1
|
Dong L, Zhou R, Zhou J, Liu K, Jin C, Wang J, Xue C, Tian M, Zhang H, Zhong Y. Positron emission tomography molecular imaging for pathological visualization in multiple system atrophy. Neurobiol Dis 2025; 206:106828. [PMID: 39900304 DOI: 10.1016/j.nbd.2025.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Multiple system atrophy (MSA) is a complex, heterogeneous neurodegenerative disorder characterized by a multifaceted pathogenesis. Its key pathological hallmark is the abnormal aggregation of α-synuclein, which triggers neuroinflammation, disrupts both dopaminergic and non-dopaminergic systems, and results in metabolic abnormalities in the brain. Positron emission tomography (PET) is a non-invasive technique that enables the visualization, characterization, and quantification of these pathological processes from diverse perspectives using radiolabeled agents. PET imaging of molecular events provides valuable insights into the underlying pathomechanisms of MSA and holds significant promise for the development of imaging biomarkers, which could greatly improve disease assessment and management. In this review, we focused on the pathological mechanisms of MSA, summarized relevant targets and radiopharmaceuticals, and discussed the clinical applications and future perspectives of PET molecular imaging in MSA.
Collapse
Affiliation(s)
- La Dong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Ke Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chenxi Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Krismer F, Fanciulli A, Meissner WG, Coon EA, Wenning GK. Multiple system atrophy: advances in pathophysiology, diagnosis, and treatment. Lancet Neurol 2024; 23:1252-1266. [PMID: 39577925 DOI: 10.1016/s1474-4422(24)00396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/24/2024]
Abstract
Multiple system atrophy is an adult-onset, sporadic, and progressive neurodegenerative disease. People with this disorder report a wide range of motor and non-motor symptoms. Overlap in the clinical presentation of multiple system atrophy with other movement disorders (eg, Parkinson's disease and progressive supranuclear palsy) is a concern for accurate and timely diagnosis. Over the past 5 years, progress has been made in understanding key pathophysiological events in multiple system atrophy, including the seeding of α-synuclein inclusions and the detection of disease-specific α-synuclein strains. Diagnostic criteria were revised in 2022 with the intention to improve the accuracy of a diagnosis of multiple system atrophy, particularly for early disease stages. Early signals of efficacy in clinical trials have indicated the potential for disease-modifying therapies for multiple system atrophy, although no trial has yet provided unequivocal evidence of neuroprotection in this rare disease. The advances in pathophysiology could play a part in biomarker discovery for early diagnosis as well as in the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | | | - Wassilios G Meissner
- Centre Hospitalier Universitaire Bordeaux, Service de Neurologie des Maladies Neurodégénératives, Institut des Maladies Neurodégénératives Clinique, French Clinical Research Network for Parkinson's Disease and Movement Disorders, Bordeaux, France; Université de Bordeaux, Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France; Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | | | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Bacon EJ, He D, Achi NAD, Wang L, Li H, Yao-Digba PDZ, Monkam P, Qi S. Neuroimage analysis using artificial intelligence approaches: a systematic review. Med Biol Eng Comput 2024; 62:2599-2627. [PMID: 38664348 DOI: 10.1007/s11517-024-03097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/14/2024] [Indexed: 08/18/2024]
Abstract
In the contemporary era, artificial intelligence (AI) has undergone a transformative evolution, exerting a profound influence on neuroimaging data analysis. This development has significantly elevated our comprehension of intricate brain functions. This study investigates the ramifications of employing AI techniques on neuroimaging data, with a specific objective to improve diagnostic capabilities and contribute to the overall progress of the field. A systematic search was conducted in prominent scientific databases, including PubMed, IEEE Xplore, and Scopus, meticulously curating 456 relevant articles on AI-driven neuroimaging analysis spanning from 2013 to 2023. To maintain rigor and credibility, stringent inclusion criteria, quality assessments, and precise data extraction protocols were consistently enforced throughout this review. Following a rigorous selection process, 104 studies were selected for review, focusing on diverse neuroimaging modalities with an emphasis on mental and neurological disorders. Among these, 19.2% addressed mental illness, and 80.7% focused on neurological disorders. It is found that the prevailing clinical tasks are disease classification (58.7%) and lesion segmentation (28.9%), whereas image reconstruction constituted 7.3%, and image regression and prediction tasks represented 9.6%. AI-driven neuroimaging analysis holds tremendous potential, transforming both research and clinical applications. Machine learning and deep learning algorithms outperform traditional methods, reshaping the field significantly.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | | | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Patrice Monkam
