with the discoveries of genetic links between alpha-synuclein and Parkinson's disease risk and the identification of aggregated alpha-synuclein as the main protein constituent of Lewy pathology, alpha-synuclein has emerged as the major therapeutic target in Parkinson's disease and related synucleinopathies. Following the suggestion that alpha-synuclein pathology gradually spreads through the nervous system following a stereotypic pattern and the discovery that aggregated forms of alpha-synuclein can propagate pathology from one cell to another, and thereby probably aggravate existing deficits as well as generate additional symptoms, the idea that alpha-synuclein is a viable therapeutic target gained further support. In this review we describe current challenges and possibilities with alpha-synuclein as a therapeutic target. We briefly highlight gaps in the knowledge of the role of alpha-synuclein in disease, and propose that a deeper understanding of the pathobiology of alpha-synuclein can lead to improved therapeutic strategies. We describe several treatment approaches that are currently being tested in advanced animal experiments or already are in clinical trials. We have divided them into approaches that reduce alpha-synuclein production; inhibit alpha-synuclein aggregation inside cells; promote its degradation either inside or outside cells; and reduce its uptake by neighbouring cells following release from already affected neurons. Finally, we briefly discuss challenges related to the clinical testing of alpha-synuclein therapies, for example difficulties in monitoring target engagement and the need for relatively large trials of long duration. We conclude that alpha-synuclein remains one of the most compelling therapeutic targets for Parkinson's disease, and related synucleinopathies, and that the multitude of approaches being tested provides hope for the future.
Collapse
Affiliation(s)
- Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Kuldip D Dave
- The Michael J Fox Foundation, New York, NY 10017, USA
| | - Jeffrey H Kordower
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|