1
|
Jauregui C, Blanco-Luquin I, Macías M, Roldan M, Caballero C, Pagola I, Mendioroz M, Jericó I. Exploring the Disease-Associated Microglia State in Amyotrophic Lateral Sclerosis. Biomedicines 2023; 11:2994. [PMID: 38001994 PMCID: PMC10669775 DOI: 10.3390/biomedicines11112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Neuroinflammation, and specifically microglia, plays an important but not-yet well-understood role in the pathophysiology of amyotrophic lateral sclerosis (ALS), constituting a potential therapeutic target for the disease. Recent studies have described the involvement of different microglial transcriptional patterns throughout neurodegenerative processes, identifying a new state of microglia: disease-associated microglia (DAM). The aim of this study is to investigate expression patterns of microglial-related genes in ALS spinal cord. METHODS We analyzed mRNA expression levels via RT-qPCR of several microglia-related genes in their homeostatic and DAM state in postmortem tissue (anterior horn of the spinal cord) from 20 subjects with ALS-TDP43 and 19 controls donors from the Navarrabiomed Biobank. RESULTS The expression levels of TREM2, MS4A, CD33, APOE and TYROBP were found to be elevated in the spinal cord from ALS subjects versus controls (p-value < 0.05). However, no statistically significant gene expression differences were observed for TMEM119, SPP1 and LPL. CONCLUSIONS This study suggests that a DAM-mediated inflammatory response is present in ALS, and TREM2 plays a significant role in immune function of microglia. It also supports the role of C33 and MS4A in the physiopathology of ALS.
Collapse
Affiliation(s)
- Carlota Jauregui
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Mónica Macías
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Miren Roldan
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Cristina Caballero
- Department of Pathology, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Inma Pagola
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuromuscular and Neuron Motor Diseases Research Group, Navarrabiomed, IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Maite Mendioroz
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Ivonne Jericó
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuromuscular and Neuron Motor Diseases Research Group, Navarrabiomed, IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| |
Collapse
|
2
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
3
|
Johnson AM, Lukens JR. The innate immune response in tauopathies. Eur J Immunol 2023; 53:e2250266. [PMID: 36932726 PMCID: PMC10247424 DOI: 10.1002/eji.202250266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Tauopathies, which include frontotemporal dementia, Alzheimer's disease, and chronic traumatic encephalopathy, are a class of neurological disorders resulting from pathogenic tau aggregates. These aggregates disrupt neuronal health and function leading to the cognitive and physical decline of tauopathy patients. Genome-wide association studies and clinical evidence have brought to light the large role of the immune system in inducing and driving tau-mediated pathology. More specifically, innate immune genes are found to harbor tauopathy risk alleles, and innate immune pathways are upregulated throughout the course of disease. Experimental evidence has expanded on these findings by describing pivotal roles for the innate immune system in the regulation of tau kinases and tau aggregates. In this review, we summarize the literature implicating innate immune pathways as drivers of tauopathy.
Collapse
Affiliation(s)
- Alexis M. Johnson
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Moutinho M, Coronel I, Tsai AP, Di Prisco GV, Pennington T, Atwood BK, Puntambekar SS, Smith DC, Martinez P, Han S, Lee Y, Lasagna-Reeves CA, Lamb BT, Bissel SJ, Nho K, Landreth GE. TREM2 splice isoforms generate soluble TREM2 species that disrupt long-term potentiation. Genome Med 2023; 15:11. [PMID: 36805764 PMCID: PMC9940368 DOI: 10.1186/s13073-023-01160-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND TREM2 is a transmembrane receptor expressed by myeloid cells and acts to regulate their immune response. TREM2 governs the response of microglia to amyloid and tau pathologies in the Alzheimer's disease (AD) brain. TREM2 is also present in a soluble form (sTREM2), and its CSF levels fluctuate as a function of AD progression. Analysis of stroke and AD mouse models revealed that sTREM2 proteins bind to neurons, which suggests sTREM2 may act in a non-cell autonomous manner to influence neuronal function. sTREM2 arises from the proteolytic cleavage of the membrane-associated receptor. However, alternatively spliced TREM2 species lacking a transmembrane domain have been postulated to contribute to the pool of sTREM2. Thus, both the source of sTREM2 species and its actions in the brain remain unclear. METHODS The expression of TREM2 isoforms in the AD brain was assessed through the analysis of the Accelerating Medicines Partnership for Alzheimer's Disease Consortium transcriptomics data, as well as qPCR analysis using post-mortem samples of AD patients and of the AD mouse model 5xFAD. TREM2 cleavage and secretion were studied in vitro using HEK-293T and HMC3 cell lines. Synaptic plasticity, as evaluated by induction of LTP in hippocampal brain slices, was employed as a measure of sTREM2 actions. RESULTS Three distinct