1
|
Jordi L, Isacson O. Neuronal threshold functions: Determining symptom onset in neurological disorders. Prog Neurobiol 2024; 242:102673. [PMID: 39389338 DOI: 10.1016/j.pneurobio.2024.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Synaptic networks determine brain function. Highly complex interconnected brain synaptic networks provide output even under fluctuating or pathological conditions. Relevant to the treatment of brain disorders, understanding the limitations of such functional networks becomes paramount. Here we use the example of Parkinson's Disease (PD) as a system disorder, with PD symptomatology emerging only when the functional reserves of neurons, and their interconnected networks, are unable to facilitate effective compensatory mechanisms. We have denoted this the "threshold theory" to account for how PD symptoms develop in sequence. In this perspective, threshold functions are delineated in a quantitative, synaptic, and cellular network context. This provides a framework to discuss the development of specific symptoms. PD includes dysfunction and degeneration in many organ systems and both peripheral and central nervous system involvement. The threshold theory accounts for and explains the reasons why parallel gradually emerging pathologies in brain and peripheral systems generate specific symptoms only when functional thresholds are crossed, like tipping points. New and mounting evidence demonstrate that PD and related neurodegenerative diseases are multisystem disorders, which transcends the traditional brain-centric paradigm. We believe that representation of threshold functions will be helpful to develop new medicines and interventions that are specific for both pre- and post-symptomatic periods of neurodegenerative disorders.
Collapse
Affiliation(s)
- Luc Jordi
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA.
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA; Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2024:10.1007/s11357-024-01359-x. [PMID: 39331291 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Rademacher K, Nakamura K. Role of dopamine neuron activity in Parkinson's disease pathophysiology. Exp Neurol 2024; 373:114645. [PMID: 38092187 DOI: 10.1016/j.expneurol.2023.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Neural activity is finely tuned to produce normal behaviors, and disruptions in activity likely occur early in the course of many neurodegenerative diseases. However, how neural activity is altered, and how these changes influence neurodegeneration is poorly understood. Here, we focus on evidence that the activity of dopamine neurons is altered in Parkinson's disease (PD), either as a compensatory response to degeneration or as a result of circuit dynamics or pathologic proteins, based on available human data and studies in animal models of PD. We then discuss how this abnormal activity may augment other neurotoxic phenomena in PD, including mitochondrial deficits, protein aggregation and spread, dopamine toxicity, and excitotoxicity. A more complete picture of how activity is altered and the resulting effects on dopaminergic neuron health and function may inform future therapeutic interventions to target and protect dopamine neurons from degeneration.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, California, 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA.
| |
Collapse
|
4
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Kang S, Yoon SH, Na HK, Lee YG, Jeon S, Baik K, Sohn YH, Ye BS. Neuropsychological Comparison of Patients With Alzheimer's Disease and Dementia With Lewy Bodies. J Clin Neurol 2023; 19:521-529. [PMID: 37455503 PMCID: PMC10622731 DOI: 10.3988/jcn.2022.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to determine the neuropsychological differences between patients with early-stage Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) with a Clinical Dementia Rating (CDR) score of ≤1. METHODS We examined 168 patients with AD (126 with CDR score=0.5, 42 with CDR score=1) and 169 patients with DLB (104 with CDR score=0.5, 65 with CDR score=1) whose diagnoses were supported by 18F-flobetaben positron-emission tomography (PET) and 18F-N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane PET. Neuropsychological test scores were compared after controlling for age, sex, and education duration. Using a cutoff motor score on the Unified Parkinson's Disease Rating Scale of 20, patients with AD were further divided into AD with parkinsonism (ADP+, n=86) and AD without parkinsonism (ADP-, n=82). RESULTS At CDR scores of both 0.5 and 1, the DLB group had lower scores on the attention (digit-span forward at CDR score=0.5 and backward at CDR score=1), visuospatial, and executive (color reading Stroop test at CDR score=0.5 and phonemic fluency test, Stroop tests, and digit symbol coding at CDR score=1) tests than the AD group, but higher scores on the memory tests. The ADP- and ADP+ subgroups had comparable scores on most neuropsychological tests, but the ADP+ subgroup had lower scores on the color reading Stroop test. CONCLUSIONS Patients with DLB had worse attention, visuospatial, and executive functions but better memory function than patients with AD. Parkinsonism was not uncommon in the patients with AD and could be related to attention and executive dysfunction.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - So Hoon Yoon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Han Kyu Na
