1
|
Han F, Lee J, Chen X, Ziontz J, Ward T, Landau SM, Baker SL, Harrison TM, Jagust WJ. Global brain activity and its coupling with cerebrospinal fluid flow is related to tau pathology. Alzheimers Dement 2024; 20:8541-8555. [PMID: 39508716 DOI: 10.1002/alz.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Factors responsible for the deposition of pathological tau in the brain are incompletely understood. This study links macroscale tau deposition in the human brain to cerebrospinal fluid (CSF) flow dynamics using resting-state functional magnetic resonance imaging (rsfMRI). METHODS Low-frequency (< 0.1 Hz) resting-state global brain activity is coupled with CSF flow and potentially reflects CSF dynamics-related clearance. We examined the correlation between rsfMRI measures of CSF inflow and global activity (gBOLD-CSF coupling) as a predictor, interacting with amyloid beta (Aβ), of tau and cortical thickness (dependent variables) across Alzheimer's Disease Neuroimaging Initiative (ADNI) participants from cognitively unimpaired through mild cognitive impairment (MCI) and Alzheimer's disease (AD). RESULTS Tau deposition in Aβ+ participants, accompanied by cortical thinning and cognitive decline, is associated with decreased gBOLD-CSF coupling. Tau mediates the relationship between coupling and thickness. DISCUSSION Findings suggest that resting-state global brain activity and CSF movements comodulate Alzheimer's tau deposition, presumably related to CSF clearance. HIGHLIGHTS A non-invasive functional magnetic resonance imaging (fMRI) assessment of a CSF clearance-related process is carried out. Global brain activity is coupled with CSF inflow in human fMRI during resting state. Global fMRI-CSF coupling is correlated with tau in Alzheimer's disease (AD). This coupling measure is also associated with cortical thickness, mediated by tau.
Collapse
Affiliation(s)
- Feng Han
- Department of Neuroscience, University of California, Berkeley, California, USA
| | - JiaQie Lee
- Department of Neuroscience, University of California, Berkeley, California, USA
| | - Xi Chen
- Department of Neuroscience, University of California, Berkeley, California, USA
- Department of Cellular and Tissue Imaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jacob Ziontz
- Department of Neuroscience, University of California, Berkeley, California, USA
| | - Tyler Ward
- Department of Neuroscience, University of California, Berkeley, California, USA
| | - Susan M Landau
- Department of Neuroscience, University of California, Berkeley, California, USA
| | - Suzanne L Baker
- Department of Cellular and Tissue Imaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Theresa M Harrison
- Department of Neuroscience, University of California, Berkeley, California, USA
| | - William J Jagust
- Department of Neuroscience, University of California, Berkeley, California, USA
- Department of Cellular and Tissue Imaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
2
|
Zeng X, Hua L, Ma G, Zhao Z, Yuan Z. Dysregulated neurofluid coupling as a new noninvasive biomarker for primary progressive aphasia. Neuroimage 2024; 303:120924. [PMID: 39547457 DOI: 10.1016/j.neuroimage.2024.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Accumulation of pathological tau is one of the primary causes of Primary Progressive Aphasia (PPA). The glymphatic system is crucial for removing metabolite waste from the brain whereas impairments in glymphatic clearance in PPA are poorly understood. Thus, this study aims to investigate the role of dysregulated macroscopic cerebrospinal fluid (CSF) movement in PPA. Fifty-six PPA individuals and ninety-four healthy controls were included in our analysis after excluding those with excessive head motions during the scan. The coupling strength between blood-oxygen-level-dependent (BOLD) signals in the gray matter and CSF flow was calculated using Pearson correlation and compared between the groups. Its associations with clinical characteristics including scores from Clinical Dementia Rating (CDR), Mini-Mental State Exam, Geriatric Depression Scale and with morphological measures in the hippocampus and entorhinal cortex were examined. PPA subjects exhibited weaker global BOLD-CSF coupling compared to HCs, indicating impairments in glymphatic function in the patients (p = 0.01). In the PPA but not HC group, global BOLD-CSF coupling correlated with the CDR scores (p = 0.04) and hippocampal volume (p = 0.009). The observed decoupling between global brain activity and CSF flow and its association with symptomatology and brain structural changes in PPA converges with previous reports on the same measure in other neurodegenerative diseases. These findings support the potential role of global BOLD-CSF coupling as a noninvasive marker for glymphatic dysregulation in PPA.
Collapse
Affiliation(s)
- Xinglin Zeng
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Lin Hua
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, PR China
| | - Zhiying Zhao
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
3
|
Han F, Liu X, Yang Y, Liu X. Sex-specific age-related differences in cerebrospinal fluid clearance assessed by resting-state functional magnetic resonance imaging. Neuroimage 2024; 302:120905. [PMID: 39461604 DOI: 10.1016/j.neuroimage.2024.120905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cerebrospinal fluid (CSF) flow may assist the clearance of brain wastes, such as amyloid-β (Aβ) and tau, and thus play an important role in aging and dementias. However, a lack of non-invasive tools to assess the CSF dynamics-related clearance in humans hindered the understanding of the relevant changes in healthy aging. The global infra-slow (<0.1 Hz) brain activity measured by the global mean resting-state fMRI signal (gBOLD) was recently found to be coupled by large CSF movements. This coupling has been found to correlate with various pathologies of Alzheimer's disease (AD), particularly Aβ pathology, linking it to waste clearance. Using resting-state fMRI data from a group of 719 healthy aging participants, we examined the sex-specific differences of the gBOLD-CSF coupling over a wide age range between 36-100 years of age. We found that this coupling index remains stable before around age 55 and then starts to decline afterward, particularly in females. Menopause may contribute to the accelerated decline in females.