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
4
|
Jellinger KA. The Pathobiology of Behavioral Changes in Multiple System Atrophy: An Update. Int J Mol Sci 2024; 25:7464. [PMID: 39000570 PMCID: PMC11242406 DOI: 10.3390/ijms25137464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
While cognitive impairment, which was previously considered a red flag against the clinical diagnosis of multiple system atrophy (MSA), is a common symptom of this rare neurodegenerative disorder, behavioral disorders are reported in 30 to 70% of MSA patients. They include anxiety, apathy, impaired attention, compulsive and REM sleep behavior disorders (RBD), and these conditions, like depression, are early and pervasive features in MSA, which may contribute to disease progression. Despite changing concepts of behavioral changes in this synucleinopathy, the underlying pathophysiological and biochemical mechanisms are poorly understood. While specific neuropathological data are unavailable, neuroimaging studies related anxiety disorders to changes in the cortico-limbic system, apathy (and depression) to dysfunction of prefrontal-subcortical circuits, and compulsive behaviors to impairment of basal ganglia networks and involvement of orbito-frontal circuits. Anxiety has also been related to α-synuclein (αSyn) pathology in the amygdala, RBD to striatal monoaminergic deficit, and compulsive behavior in response to dopamine agonist therapy in MSA, while the basic mechanisms of the other behavioral disorders and their relations to other non-motor dysfunctions in MSA are unknown. In view of the scarcity of functional and biochemical findings in MSA with behavioral symptoms, further neuroimaging and biochemical studies are warranted in order to obtain better insight into their pathogenesis as a basis for the development of diagnostic biomarkers and future adequate treatment modalities of these debilitating comorbidities.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150 Vienna, Austria
| |
Collapse
|
5
|
Ndayisaba A, Pitaro AT, Willett AS, Jones KA, de Gusmao CM, Olsen AL, Kim J, Rissanen E, Woods JK, Srinivasan SR, Nagy A, Nagy A, Mesidor M, Cicero S, Patel V, Oakley DH, Tuncali I, Taglieri-Noble K, Clark EC, Paulson J, Krolewski RC, Ho GP, Hung AY, Wills AM, Hayes MT, Macmore JP, Warren L, Bower PG, Langer CB, Kellerman LR, Humphreys CW, Glanz BI, Dielubanza EJ, Frosch MP, Freeman RL, Gibbons CH, Stefanova N, Chitnis T, Weiner HL, Scherzer CR, Scholz SW, Vuzman D, Cox LM, Wenning G, Schmahmann JD, Gupta AS, Novak P, Young GS, Feany MB, Singhal T, Khurana V. Clinical Trial-Ready Patient Cohorts for Multiple System Atrophy: Coupling Biospecimen and iPSC Banking to Longitudinal Deep-Phenotyping. CEREBELLUM (LONDON, ENGLAND) 2024; 23:31-51. [PMID: 36190676 PMCID: PMC9527378 DOI: 10.1007/s12311-022-01471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease of unknown etiology characterized by widespread aggregation of the protein alpha-synuclein in neurons and glia. Its orphan status, biological relationship to Parkinson's disease (PD), and rapid progression have sparked interest in drug development. One significant obstacle to therapeutics is disease heterogeneity. Here, we share our process of developing a clinical trial-ready cohort of MSA patients (69 patients in 2 years) within an outpatient clinical setting, and recruiting 20 of these patients into a longitudinal "n-of-few" clinical trial paradigm. First, we deeply phenotype our patients with clinical scales (UMSARS, BARS, MoCA, NMSS, and UPSIT) and tests designed to establish early differential diagnosis (including volumetric MRI, FDG-PET, MIBG scan, polysomnography, genetic testing, autonomic function tests, skin biopsy) or disease activity (PBR06-TSPO). Second, we longitudinally collect biospecimens (blood, CSF, stool) and clinical, biometric, and imaging data to generate antecedent disease-progression scores. Third, in our Mass General Brigham SCiN study (stem cells in neurodegeneration), we generate induced pluripotent stem cell (iPSC) models from our patients, matched to biospecimens, including postmortem brain. We present 38 iPSC lines derived from MSA patients and relevant disease controls (spinocerebellar ataxia and PD, including alpha-synuclein triplication cases), 22 matched to whole-genome sequenced postmortem brain. iPSC models may facilitate matching patients to appropriate therapies, particularly in heterogeneous diseases for which patient-specific biology may elude animal models. We anticipate that deeply phenotyped and genotyped patient cohorts matched to cellular models will increase the likelihood of success in clinical trials for MSA.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Ariana T Pitaro
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Andrew S Willett
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Kristie A Jones
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Claudio Melo de Gusmao
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Abby L Olsen
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jisoo Kim