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Kang S, Jeon S, Lee YG, Ye BS. Striatal dopamine transporter uptake, parkinsonism and cognition in Alzheimer's disease. Eur J Neurol 2023; 30:3105-3113. [PMID: 37493955 DOI: 10.1111/ene.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND PURPOSE The correlates of motor parkinsonism in Alzheimer's disease (AD) remain controversial. The effects of nigrostriatal dopaminergic degeneration on parkinsonism and cognition in biomarker-validated patients with AD were evaluated. METHODS This study recruited 116 patients with AD who underwent dual-phase 18 F-N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron emission tomography, 18 F-florbetaben positron emission tomography, 3 T brain magnetic resonance imaging, and Unified Parkinson's Disease Rating Scale (UPDRS) and neuropsychological tests. The mean cortical thickness in the frontal, temporal, parietal and occipital cortices, and the dopamine transporter (DAT) uptake in the caudate, anterior/posterior putamen and substantia nigra were quantified. The relationship between DAT uptake, mean lobar cortical thickness, UPDRS motor score and cognition was investigated using general linear models (GLMs) after controlling for age, sex, education, intracranial volume, and deep and periventricular white matter hyperintensities. A path analysis was performed for the UPDRS motor score with the same covariates. RESULTS Path analysis and multivariable GLMs for UPDRS motor score showed that lower caudate DAT uptake was directly associated with a higher UPDRS motor score, whereas caudate DAT uptake confounded the association between mean frontal/parietal thickness and UPDRS motor score. Multivariable GLMs for cognitive scores showed that lower caudate DAT uptake was associated with visuospatial/executive dysfunction independent of mean frontal or parietal thickness. CONCLUSIONS Nigrostriatal dopaminergic dysfunction is associated with parkinsonism and visuospatial/executive dysfunction in patients with AD.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Gun Lee
- Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Lee YG, Jeon S, Baik K, Kang SW, Ye BS. Substantia nigral dopamine transporter uptake in dementia with Lewy bodies. NPJ Parkinsons Dis 2023; 9:88. [PMID: 37296236 PMCID: PMC10256694 DOI: 10.1038/s41531-023-00534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Nigrostriatal dopaminergic degeneration is a pathological hallmark of dementia with Lewy bodies (DLB). To identify the subregional dopamine transporter (DAT) uptake patterns that improve the diagnostic accuracy of DLB, we analyzed N-(3-[18F] fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)-nortropane (FP-CIT) PET in 51 patients with DLB, in 36 patients with mild cognitive impairment with Lewy body (MCI-LB), and in 40 healthy controls (HCs). In addition to a high affinity for DAT, FP-CIT show a modest affinity to serotonin or norepinephrine transporters. Specific binding ratios (SBRs) of the nigrostriatal subregions were transformed to age-adjusted z-scores (zSBR) based on HCs. The diagnostic accuracy of subregional zSBRs were tested using receiver operating characteristic (ROC) curve analyses separately for MCI-LB and DLB versus HCs. Then, the effect of subregional zSBRs on the presence of clinical features and gray matter (GM) density were evaluated in all patients with MCI-LB or DLB as a group. ROC curve analyses showed that the diagnostic accuracy of DLB based on the zSBR of substantia nigra (area under the curve [AUC], 0.90) or those for MCI-LB (AUC, 0.87) were significantly higher than that based on the zSBR of posterior putamen for DLB (AUC, 0.72) or MCI-LB (AUC, 0.65). Lower zSBRs in nigrostriatal regions were associated with visual hallucination, severe parkinsonism, and cognitive dysfunction, while lower zSBR of substantia nigra was associated with widespread GM atrophy in DLB and MCI-LB patients. Taken together, our results suggest that evaluation of nigral DAT uptake may increase the diagnostic accuracy of DLB and MCI-LB than other striatal regions.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Functional Correlates of Striatal Dopamine Transporter Cerebrospinal Fluid Levels in Alzheimer's Disease: A Preliminary 18F-FDG PET/CT Study. Int J Mol Sci 2023; 24:ijms24010751. [PMID: 36614193 PMCID: PMC9820963 DOI: 10.3390/ijms24010751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of our study was to investigate regional glucose metabolism with 18F-FDG positron emission tomography/computed tomography in a population of patients with Alzheimer's disease (AD) in relation to cerebrospinal (CSF) levels of striatal dopamine transporter (DAT). All patients underwent lumbar puncture and received a biomarker-based diagnosis of AD. Differences in regional brain glucose metabolism were assessed by Statistical Parametric Mapping version 12 with the use of age, gender, and MMSE as covariates in the analysis. A positive correlation between CSF DAT levels and glucose metabolism at the level of two brain areas involved in the pathophysiological process of Alzheimer's disease, the substantia nigra and the posterior cingulate gyrus, has been highlighted. Results indicate that patients with higher CSF DAT levels have a better metabolic pattern in two key zones, suggesting less advanced disease status in patients with more conserved dopaminergic systems.