Collapse
Affiliation(s)
- Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xufu Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA; Institute for Computational and Data Sciences, The Pennsylvania State University, PA, USA.
| |
Collapse
|
4
|
Muccio M, Sun Z, Chu D, Damadian BE, Minkoff L, Bonanni L, Ge Y. The impact of body position on neurofluid dynamics: present insights and advancements in imaging. Front Aging Neurosci 2024; 16:1454282. [PMID: 39582951 PMCID: PMC11582045 DOI: 10.3389/fnagi.2024.1454282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
The intricate neurofluid dynamics and balance is essential in preserving the structural and functional integrity of the brain. Key among these forces are: hemodynamics, such as heartbeat-driven arterial and venous blood flow, and hydrodynamics, such as cerebrospinal fluid (CSF) circulation. The delicate interplay between these dynamics is crucial for maintaining optimal homeostasis within the brain. Currently, the widely accepted framework for understanding brain functions is the Monro-Kellie's doctrine, which posits a constant sum of intracranial CSF, blood flow and brain tissue volumes. However, in recent decades, there has been a growing interest in exploring the dynamic interplay between these elements and the impact of external factors, such as daily changes in body position. CSF circulation in particular plays a crucial role in the context of neurodegeneration and dementia, since its dysfunction has been associated with impaired clearance mechanisms and accumulation of toxic substances. Despite the implementation of various invasive and non-invasive imaging techniques to investigate the intracranial hemodynamic or hydrodynamic properties, a comprehensive understanding of how all these elements interact and are influenced by body position remains wanted. Establishing a comprehensive overview of this topic is therefore crucial and could pave the way for alternative care approaches. In this review, we aim to summarize the existing understanding of intracranial hemodynamic and hydrodynamic properties, fundamental for brain homeostasis, along with factors known to influence their equilibrium. Special attention will be devoted to elucidating the effects of body position shifts, given their significance and remaining ambiguities. Furthermore, we will explore recent advancements in imaging techniques utilized for real time and non-invasive measurements of dynamic body fluid properties in-vivo.
Collapse
Affiliation(s)
- Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - David Chu
- FONAR Corporation, Melville, NY, United States
| | - Brianna E. Damadian
- Department of Radiology, Northwell Health-Lenox Hill Hospital, New York, NY, United States
| | | | | | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Liu X. Decoupling Between Brain Activity and Cerebrospinal Fluid Movement in Neurological Disorders. J Magn Reson Imaging 2024; 60:1743-1752. [PMID: 37991132 PMCID: PMC11109023 DOI: 10.1002/jmri.29148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Recent research has identified a link between the global mean signal of resting-state functional MRI (fMRI) and macro-scale cerebrospinal fluid movement, indicating the potential link between this resting-state dynamic and brain waste clearance. Consistent with this notion, the strength of this coupling has been associated with multiple neurodegenerative disease pathologies, especially the build-up of toxic proteins. This article aimed to review the latest advancements in this research area, emphasizing studies on spontaneous global brain activity that is tightly linked to the global mean resting-state fMRI signal, and aimed to discuss potential mechanisms through which this activity and associated physiological modulations might affect brain waste clearance. The available evidence supports the presence of a highly organized global brain activity that is linked to arousal and memory systems. This global brain dynamic, along with its associated physiological modulations, has the potential to influence brain waste clearance through multiple pathways through multiple pathways. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
6
|
Zhu H, Zhu C, Liu T, Wang P, Li W, Zhang Q, Zhao Y, Yu T, Liu X, Zhang Q, Zhao J, Zhang Y. Alterations in the Glymphatic System and Association with Brain Structure and Cognitive Function in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01296-z. [PMID: 39245689 DOI: 10.1007/s12975-024-01296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The glymphatic system is crucial for clearing metabolic waste from the brain, maintaining neural health and cognitive function. This study explores the glymphatic system's role in Moyamoya disease (MMD), characterized by progressive cerebral artery stenosis and brain structural lesions. We assessed 33 MMD patients and 21 healthy controls using diffusion tensor imaging along the perivascular space (DTI-ALPS) and global cortical gray matter-cerebrospinal fluid (CSF) coupling indices (gBOLD-CSF), which are indirect measurements of the glymphatic system. Cerebral perfusion in patients was evaluated via computed tomography perfusion imaging. We also measured the peak width of skeletonized mean diffusivity (PSMD), white matter hyperintensity (WMH) burden, and cognitive function. MMD patients exhibited lower ALPS and gBOLD-CSF coupling indices compared to controls (P < 0.01), indicating disrupted glymphatic function. Significant cognitive impairment was also observed in MMD patients (P < 0.01). ALPS indices varied with cerebral perfusion stages, being higher in earlier ischemic stages (P < 0.05). Analysis of brain structure showed increased CSF volume, PSMD index, and higher WMH burden in MMD patients (P < 0.01). The ALPS index positively correlated with white matter volume and cognitive scores, and negatively correlated with CSF volume, PSMD, and WMH burden (P < 0.05). Mediation analysis revealed the number of periventricular WMH significantly mediated the relationship between glymphatic dysfunction and cognitive impairment. In summary, MMD patients exhibit significant glymphatic system impairments, associated with brain structural changes and cognitive deficits.