TREM2 transcripts, namely ENST00000373113 (TREM2230), which encodes the full-length transmembrane receptor, and the alternatively spliced isoforms ENST00000373122 (TREM2222) and ENST00000338469 (TREM2219), are moderately increased in specific brain regions of patients with AD. We provide experimental evidence that TREM2 alternatively spliced isoforms are translated and secreted as sTREM2. Furthermore, our functional analysis reveals that all sTREM2 species inhibit LTP induction, and this effect is abolished by the GABAA receptor antagonist picrotoxin. CONCLUSIONS TREM2 transcripts can give rise to a heterogeneous pool of sTREM2 which acts to inhibit LTP. These results provide novel insight into the generation, regulation, and function of sTREM2 which fits into the complex biology of TREM2 and its role in human health and disease. Given that sTREM2 levels are linked to AD pathogenesis and progression, our finding that sTREM2 species interfere with LTP furthers our understanding about the role of TREM2 in AD.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Israel Coronel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gonzalo Viana Di Prisco
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Taylor Pennington
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel C Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie J Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Mahjoub Y, Martino D. Immunology and microbiome: Implications for motor systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:135-157. [PMID: 37562867 DOI: 10.1016/b978-0-323-98818-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Immune-inflammatory mechanisms seem to play a relevant role in neurodegenerative disorders affecting motor systems, particularly Parkinson's disease, where activity changes in inflammatory cells and evidence of neuroinflammation in experimental models and patients is available. Amyotrophic lateral sclerosis is also characterized by neuroinflammatory changes that involve primarily glial cells, both microglia and astrocytes, as well as systemic immune dysregulation associated with more rapid progression. Similarly, the exploration of gut dysbiosis in these two prototypical neurodegenerative motor disorders is advancing rapidly. Altered composition of gut microbial constituents and related metabolic and putative functional pathways is supporting a pathophysiological link that is currently explored in preclinical, germ-free animal models. Less compelling, but still intriguing, evidence suggests that motor neurodevelopmental disorders, e.g., Tourette syndrome, are associated with abnormal trajectories of maturation that include also immune system development. Microglia has a key role also in these disorders, and new therapeutic avenues aiming at its modulation are exciting prospects. Preclinical and clinical research on the role of gut dysbiosis in Tourette syndrome and related behavioral disorders is still in its infancy, but early findings support the rationale to delve deeper into its contribution to neural and immune maturation abnormalities in its spectrum.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
6
|
Silva-Gomes R, Mapelli SN, Boutet MA, Mattiola I, Sironi M, Grizzi F, Colombo F, Supino D, Carnevale S, Pasqualini F, Stravalaci M, Porte R, Gianatti A, Pitzalis C, Locati M, Oliveira MJ, Bottazzi B, Mantovani A. Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. J Leukoc Biol 2021; 111:817-836. [PMID: 34346525 PMCID: PMC9290968 DOI: 10.1002/jlb.2a0421-200r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Regenerative Medicine and Skeleton, RMeS, Inserm UMR 1229, Oniris, CHU Nantes, Université de Nantes, Nantes, France
| | - Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Berlin, Germany
| | - Marina Sironi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Domenico Supino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Silvia Carnevale
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Fabio Pasqualini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Rémi Porte
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Andrea Gianatti
- Unit of Pathology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Constantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria José Oliveira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Shafi S, Singh A, Ibrahim AM, Alhajri N, Abu Izneid T, Pottoo FH. Role of triggering receptor expressed on myeloid cells 2 (TREM2) in neurodegenerative dementias. Eur J Neurosci 2021; 53:3294-3310. [PMID: 33786894 DOI: 10.1111/ejn.15215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023]
Abstract
Neurodegeneration is a debilitating condition that causes nerve cell degeneration or death. Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and Lewy body dementia (LBD) are posing a larger population burden of dementia worldwide. Neurodegenerative dementia is one of the main challenges in public health with its main characteristics being permanent loss of memory, impairment in cognition, and impaired daily functions. The published literature about genetic studies of these disorders suggests genetic underpinning in the pathogenesis of neurodegenerative dementia. In the process of underlining the pathogenesis of NDD, growing evidence has related genetic variations in the triggering receptor expressed on myeloid cells 2 (TREM2). This review paper aims to provide a detailed information regarding the association of TREM2 and NDDs leading to dementia. A central consideration is AD that accounts for almost 50%-70% of all late-life dementias alone or in combination with other neurological disorders. Other prevalent neurodegenerative conditions that lead to dementia are also discussed. Such studies are important as they can give a comprehensive knowledge of TREM2's role in various NDDs, in order to maximize the potential for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Sadat Shafi