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eero Rissanen
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sharan R Srinivasan
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI , 48103, USA
| | - Anna Nagy
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Amanda Nagy
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Merlyne Mesidor
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Steven Cicero
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Viharkumar Patel
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Idil Tuncali
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Katherine Taglieri-Noble
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Emily C Clark
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jordan Paulson
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Richard C Krolewski
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Gary P Ho
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Albert Y Hung
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael T Hayes
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jason P Macmore
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Pamela G Bower
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Carol B Langer
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Lawrence R Kellerman
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Christopher W Humphreys
- Department of Pulmonary, Sleep and Critical Care Medicine, Salem Hospital, MassGeneral Brigham, Salem, MA, 01970, USA
| | - Bonnie I Glanz
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Elodi J Dielubanza
- Department of Urology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Roy L Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Nadia Stefanova
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Tanuja Chitnis
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Howard L Weiner
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Clemens R Scherzer
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Sonja W Scholz
- Laboratory of Neurogenetics, Disorders and Stroke, National Institute of Neurological, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, 21287, USA
| | - Dana Vuzman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Laura M Cox
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Gregor Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Novak
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Geoffrey S Young
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tarun Singhal
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Vikram Khurana
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA.
| |
Collapse
|
6
|
Andersen AM, Kaalund SS, Marner L, Salvesen L, Pakkenberg B, Olesen MV. Quantitative cellular changes in multiple system atrophy brains. Neuropathol Appl Neurobiol 2023; 49:e12941. [PMID: 37812040 DOI: 10.1111/nan.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.
Collapse
Affiliation(s)
- Alberte M Andersen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Sanne S Kaalund
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel V Olesen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
7
|
Jellinger KA. Mild cognitive impairment in multiple system atrophy: a brain network disorder. J Neural Transm (Vienna) 2023; 130:1231-1240. [PMID: 37581647 DOI: 10.1007/s00702-023-02682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Cognitive impairment (CI), previously considered as a non-supporting feature of multiple system atrophy (MSA), according to the second consensus criteria, is not uncommon in this neurodegenerative disorder that is clinically characterized by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, motor and cerebellar signs. Mild cognitive impairment (MCI), a risk factor for dementia, has been reported in up to 44% of MSA patients, with predominant impairment of executive functions/attention, visuospatial and verbal deficits, and a variety of non-cognitive and neuropsychiatric symptoms. Despite changing concept of CI in this synucleinopathy, the underlying pathophysiological mechanisms remain controversial. Recent neuroimaging studies revealed volume reduction in the left temporal gyrus, and in the dopaminergic nucleus accumbens, while other morphometric studies did not find any gray matter atrophy, in particular in the frontal cortex. Functional analyses detected decreased functional connectivity in the left parietal lobe, bilateral cuneus, left precuneus, limbic structures, and cerebello-cerebral circuit, suggesting that structural and functional changes in the subcortical limbic structures and disrupted cerebello-cerebral networks may be associated with early cognitive decline in MSA. Whereas moderate to severe CI in MSA in addition to prefrontal-striatal degeneration is frequently associated with cortical Alzheimer and Lewy co-pathologies, neuropathological studies of the MCI stage of MSA are unfortunately not available. In view of the limited structural and functional findings in MSA cases with MCI, further neuroimaging and neuropathological studies are warranted in order to better elucidate its pathophysiological mechanisms and to develop validated biomarkers as basis for early diagnosis and future adequate treatment modalities in order to prevent progression of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