Collapse
Affiliation(s)
- Huan Zhu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Chenyu Zhu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Tong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Peijiong Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Wenjie Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Qihang Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yahui Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Tao Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xingju Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Qian Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jizong Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
7
|
Ryman SG, Vakhtin AA, Mayer AR, van der Horn HJ, Shaff NA, Nitschke SR, Julio KR, Tarawneh RM, Rosenberg GA, Diaz SV, Pirio Richardson SE, Lin HC. Abnormal Cerebrovascular Activity, Perfusion, and Glymphatic Clearance in Lewy Body Diseases. Mov Disord 2024; 39:1258-1268. [PMID: 38817039 PMCID: PMC11341260 DOI: 10.1002/mds.29867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Nicholas A Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Stephanie R Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kayla R Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Rawan M Tarawneh
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
- Cognitive Neurology Section, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gary A Rosenberg
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Shanna V Diaz
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah E Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Henry C Lin
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Zhang Y, Peng B, Chen S, Liang Q, Zhang Y, Lin S, Xu Z, Zhang J, Hou G, Qiu Y. Reduced coupling between global signal and cerebrospinal fluid inflow in patients with depressive disorder: A resting state functional MRI study. J Affect Disord 2024; 354:136-142. [PMID: 38484877 DOI: 10.1016/j.jad.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Depressed patients often suffer from sleep disturbance, which has been recognized to be responsible for glymphatic dysfunction. The purpose of this study was to investigate the coupling strength of global blood‑oxygen-level-dependent (gBOLD) signals and cerebrospinal fluid (CSF) inflow dynamics, which is a biomarker for glymphatic function, in depressed patients and to explore its potential relationship with sleep disturbance by using resting-state functional MRI. METHODS A total of 138 depressed patients (112 females, age: 34.70 ± 13.11 years) and 84 healthy controls (29 females, age: 36.6 ± 11.75 years) participated in this study. The gBOLD-CSF coupling strength was calculated to evaluate glymphatic function. Sleep disturbance was evaluated using the insomnia items (item 4 for insomnia-early, item 5 for insomnia-middle, and item 6 for insomnia-late) of The 17-item Hamilton Depression Rating Scale for depressed patients, which was correlated with the gBOLD-CSF coupling strength. RESULTS The depressed patients exhibited weaker gBOLD-CSF coupling relative to healthy controls (p = 0.022), possibly due to impairment of the glymphatic system. Moreover, the gBOLD-CSF coupling strength correlated with insomnia-middle (r = 0.097, p = 0.008) in depressed patients. Limitations This study is a cross-sectional study. CONCLUSION Our findings shed light on the pathophysiology of depression, indicating that cerebral waste clearance system deficits are correlated with poor sleep quality in depressed patients.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou 510145, People's Republic of China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Jiayun Zhang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou 510145, People's Republic of China
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, People's Republic of China.
| |
Collapse
|
10
|
Kim JH, Kim S, Im JG, Chung SJ, Lee PH, Jeong Y, Park SH. CSF pulsations measured in Parkinson's disease patients using EPI-based fMRI data. Front Aging Neurosci 2024; 16:1369522. [PMID: 38737587 PMCID: PMC11082335 DOI: 10.3389/fnagi.2024.1369522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Cerebrospinal fluid (CSF) flow is involved in brain waste clearance and may be impaired in neurodegenerative diseases such as Parkinson's disease. This study aims to investigate the relationship between the CSF pulsation and the development of dementia in Parkinson's disease (PD) patients using EPI-based fMRI. Methods We measured CSF pulsation in the 4th ventricle of 17 healthy controls and 35 PD patients using a novel CSF pulsation index termed "CSFpulse" based on echo-planar imaging (EPI)-based fMRI. The PD patients were classified into a PD with dementia high-risk group (PDD-H, n = 19) and a low risk group (PDD-L, n = 16), depending on their development of dementia within 5 years after initial brain imaging. The size of the 4th ventricle was measured using intensity-based thresholding. Results We found that CSF pulsation was significantly higher in PD patients than in healthy controls, and that PD patients with high risk of dementia (PDD-H) had the highest CSF pulsation. We also observed an enlargement of the 4th ventricle in PD patients compared to healthy controls. Conclusion Our results suggest that CSF pulsation may be a potential biomarker for PD progression and cognitive decline, and that EPI-based fMRI can be a useful tool for studying CSF flow and brain function in PD.