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department, College of Nursing, Imam Abdul Rahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noora Alhajri
- Department of Epidemiology and Population Health, College of Medicine and Health Science, Khalifa University, Abu Dhabi, UAE
| | | | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Damman, Saudi Arabia
| |
Collapse
|
8
|
Palleis C, Sauerbeck J, Beyer L, Harris S, Schmitt J, Morenas-Rodriguez E, Finze A, Nitschmann A, Ruch-Rubinstein F, Eckenweber F, Biechele G, Blume T, Shi Y, Weidinger E, Prix C, Bötzel K, Danek A, Rauchmann BS, Stöcklein S, Lindner S, Unterrainer M, Albert NL, Wetzel C, Rupprecht R, Rominger A, Bartenstein P, Herms J, Perneczky R, Haass C, Levin J, Höglinger GU, Brendel M. In Vivo Assessment of Neuroinflammation in 4-Repeat Tauopathies. Mov Disord 2020; 36:883-894. [PMID: 33245166 DOI: 10.1002/mds.28395] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroinflammation has received growing interest as a therapeutic target in neurodegenerative disorders, including 4-repeat tauopathies. OBJECTIVES The aim of this cross-sectional study was to investigate 18 kDa translocator protein positron emission tomography (PET) as a biomarker for microglial activation in the 4-repeat tauopathies corticobasal degeneration and progressive supranuclear palsy. METHODS Specific binding of the 18 kDa translocator protein tracer 18 F-GE-180 was determined by serial PET during pharmacological depletion of microglia in a 4-repeat tau mouse model. The 18 kDa translocator protein PET was performed in 30 patients with corticobasal syndrome (68 ± 9 years, 16 women) and 14 patients with progressive supranuclear palsy (69 ± 9 years, 8 women), and 13 control subjects (70 ± 7 years, 7 women). Group comparisons and associations with parameters of disease progression were assessed by region-based and voxel-wise analyses. RESULTS Tracer binding was significantly reduced after pharmacological depletion of microglia in 4-repeat tau mice. Elevated 18 kDa translocator protein labeling was observed in the subcortical brain areas of patients with corticobasal syndrome and progressive supranuclear palsy when compared with controls and was most pronounced in the globus pallidus internus, whereas only patients with corticobasal syndrome showed additionally elevated tracer binding in motor and supplemental motor areas. The 18 kDa translocator protein labeling was not correlated with parameters of disease progression in corticobasal syndrome and progressive supranuclear palsy but allowed sensitive detection in patients with 4-repeat tauopathies by a multiregion classifier. CONCLUSIONS Our data indicate that 18 F-GE-180 PET detects microglial activation in the brain of patients with 4-repeat tauopathy, fitting to predilection sites of the phenotype. The 18 kDa translocator protein PET has a potential for monitoring neuroinflammation in 4-repeat tauopathies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carla Palleis
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Julia Sauerbeck
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Julia Schmitt
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Anika Finze
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Alexander Nitschmann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tanja Blume
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Yuan Shi
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Catharina Prix
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Adrian Danek
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Chair of Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, UK
| | - Christian Haass
- German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
9
|
Alster P, Madetko N, Koziorowski D, Friedman A. Microglial Activation and Inflammation as a Factor in the Pathogenesis of Progressive Supranuclear Palsy (PSP). Front Neurosci 2020; 14:893. [PMID: 32982676 PMCID: PMC7492584 DOI: 10.3389/fnins.2020.00893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease based on four-repeat tauopathy pathology. Currently, this entity is not fully recognized in the context of pathogenesis or clinical examination. This review evaluates the association between neuroinflammation and microglial activation with the induction of pathological cascades that result in tauopathy pathology and the clinical manifestation of PSP. Multidimensional analysis was performed by evaluating genetic, biochemical, and neuroimaging biomarkers to determine whether neurodegeneration as an effect of neuroinflammation or neuroinflammation is a consequence of neurodegeneration in PSP. To the best of our knowledge, this review is the first to investigate PSP in this context.
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department and Clinic of Neurology, Wrocław Medical University, Wrocław, Poland
| | | | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|