Collapse
|
11
|
A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules 2022; 12:biom12070881. [PMID: 35883437 PMCID: PMC9312958 DOI: 10.3390/biom12070881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson’s and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.
Collapse
|
12
|
Krashia P, Spoleti E, D'Amelio M. The VTA dopaminergic system as diagnostic and therapeutical target for Alzheimer's disease. Front Psychiatry 2022; 13:1039725. [PMID: 36325523 PMCID: PMC9618946 DOI: 10.3389/fpsyt.2022.1039725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) occur in nearly all patients with Alzheimer's Disease (AD). Most frequently they appear since the mild cognitive impairment (MCI) stage preceding clinical AD, and have a prognostic importance. Unfortunately, these symptoms also worsen the daily functioning of patients, increase caregiver stress and accelerate the disease progression from MCI to AD. Apathy and depression are the most common of these NPS, and much attention has been given in recent years to understand the biological mechanisms related to their appearance in AD. Although for many decades these symptoms have been known to be related to abnormalities of the dopaminergic ventral tegmental area (VTA), a direct association between deficits in the VTA and NPS in AD has never been investigated. Fortunately, this scenario is changing since recent studies using preclinical models of AD, and clinical studies in MCI and AD patients demonstrated a number of functional, structural and metabolic alterations affecting the VTA dopaminergic neurons and their mesocorticolimbic targets. These findings appear early, since the MCI stage, and seem to correlate with the appearance of NPS. Here, we provide an overview of the recent evidence directly linking the dopaminergic VTA with NPS in AD and propose a setting in which the precocious identification of dopaminergic deficits can be a helpful biomarker for early diagnosis. In this scenario, treatments of patients with dopaminergic drugs might slow down the disease progression and delay the impairment of daily living activities.
Collapse
Affiliation(s)
- Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Elena Spoleti
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
13
|
Spoleti E, Krashia P, La Barbera L, Nobili A, Lupascu CA, Giacalone E, Keller F, Migliore M, Renzi M, D'Amelio M. Early derailment of firing properties in CA1 pyramidal cells of the ventral hippocampus in an Alzheimer's disease mouse model. Exp Neurol 2021; 350:113969. [PMID: 34973962 DOI: 10.1016/j.expneurol.2021.113969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Gradual decline in cognitive and non-cognitive functions are considered clinical hallmarks of Alzheimer's Disease (AD). Post-mortem autoptic analysis shows the presence of amyloid β deposits, neuroinflammation and severe brain atrophy. However, brain circuit alterations and cellular derailments, assessed in very early stages of AD, still remain elusive. The understanding of these early alterations is crucial to tackle defective mechanisms. In a previous study we proved that the Tg2576 mouse model of AD displays functional deficits in the dorsal hippocampus and relevant behavioural AD-related alterations. We had shown that these deficits in Tg2576 mice correlate with the precocious degeneration of dopamine (DA) neurons in the Ventral Tegmental Area (VTA) and can be restored by L-DOPA treatment. Due to the distinct functionality and connectivity of dorsal versus ventral hippocampus, here we investigated neuronal excitability and synaptic functionality in the ventral CA1 hippocampal sub-region of Tg2576 mice. We found an age-dependent alteration of cell excitability and firing in pyramidal neurons starting at 3 months of age, that correlates with reduced levels in the ventral CA1 of tyrosine hydroxylase - the rate-limiting enzyme of DA synthesis. Additionally, at odds with the dorsal hippocampus, we found no alterations in basal glutamatergic transmission and long-term plasticity of ventral neurons in 8-month old Tg2576 mice compared to age-matched controls. Last, we used computational analysis to model the early derailments of firing properties observed and hypothesize that the neuronal alterations found could depend on dysfunctional sodium and potassium conductances, leading to anticipated depolarization-block of action potential firing. The present study depicts that impairment of cell excitability and homeostatic control of firing in ventral CA1 pyramidal neurons is a prodromal feature in Tg2576 AD mice.