Collapse
Affiliation(s)
- Jun-Hee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Suhong Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Radiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jae-Geun Im
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seok Jong Chung
- Yonsei University College of Medicine, Seoul, Republic of Korea
- Yongin Severance Hospital, Yongin, Republic of Korea
| | - Phil Hyu Lee
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Kim JH, Im JG, Park SH. Measurement of changes in cerebrospinal fluid pulsation after traumatic brain injury using echo-planar imaging-based functional MRI. NMR IN BIOMEDICINE 2024; 37:e5061. [PMID: 37839870 DOI: 10.1002/nbm.5061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is a major public health concern worldwide, with a high incidence and a significant impact on morbidity and mortality. The alteration of cerebrospinal fluid (CSF) dynamics after TBI is a well-known phenomenon; however, the underlying mechanisms and their implications for cognitive function are not fully understood. In this study, we propose a new approach to studying the alteration of CSF dynamics in TBI patients. Our approach involves using conventional echo-planar imaging-based functional MRI with no additional scan, allowing for simultaneous assessment of functional CSF dynamics and blood oxygen level-dependent-based functional brain activities. We utilized two previously suggested indices of (i) CSFpulse, and (ii) correlation between global brain activity and CSF inflow. Using CSFpulse, we demonstrated a significant decrease in CSF pulsation following TBI (p < 0.05), which was consistent with previous studies. Furthermore, we confirmed that the decrease in CSF pulsation was most prominent in the early months after TBI, which could be explained by ependymal ciliary loss, intracranial pressure increment, or aquaporin-4 dysregulation. We also observed a decreasing trend in the correlation between global brain activity and CSF inflow in TBI patients (p < 0.05). Our findings suggest that the decreased CSF pulsation after TBI could lead to the accumulation of toxic substances in the brain and an adverse effect on brain function. Further longitudinal studies with larger sample sizes, TBI biomarker data, and various demographic information are needed to investigate the association between cognitive decline and CSF dynamics after TBI. Overall, this study sheds light on the potential role of altered CSF dynamics in TBI-induced neurologic symptoms and may contribute to the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Jun-Hee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jae-Geun Im
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
12
|
Han F, Liu X, Mailman RB, Huang X, Liu X. Resting-state global brain activity affects early β-amyloid accumulation in default mode network. Nat Commun 2023; 14:7788. [PMID: 38012153 PMCID: PMC10682457 DOI: 10.1038/s41467-023-43627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
It remains unclear why β-amyloid (Aβ) plaque, a hallmark pathology of Alzheimer's disease (AD), first accumulates cortically in the default mode network (DMN), years before AD diagnosis. Resting-state low-frequency ( < 0.1 Hz) global brain activity recently was linked to AD, presumably due to its role in glymphatic clearance. Here we show that the preferential Aβ accumulation in the DMN at the early stage of Aβ pathology was associated with the preferential reduction of global brain activity in the same regions. This can be partly explained by its failure to reach these regions as propagating waves. Together, these findings highlight the important role of resting-state global brain activity in early preferential Aβ deposition in the DMN.
Collapse
Affiliation(s)
- Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Xufu Liu
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Richard B Mailman
- Departments of Neurology and Pharmacology, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xuemei Huang
- Departments of Neurology and Pharmacology, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
- Departments of Radiology, Neurosurgery, and Kinesiology, Translational Brain Research Center, Pennsylvania State University and Milton S. Hershey Medical Center, Hershey, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, USA.
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
13
|
Dredla BK, Del Brutto OH, Castillo PR. Sleep and Perivascular Spaces. Curr Neurol Neurosci Rep 2023; 23:607-615. [PMID: 37572227 DOI: 10.1007/s11910-023-01293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE OF REVIEW The glymphatic system is hypothesized to act as the brain's filtration system to remove toxic solutes that accumulate throughout the day. Perivascular spaces (PVSs) play a fundamental role in the ability of the glymphatic system to function, and sleep influences the effectiveness of this system. This article reviews the complexity of the interplay between sleep, the glymphatic system, and PVS. RECENT FINDINGS New imaging techniques have illuminated the structure of PVS and their associations with differing disease states. Research has shown that sleep may play a key role in the function of PVS and the influence of adenosine, astrocyte, and aquaporin-4 channel in the function of the glymphatic system. Emerging data suggest that differing pathological states such as neuroinflammatory conditions, neurodegenerative diseases, and cognitive dysfunction may be associated with underlying glymphatic system dysfunction, and sleep disorders could be a potential intervention target.
Collapse
Affiliation(s)
- Brynn K Dredla
- Sleep Disorders Center, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Oscar H Del Brutto
- School of Medicine and Research Center, Universidad Espíritu Santo-Ecuador, Samborondón, Ecuador.
| | - Pablo R Castillo
- Sleep Disorders Center, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
14
|
Han F, Lee J, Chen X, Ziontz J, Ward T, Landau SM, Baker SL, Harrison TM, Jagust WJ. Global brain activity and its coupling with cerebrospinal fluid flow is related to tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557492. [PMID: 37745434 PMCID: PMC10515801 DOI: 10.1101/2023.09.12.557492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Amyloid-β (Aβ) and tau deposition constitute Alzheimer's disease (AD) neuropathology. Cortical tau deposits first in the entorhinal cortex and hippocampus and then propagates to neocortex in an Aβ-dependent manner. Tau also tends to accumulate earlier in higher-order association cortex than in lower-order primary sensory-motor cortex. While previous research has examined the production and spread of tau, little attention has been paid to its clearance. Low-frequency (<0.1 Hz) global brain activity during the resting state is coupled with cerebrospinal fluid (CSF) flow and potentially reflects glymphatic clearance. Here we report that tau deposition in subjects with evaluated Aβ, accompanied by cortical thinning and cognitive decline, is strongly associated with decreased coupling between CSF flow and global brain activity. Substantial modulation of global brain activity is also manifested as propagating waves of brain activation between higher- and lower-order regions, resembling tau spreading. Together, the findings suggest an important role of resting-state global brain activity in AD tau pathology.