8
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
9
|
Houssein NJ, Henriksen AC, Hejl AM, Marner L. Diagnostic accuracy of cerebral [ 18F]FDG PET in atypical parkinsonism. EJNMMI Res 2023; 13:74. [PMID: 37572162 PMCID: PMC10423182 DOI: 10.1186/s13550-023-01025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Atypical parkinsonism (AP) often presents with Parkinson's symptoms but has a much worse long-term prognosis. The diagnosis is presently based on clinical criteria, but a cerebral positron emission tomography (PET) scan with [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG) may assist in the diagnosis of AP such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Lewy body dementia (DLB). Only few studies have evaluated the sensitivity and specificity of [18F]FDG PET for separating the diseases in a mixed patient population, which we aim to assess in a retrospective material. RESULTS We identified 156 patients referred for a cerebral [18F]FDG PET for suspicion of AP during 2017-2019. The [18F]FDG PET was analysed by a nuclear medicine specialist blinded to clinical information but with access to dopamine transporter imaging. The reference standard was the follow-up clinical diagnosis (follow-up: 6-72 months). The overall accuracy for correct classification was 74%. Classification sensitivity (95% confidence interval, CI) and specificity (95% CI) for MSA (n = 20) were 1.00 (0.83-1.00) and 0.91 (0.85-0.95), for DLB/Parkinson with dementia (PDD) (n = 26) were 0.81 (0.61-0.93) and 0.97 (0.92-0.99) and for CBD/PSP (n = 68) were 0.62 (0.49-0.73) and 0.97 (0.90-0.99). CONCLUSIONS Our results support the additional use of [18F]FDG PET for the clinical diagnosis of AP with moderate to high sensitivity and specificity. Use of [18F]FDG PET may be beneficial for prognosis and supportive treatment of the patients and useful for future clinical treatment trials.
Collapse
Affiliation(s)
- Naba Jawad Houssein
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alexander Cuculiza Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark
| | - Anne-Mette Hejl
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Stefanova N, Wenning GK. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 2023; 24:334-346. [PMID: 37085728 DOI: 10.1038/s41583-023-00697-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside. Diagnostics (Basel) 2023; 13:diagnostics13061029. [PMID: 36980337 PMCID: PMC10047854 DOI: 10.3390/diagnostics13061029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disorder, affecting 2–3% of the population of patients >65 years. Although the standard diagnosis of PD is clinical, neuroimaging plays a key role in the evaluation of patients who present symptoms related to neurodegenerative disorders. MRI, DAT-SPECT, and PET with [18F]-FDG are routinely used in the diagnosis and focus on the investigation of morphological changes, nigrostriatal degeneration or shifts in glucose metabolism in patients with parkinsonian syndromes. The aim of this study is to review the current PET radiotracers targeting TSPO, a transmembrane protein that is overexpressed by microglia in another pathophysiological process associated with neurodegenerative disorders known as neuroinflammation. To the best of our knowledge, neuroinflammation is present not only in PD but in many other neurodegenerative disorders, including AD, DLB, and MSA, as well as atypical parkinsonian syndromes. Therefore, in this study, specific patterns of microglial activation in PD and the differences in distribution volumes of these radiotracers in patients with PD as compared to other neurodegenerative disorders are reviewed.
Collapse
|
12
|
Virameteekul S, Revesz T, Jaunmuktane Z, Warner TT, De Pablo-Fernández E. Pathological Validation of the MDS Criteria for the Diagnosis of Multiple System Atrophy. Mov Disord 2023; 38:444-452. [PMID: 36606594 DOI: 10.1002/mds.29304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The recent International Parkinson and Movement Disorder Society diagnostic criteria for multiple system atrophy (MDS-MSA) have been developed to improve diagnostic accuracy although their diagnostic properties have not been evaluated. OBJECTIVES The aims were to validate the MDS-MSA diagnostic criteria against neuropathological diagnosis and compare their diagnostic performance to previous criteria and diagnosis in clinical practice. METHODS Consecutive patients with sporadic, progressive, adult-onset parkinsonism, or cerebellar ataxia from the Queen Square Brain Bank between 2009 and 2019 were selected and divided based on neuropathological diagnosis into MSA and non-MSA. Medical records were systematically reviewed, and clinical diagnosis was documented by retrospectively applying the MDS-MSA criteria, second consensus criteria, and diagnosis according to treating clinicians at early (within 3 years of symptom onset) and final stages. Diagnostic parameters (sensitivity, specificity, positive/negative predictive value, and accuracy) were calculated using neuropathological diagnosis as gold standard and compared between different criteria. RESULTS Three hundred eighteen patients (103 MSA and 215 non-MSA) were included, comprising 248 patients with parkinsonism and 70 with cerebellar ataxia. Clinically probable MDS-MSA showed excellent sensitivity (95.1%), specificity (94.0%), and accuracy (94.3%), although their sensitivity at early stages was modest (62.1%). Clinically probable MDS-MSA outperformed diagnosis by clinicians and by second consensus criteria. Clinically established MDS-MSA showed perfect specificity (100%) even at early stages although to the detriment of low sensitivity. MDS-MSA diagnostic accuracy did not differ according to clinical presentation (ataxia vs. parkinsonism). CONCLUSIONS MDS-MSA criteria demonstrated excellent diagnostic performance against neuropathological diagnosis and are useful diagnostic tools for clinical practice and research. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Eduardo De Pablo-Fernández