Collapse
Affiliation(s)
- Elena Spoleti
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy
| | - Paraskevi Krashia
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Livia La Barbera
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Annalisa Nobili
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | | | | | - Flavio Keller
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome 00185, Italy.
| | - Marcello D'Amelio
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy.
| |
Collapse
|
14
|
Sala A, Caminiti SP, Presotto L, Pilotto A, Liguori C, Chiaravalloti A, Garibotto V, Frisoni GB, D'Amelio M, Paghera B, Schillaci O, Mercuri N, Padovani A, Perani D. In vivo human molecular neuroimaging of dopaminergic vulnerability along the Alzheimer's disease phases. Alzheimers Res Ther 2021; 13:187. [PMID: 34772450 PMCID: PMC8588696 DOI: 10.1186/s13195-021-00925-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Preclinical and pathology evidence suggests an involvement of brain dopamine (DA) circuitry in Alzheimer's disease (AD). We in vivo investigated if, when, and in which target regions [123I]FP-CIT-SPECT regional binding and molecular connectivity are damaged along the AD course. METHODS We retrospectively selected 16 amyloid-positive subjects with mild cognitive impairment due to AD (AD-MCI), 22 amyloid-positive patients with probable AD dementia (AD-D), and 74 healthy controls, all with available [123I]FP-CIT-SPECT imaging. We tested whether nigrostriatal vs. mesocorticolimbic dopaminergic targets present binding potential loss, via MANCOVA, and alterations in molecular connectivity, via partial correlation analysis. Results were deemed significant at p < 0.05, after Bonferroni correction for multiple comparisons. RESULTS We found significant reductions of [123I]FP-CIT binding in both AD-MCI and AD-D compared to controls. Binding reductions were prominent in the major targets of the ventrotegmental-mesocorticolimbic pathway, namely the ventral striatum and the hippocampus, in both clinical groups, and in the cingulate gyrus, in patients with dementia only. Within the nigrostriatal projections, only the dorsal caudate nucleus showed reduced [123I]FP-CIT binding, in both groups. Molecular connectivity assessment revealed a widespread loss of inter-connections among subcortical and cortical targets of the mesocorticolimbic network only (poor overlap with the control group as expressed by a Dice coefficient ≤ 0.25) and no alterations of the nigrostriatal network (high overlap with controls, Dice coefficient = 1). CONCLUSION Local- and system-level alterations of the mesocorticolimbic dopaminergic circuitry characterize AD, already in prodromal disease phases. These results might foster new therapeutic strategies for AD. The clinical correlates of these findings deserve to be carefully considered within the emergence of both neuropsychiatric symptoms and cognitive deficits.
Collapse
Affiliation(s)
- Arianna Sala
- Vita-Salute San Raffaele University, Via Olgettina 60, Milan, 20132, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Via Olgettina 60, Milan, 20132, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luca Presotto
- Nuclear Medicine Unit, San Raffaele Hospital, 20132, Milan, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121, Brescia, Italy
- Parkinson's Disease Rehabilitation Centre, FERB ONLUS - S. Isidoro Hospital, 24069, Trescore Balneario, Italy
| | - Claudio Liguori
- Division of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, and NIMTLab, Faculty of Medicine, Geneva University, 1205, Geneva, Switzerland
| | - Giovanni Battista Frisoni
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, and NIMTLab, Faculty of Medicine, Geneva University, 1205, Geneva, Switzerland
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1205, Geneva, Switzerland
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
- Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, 00128, Rome, Italy
| | - Barbara Paghera
- Nuclear Medicine Unit, Spedali Civili Brescia, 25123, Brescia, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, Italy
| | - Nicola Mercuri
- Division of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121, Brescia, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Via Olgettina 60, Milan, 20132, Italy.
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Nuclear Medicine Unit, San Raffaele Hospital, 20132, Milan, Italy.