Collapse
Affiliation(s)
- Feng Han
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - JiaQie Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Xi Chen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jacob Ziontz
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Tyler Ward
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
15
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Jiang D, Liu L, Kong Y, Chen Z, Rosa‑Neto P, Chen K, Ren L, Chu M, Wu L. Regional Glymphatic Abnormality in Behavioral Variant Frontotemporal Dementia. Ann Neurol 2023; 94:442-456. [PMID: 37243334 PMCID: PMC10657235 DOI: 10.1002/ana.26710] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVES Glymphatic function has not yet been explored in behavioral variant frontotemporal dementia (bvFTD). The spatial correlation between regional glymphatic function and bvFTD remains unknown. METHOD A total of 74 patients with bvFTD and 67 age- and sex-matched healthy controls (HCs) were selected from discovery dataset and replication dataset. All participants underwent neuropsychological assessment. Glymphatic measures including choroid plexus (CP) volume, diffusion tensor imaging along the perivascular (DTI-ALPS) index, and coupling between blood-oxygen-level-dependent signals and cerebrospinal fluid signals (BOLD-CSF coupling), were compared between the two groups. Regional glymphatic function was evaluated by dividing DTI-ALPS and BOLD-CSF coupling into anterior, middle, and posterior regions. The bvFTD-related metabolic pattern was identified using spatial covariance analysis based on l8 F-FDG-PET. RESULTS Patients with bvFTD showed higher CP volume (p < 0.001); anterior and middle DTI-ALPS (p < 0.001); and weaker anterior BOLD-CSF coupling (p < 0.05) than HCs after controlling for cortical gray matter volume in both datasets. In bvFTD from the discovery dataset, the anterior DTI-ALPS was negatively associated with the expression of the bvFTD-related metabolic pattern (r = -0.52, p = 0.034) and positively related with regional standardized uptake value ratios of l8 F-FDG-PET in bvFTD-related brain regions (r range: 0.49 to 0.62, p range: 0.017 to 0.047). Anterior and middle glymphatic functions were related to global cognition and disease severity. INTERPRETATION Our findings reveal abnormal glymphatic function, especially in the anterior and middle regions of brain in bvFTD. Regional glymphatic dysfunction may contribute to the pathogenesis of bvFTD. ANN NEUROL 2023;94:442-456.
Collapse
Affiliation(s)
- Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Pedro Rosa‑Neto
- Alzheimer’s Disease Research Unit, McGill Centre for Studies in Aging, Montreal H4H 1R3, Canada
| | - Kewei Chen
- Banner Alzheimer’s Institute, University of Arizona, School of Mathematics and Statistics, Arizona Alzheimer’s Consortium, Arizona State University, Tempe, USA
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | | |
Collapse
|
17
|
Wang Z, Song Z, Zhou C, Fang Y, Gu L, Yang W, Gao T, Si X, Liu Y, Chen Y, Guan X, Guo T, Wu J, Bai X, Zhang M, Zhang B, Pu J. Reduced coupling of global brain function and cerebrospinal fluid dynamics in Parkinson's disease. J Cereb Blood Flow Metab 2023; 43:1328-1339. [PMID: 36927139 PMCID: PMC10369155 DOI: 10.1177/0271678x231164337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Dysfunction of the glymphatic system, an intracranial clearance pathway that drains misfolded proteins, has been implicated in the onset of Parkinson's disease (PD). Recently, the coupling strength of global blood-oxygen-level-dependent (gBOLD) signals and cerebrospinal fluid (CSF) inflow dynamics have been suggested to be an indicator of glymphatic function. Using resting-state functional magnetic resonance imaging (MRI), we quantified gBOLD-CSF coupling strength as the cross-correlation between baseline gBOLD and CSF inflow signals to evaluate glymphatic function and its association with the clinical manifestations of PD. We found that gBOLD-CSF coupling in drug-naïve PD patients was significantly weaker than that in normal controls, but significantly stronger in patients less affected by sleep disturbances than in those more affected by sleep disturbances, based on the PD sleep scale. Furthermore, we collected longitudinal data from patients and found that baseline gBOLD-CSF coupling negatively correlated with the rate of change over time, but positively correlated with the rate of change in UPDRS-III scores. In conclusion, severe gBOLD-CSF decoupling in PD patients may reflect longitudinal motor impairment, thereby providing a potential marker of glymphatic dysfunction in PD.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Luyan Gu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xiaoli Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Yi Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xueqing Bai
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
18
|
Han F, Liu X, Yang Y, Liu X. Sex-specific age-related changes in glymphatic function assessed by resting-state functional magnetic resonance imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535258. [PMID: 37034667 PMCID: PMC10081329 DOI: 10.1101/2023.04.02.535258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The glymphatic system that clears out brain wastes, such as amyloid-β (Aβ) and tau, through cerebrospinal fluid (CSF) flow may play an important role in aging and dementias. However, a lack of non-invasive tools to assess the glymphatic function in humans hindered the understanding of the glymphatic changes in healthy aging. The global infra-slow (<0.1 Hz) brain activity measured by the global mean resting-state fMRI signal (gBOLD) was recently found to be coupled by large CSF movements. This coupling has been used to measure the glymphatic process and found to correlate with various pathologies of Alzheimer's disease (AD), including Aβ pathology. Using resting-state fMRI data from a large group of 719 healthy aging participants, we examined the sex-specific changes of the gBOLD-CSF coupling, as a measure of glymphatic function, over a wide age range between 36-100 years old. We found that this coupling index remains stable before around age 55 and then starts to decline afterward, particularly in females. Menopause may contribute to the accelerated decline in females.