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
13
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
14
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
15
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
16
|
Horimoto Y, Hayashi E, Okamura N, Inagaki A, Yasui K, Uchida Y, Ito Y, Iida A, Sato C, Anan C, Suzuki A, Tajima T, Hibino H, Kabasawa H, Matsukawa N. Middle Cerebellar Peduncle in Early Stage of Multiple System Atrophy: A THK5351 PET Study. Mov Disord 2022; 37:1957-1959. [PMID: 35838595 DOI: 10.1002/mds.29143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yoshihiko Horimoto
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Emi Hayashi
- Department of Radiology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Nobuyuki Okamura
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Aki Inagaki
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Yuto Uchida
- Department of Neurology, Toyokawa City Hospital, Toyokawa, Japan
| | - Yoshihiro Ito
- Department of Radiology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Akihiko Iida
- Department of Radiology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Chikako Sato
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Chise Anan
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Ayuko Suzuki
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Toshihisa Tajima
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Hiroaki Hibino
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Hidehiro Kabasawa
- Department of Neurology, Nagoya City Rehabilitation Center, Nagoya, Japan
| | | |
Collapse
|
17
|
Sidoroff V, Bower P, Stefanova N, Fanciulli A, Stankovic I, Poewe W, Seppi K, Wenning GK, Krismer F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? JOURNAL OF PARKINSON'S DISEASE 2022; 12:1369-1387. [PMID: 35491799 PMCID: PMC9398078 DOI: 10.3233/jpd-223183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pam Bower
- The Multiple System Atrophy Coalition, Inc., McLean, VA, USA
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Rinne JO, Jucaite A, Cselényi Z, Farde L. Glia Imaging Shows Clinical Utility in Differentiating Parkinson's Disease from Multiple System Atrophy. Mov Disord 2022; 37:1776-1778. [PMID: 35666059 PMCID: PMC9541833 DOI: 10.1002/mds.29078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Masdeu JC, Pascual B, Fujita M. Imaging Neuroinflammation in Neurodegenerative Disorders. J Nucl Med 2022; 63:45S-52S. [PMID: 35649654 DOI: 10.2967/jnumed.121.263200] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation plays a major role in the etiopathology of neurodegenerative diseases, including Alzheimer and Parkinson diseases, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. In vivo monitoring of neuroinflammation using PET is critical to understand this process, and data are accumulating in this regard, thus a review is useful. From PubMed, we retrieved publications using any of the available PET tracers to image neuroinflammation in humans as well as selected articles dealing with experimental animal models or the chemistry of currently used or potential radiotracers. We reviewed 280 articles. The most common PET neuroinflammation target, translocator protein (TSPO), has limitations, lacking cellular specificity and the ability to separate neuroprotective from neurotoxic inflammation. However, TSPO PET is useful to define the amount and location of inflammation in the brain of people with neurodegenerative disorders. We describe the characteristics of TSPO and other potential PET neuroinflammation targets and PET tracers available or in development. Despite target and tracer limitations, in recent years there has been a sharp increase in the number of reports of neuroinflammation PET in humans. The most studied has been Alzheimer disease, in which neuroinflammation seems initially neuroprotective and neurotoxic later in the progression of the disease. We describe the findings in all the major neurodegenerative disorders. Neuroinflammation PET is an indispensable tool to understand the process of neurodegeneration, particularly in humans, as well as to validate target engagement in therapeutic clinical trials.
Collapse
Affiliation(s)
- Joseph C Masdeu
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and
| | - Belen Pascual
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and
| | - Masahiro Fujita
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and.,PET Core, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| |
Collapse
|