Collapse
Affiliation(s)
- Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xufu Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, PA, USA
| |
Collapse
|
19
|
Peng S, Liu J, Liang C, Yang L, Wang G. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis 2023; 179:106035. [PMID: 36796590 DOI: 10.1016/j.nbd.2023.106035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The clearance function is essential for maintaining brain tissue homeostasis, and the glymphatic system is the main pathway for removing brain interstitial solutes. Aquaporin-4 (AQP4) is the most abundantly expressed aquaporin in the central nervous system (CNS) and is an integral component of the glymphatic system. In recent years, many studies have shown that AQP4 affects the morbidity and recovery process of CNS disorders through the glymphatic system, and AQP4 shows notable variability in CNS disorders and is part of the pathogenesis of these diseases. Therefore, there has been considerable interest in AQP4 as a potential and promising target for regulating and improving neurological impairment. This review aims to summarize the pathophysiological role that AQP4 plays in several CNS disorders by affecting the clearance function of the glymphatic system. The findings can contribute to a better understanding of the self-regulatory functions in CNS disorders that AQP4 were involved in and provide new therapeutic alternatives for incurable debilitating neurodegenerative disorders of CNS in the future.
Collapse
Affiliation(s)
- Shasha Peng
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiachen Liu
- 172 Tongzipo Rd, Xiangya Medical College of Central South University, Changsha, Hunan 410013, China
| | - Chuntian Liang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijun Yang
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; 146 JieFang forth Rd, Department of Neurology, SanYa Central Hospital (Hainan Third People's Hospital), Hainan Medical University, SanYa, Hainan 572000, China.
| |
Collapse
|
20
|
Wang J, Tian Y, Qin C, Meng L, Feng R, Xu S, Zhai Y, Liang D, Zhang R, Tian H, Liu H, Chen Y, Fu Y, Chen P, Zhu Q, Teng J, Wang X. Impaired glymphatic drainage underlying obstructive sleep apnea is associated with cognitive dysfunction. J Neurol 2023; 270:2204-2216. [PMID: 36662283 PMCID: PMC10025229 DOI: 10.1007/s00415-022-11530-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023]
Abstract
Obstructive sleep apnea (OSA) is highly prevalent but easily undiagnosed and is an independent risk factor for cognitive impairment. However, it remains unclear how OSA is linked to cognitive impairment. In the present study, we found the correlation between morphological changes of perivascular spaces (PVSs) and cognitive impairment in OSA patients. Moreover, we developed a novel set of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) methods to evaluate the fluid dynamics of glymphatic drainage system. We found that the inflow and outflow parameters of the glymphatic drainage system in patients with OSA were obviously changed, indicating impairment of glymphatic drainage due to excessive perfusion accompanied with deficient drainage in OSA patients. Moreover, parameters of the outflow were associated with the degree of cognitive impairment, as well as the hypoxia level. In addition, continuous positive airway pressure (CPAP) enhances performance of the glymphatic drainage system after 1 month treatment in OSA patients. We proposed that ventilation improvement might be a new strategy to ameliorate the impaired drainage of glymphatic drainage system due to OSA-induced chronic intermittent hypoxia, and consequently improved the cognitive decline.
Collapse
Affiliation(s)
- Jiuqi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yiming Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lin Meng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Renyi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuqin Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanping Zhai
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haiyan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
21
|
Gu Y, Han F, Sainburg LE, Schade MM, Buxton OM, Duyn JH, Liu X. An orderly sequence of autonomic and neural events at transient arousal changes. Neuroimage 2022; 264:119720. [PMID: 36332366 PMCID: PMC9772091 DOI: 10.1016/j.neuroimage.2022.119720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) allows the study of functional brain connectivity based on spatially structured variations in neuronal activity. Proper evaluation of connectivity requires removal of non-neural contributions to the fMRI signal, in particular hemodynamic changes associated with autonomic variability. Regression analysis based on autonomic indicator signals has been used for this purpose, but may be inadequate if neuronal and autonomic activities covary. To investigate this potential co-variation, we performed rsfMRI experiments while concurrently acquiring electroencephalography (EEG) and autonomic indicator signals, including heart rate, respiratory depth, and peripheral vascular tone. We identified a recurrent and systematic spatiotemporal pattern of fMRI (named as fMRI cascade), which features brief signal reductions in salience and default-mode networks and the thalamus, followed by a biphasic global change with a sensory-motor dominance. This fMRI cascade, which was mostly observed during eyes-closed condition, was accompanied by large EEG and autonomic changes indicative of arousal modulations. Importantly, the removal of the fMRI cascade dynamics from rsfMRI diminished its correlations with various signals. These results suggest that the rsfMRI correlations with various physiological and neural signals are not independent but arise, at least partly, from the fMRI cascades and associated neural and physiological changes at arousal modulations.
Collapse
Affiliation(s)
- Yameng Gu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lucas E Sainburg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margeaux M Schade
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Orfeu M Buxton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The purpose of this review article is to summarize the current in-vivo imaging techniques for the evaluation of the glymphatic function and discuss the factors influencing the glymphatic function and research directions in the future. RECENT FINDINGS The glymphatic system allows the clearance of metabolic waste from the central nervous system (CNS). The glymphatic pathway has been investigated using intrathecal or intravenous injection of a gadolinium-based contrast agent (GBCA) on MRI, so-called glymphatic MRI. The glymphatic MRI indirectly visualizes the dynamic CSF flow and evaluated the glymphatic function in the animal and human models. Several clinical and preclinical studies using glymphatic MRI have confirmed that the glymphatic function is impaired in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and idiopathic normal pressure hydrocephalus. Furthermore, physiologic process such as sleep facilitates the glymphatic clearance, thus clearing accumulation of protein deposition, such as amyloid or tau, potentially delaying the progression of neurodegenerative diseases. SUMMARY The glymphatic system plays a crucial role in clearing metabolic wastes in the brain. Glymphatic MR imaging using GBCA administration serves as a functional imaging tool to measure the glymphatic function and investigate various pathophysiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyochul Lee
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine
- Department of Radiology, Seoul National University College of Medicine, and Seoul National University Hospital
| | - Seung Hong Choi
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine
- Department of Radiology, Seoul National University College of Medicine, and Seoul National University Hospital
- Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Yoshimi Anzai
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms232112928. [PMID: 36361716 PMCID: PMC9656009 DOI: 10.3390/ijms232112928] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is a multisystem alpha-synucleinopathic neurodegenerative disease and the most prevalent neurodegenerative disorder after Alzheimer’s disease with a high incidence rate in the elderly population. PD is highly multifactorial in etiology and has complex and wide-ranging pathogenic mechanisms. Environmental exposures and genetic predisposition are prominent risk factors. However, current evidence suggests that an intimate link may exist between the risk factor of sleep disturbance and PD pathogenesis. PD is characterized by the pathological hallmarks of alpha-synuclein aggregations and dopaminergic neuron degeneration in the substantia nigra. The loss of dopamine-producing neurons results in both motor and non-motor symptoms, most commonly, bradykinesia, tremor, rigidity, psychiatric disorders, sleep disorders and gastrointestinal problems. Factors that may exacerbate alpha-synuclein accumulation and dopamine neuron loss include neuroinflammation and glymphatic system impairment. Extracellular alpha-synuclein can induce an inflammatory response which can lead to neural cell death and inhibition of neurogenesis. The glymphatic system functions most optimally to remove extracellular brain solutes during sleep and therefore sleep disruption may be a crucial progression factor as well as a risk factor. This literature review interprets and analyses data from experimental and epidemiological studies to determine the recent advances in establishing a relationship between glymphatic system dysfunction, sleep disturbance, and PD pathogenesis and progression. This review addresses current limitations surrounding the ability to affirm a causal link between improved glymphatic clearance by increased sleep quality in PD prevention and management. Furthermore, this review proposes potential therapeutic approaches that could utilize the protective mechanism of sleep, to promote glymphatic clearance that therefore may reduce disease progression as well as symptom severity in PD patients.
Collapse
|
24
|
Zhang Y, Zhang R, Wang S, Hong H, Jiaerken Y, Li K, Zeng Q, Luo X, Yu X, Zhang M, Huang P. Reduced coupling between the global blood-oxygen-level-dependent signal and cerebrospinal fluid inflow is associated with the severity of small vessel disease. Neuroimage Clin 2022; 36:103229. [PMID: 36252555 PMCID: PMC9668594 DOI: 10.1016/j.nicl.2022.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Small vessel disease (SVD) is highly prevalent in the elderly and associated with an increased risk of dementia and stroke. SVD may have disturbed cerebrospinal fluid (CSF) flow, which can compromise waste clearance and accelerate disease progression. METHODS We retrospectively included 146 SVD patients from a prospectively collected dataset, with one- or two-year follow-up data in 61 patients. The coupling strength between the global blood-oxygen-level-dependent (gBOLD) signal and CSF inflow was used to reflect CSF dynamics. We performed regression analyses to investigate the association between the gBOLD-CSF coupling index and the severity of SVD and vascular risk factors. Longitudinal analysis was carried out to investigate causal relationships. RESULTS Patients with severe SVD had significantly decreased gBOLD-CSF coupling (β = -0.180, p = 0.032). Dilation of perivascular spaces in the basal ganglia area (β = -0.172, p = 0.033) and diabetes (β = -0.204, p = 0.014) were associated with reduced gBOLD-CSF coupling. In longitudinal analyses, diabetes was associated with faster decline in gBOLD-CSF coupling (β = 0.20, p = 0.039), while perivascular space (PVS) dilation in the centrum semiovale showed a opposite relationship (β = -0.20, p = 0.041). The gBOLD-CSF coupling could not predict SVD progression. CONCLUSION Altered CSF flow is associated with the severity of SVD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China,Corresponding authors at: Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China,Corresponding authors at: Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China.
| |
Collapse
|
25
|
Wang Y, van Gelderen P, de Zwart JA, Özbay PS, Mandelkow H, Picchioni D, Duyn JH. Cerebrovascular activity is a major factor in the cerebrospinal fluid flow dynamics. Neuroimage 2022; 258:119362. [PMID: 35688316 PMCID: PMC9271599 DOI: 10.1016/j.neuroimage.2022.119362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebrospinal fluid (CSF) provides physical protection to the central nervous system as well as an essential homeostatic environment for the normal functioning of neurons. Additionally, it has been proposed that the pulsatile movement of CSF may assist in glymphatic clearance of brain metabolic waste products implicated in neurodegeneration. In awake humans, CSF flow dynamics are thought to be driven primarily by cerebral blood volume fluctuations resulting from a number of mechanisms, including a passive vascular response to blood pressure variations associated with cardiac and respiratory cycles. Recent research has shown that mechanisms that rely on the action of vascular smooth muscle cells ("cerebrovascular activity") such as neuronal activity, changes in intravascular CO2, and autonomic activation from the brainstem, may lead to CSF pulsations as well. Nevertheless, the relative contribution of these mechanisms to CSF flow remains unclear. To investigate this further, we developed an MRI approach capable of disentangling and quantifying CSF flow components of different time scales associated with these mechanisms. This approach was evaluated on human control subjects (n = 12) performing intermittent voluntary deep inspirations, by determining peak flow velocities and displaced volumes between these mechanisms in the fourth ventricle. We found that peak flow velocities were similar between the different mechanisms, while displaced volumes per cycle were about a magnitude larger for deep inspirations. CSF flow velocity peaked at around 10.4 s (range 7.1-14.8 s, n = 12) following deep inspiration, consistent with known cerebrovascular activation delays for this autonomic challenge. These findings point to an important role of cerebrovascular activity in the genesis of CSF pulsations. Other regulatory triggers for cerebral blood flow such as autonomic arousal and orthostatic challenges may create major CSF pulsatile movement as well. Future quantitative comparison of these and possibly additional types of CSF pulsations with the proposed approach may help clarify the conditions that affect CSF flow dynamics.
Collapse
Affiliation(s)
- Yicun Wang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jacco A de Zwart
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Pinar S Özbay
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Hendrik Mandelkow
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Dante Picchioni
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Yi T, Gao P, Zhu T, Yin H, Jin S. Glymphatic System Dysfunction: A Novel Mediator of Sleep Disorders and Headaches. Front Neurol 2022; 13:885020. [PMID: 35665055 PMCID: PMC9160458 DOI: 10.3389/fneur.2022.885020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep contributes to the maintenance of overall health and well-being. There are a growing number of patients who have headache disorders that are significantly affected by poor sleep. This is a paradoxical relationship, whereby sleep deprivation or excess sleep leads to a worsening of headaches, yet sleep onset also alleviates ongoing headache pain. Currently, the mechanism of action remains controversial and poorly understood. The glymphatic system is a newly discovered perivascular network that encompasses the whole brain and is responsible for removing toxic proteins and waste metabolites from the brain as well as replenishing nutrition and energy. Recent studies have suggested that glymphatic dysfunction is a common underlying etiology of sleep disorders and headache pain. This study reviews the current literature on the relationship between the glymphatic system, sleep, and headaches, discusses their roles, and proposes acupuncture as a non-invasive way to focus on the glymphatic function to improve sleep quality and alleviate headache pain.
Collapse
Affiliation(s)
- Ting Yi
- Rehabilitation and Health Preservation School, Chengdu University of TCM, Chengdu, China
| | - Ping Gao
- Rehabilitation and Health Preservation School, Chengdu University of TCM, Chengdu, China
| | - Tianmin Zhu
- Rehabilitation and Health Preservation School, Chengdu University of TCM, Chengdu, China
- Tianmin Zhu
| | - Haiyan Yin
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
- *Correspondence: Haiyan Yin
| | - Shuoguo Jin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shuoguo Jin
| |
Collapse
|
27
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
28
|
Single-neuron firing cascades underlie global spontaneous brain events. Proc Natl Acad Sci U S A 2021; 118:2105395118. [PMID: 34795053 DOI: 10.1073/pnas.2105395118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
The resting brain consumes enormous energy and shows highly organized spontaneous activity. To investigate how this activity is manifest among single neurons, we analyzed spiking discharges of ∼10,000 isolated cells recorded from multiple cortical and subcortical regions of the mouse brain during immobile rest. We found that firing of a significant proportion (∼70%) of neurons conformed to a ubiquitous, temporally sequenced cascade of spiking that was synchronized with global events and elapsed over timescales of 5 to 10 s. Across the brain, two intermixed populations of neurons supported orthogonal cascades. The relative phases of these cascades determined, at each moment, the response magnitude evoked by an external visual stimulus. Furthermore, the spiking of individual neurons embedded in these cascades was time locked to physiological indicators of arousal, including local field potential power, pupil diameter, and hippocampal ripples. These findings demonstrate that the large-scale coordination of low-frequency spontaneous activity, which is commonly observed in brain imaging and linked to arousal, sensory processing, and memory, is underpinned by sequential, large-scale temporal cascades of neuronal spiking across the brain.
Collapse
|