| |
Collapse
|
15
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Iaccarino L, Sala A, Caminiti SP, Presotto L, Perani D. In vivo MRI Structural and PET Metabolic Connectivity Study of Dopamine Pathways in Alzheimer's Disease. J Alzheimers Dis 2021; 75:1003-1016. [PMID: 32390614 DOI: 10.3233/jad-190954] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by an involvement of brain dopamine (DA) circuitry, the presence of which has been associated with emergence of both neuropsychiatric symptoms and cognitive deficits. OBJECTIVE In order to investigate whether and how the DA pathways are involved in the pathophysiology of AD, we assessed by in vivo neuroimaging the structural and metabolic alterations of subcortical and cortical DA pathways and targets. METHODS We included 54 healthy control participants, 53 amyloid-positive subjects with mild cognitive impairment due to AD (MCI-AD), and 60 amyloid-positive patients with probable dementia due to AD (ADD), all with structural 3T MRI and 18F-FDG-PET scans. We assessed MRI-based gray matter reductions in the MCI-AD and ADD groups within an anatomical a priori-defined Nigrostriatal and Mesocorticolimbic DA pathways, followed by 18F-FDG-PET metabolic connectivity analyses to evaluate network-level metabolic connectivity changes. RESULTS We found significant tissue loss in the Mesocorticolimbic over the Nigrostriatal pathway. Atrophy was evident in the ventral striatum, orbitofrontal cortex, and medial temporal lobe structures, and already plateaued in the MCI-AD stage. Degree of atrophy in Mesocorticolimbic regions positively correlated with the severity of depression, anxiety, and apathy in MCI-AD and ADD subgroups. Additionally, we observed significant alterations of metabolic connectivity between the ventral striatum and fronto-cingulate regions in ADD, but not in MCI-AD. There were no metabolic connectivity changes within the Nigrostriatal pathway. CONCLUSION Our cross-sectional data support a clinically-meaningful, yet stage-dependent, involvement of the Mesocorticolimbic system in AD. Longitudinal and clinical correlation studies are needed to further establish the relevance of DA system involvement in AD.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
17
|
Patthy Á, Murai J, Hanics J, Pintér A, Zahola P, Hökfelt TGM, Harkany T, Alpár A. Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. J Clin Med 2021; 10:jcm10081555. [PMID: 33917176 PMCID: PMC8067882 DOI: 10.3390/jcm10081555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Murai
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Hanics
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Péter Zahola
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Tomas G. M. Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
| | - Tibor Harkany
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
18
|
La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, Cutuli D, Cauzzi E, Marino R, Viscomi MT, Petrosini L, Puglisi-Allegra S, Melone M, Keller F, Mercuri NB, Conti F, D'Amelio M. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer's Disease. Prog Neurobiol 2021; 202:102031. [PMID: 33684513 DOI: 10.1016/j.pneurobio.2021.102031] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023]
Abstract
What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aβ levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Francescangelo Vedele
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| | - Elena Spoleti
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | | | - Debora Cutuli
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
| | - Emma Cauzzi
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Life Science and Public Health Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Laura Petrosini
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | | | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020, Ancona, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
19
|
Chung SJ, Lee S, Yoo HS, Baik K, Lee HS, Jung JH, Choi Y, Hong JM, Kim YJ, Ye BS, Sohn YH, Yun M, Lee PH. Different patterns of β-amyloid deposition in patients with Alzheimer's disease according to the presence of mild parkinsonism. Neurobiol Aging 2021; 101:199-206. [PMID: 33631471 DOI: 10.1016/j.neurobiolaging.2021.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to compare the patterns of β-amyloid deposition between patients with early-stage Alzheimer's disease (AD) with mild parkinsonism and those without parkinsonism. Sixty-one patients with early-stage AD (Clinical Dementia Rating [CDR], 0.5 or 1) who underwent 18F-florbetaben (18F-FBB) PET scans were enrolled. We performed comparative analyses of regional FBB uptake in the frontal, parietal, lateral temporal, medial temporal, occipital, anterior cingulate, and posterior cingulate cortices and in the precuneus, striatum, and thalamus between AD patients with mild parkinsonism (AD-p+; n = 23) and those without parkinsonism (AD-p-; n = 38). There was no significant difference in age, sex, years of education, Mini-Mental State Examination score, and white matter hyperintensity severity between groups. The AD-p+ group had lower composite scores in frontal/executive function domain than the AD-p- group. The AD-p+ group had a higher FBB uptake in the occipital cortex, but not in other cortical regions, than the AD-p- group. Our findings suggest that additional β-amyloid deposition in the occipital region is associated with mild parkinsonism in early-stage AD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Sangwon Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yonghoon Choi
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Man Hong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
20
|
Koch G, Motta C, Bonnì S, Pellicciari MC, Picazio S, Casula EP, Maiella M, Di Lorenzo F, Ponzo V, Ferrari C, Scaricamazza E, Caltagirone C, Martorana A. Effect of Rotigotine vs Placebo on Cognitive Functions Among Patients With Mild to Moderate Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw Open 2020; 3:e2010372. [PMID: 32667654 PMCID: PMC7364345 DOI: 10.1001/jamanetworkopen.2020.10372] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Impairment of dopaminergic transmission may contribute to cognitive dysfunction in Alzheimer disease (AD). OBJECTIVE To investigate whether therapy with dopaminergic agonists may affect cognitive functions in patients with AD. DESIGN, SETTING, AND PARTICIPANTS This phase 2, monocentric, randomized, double-blind, placebo-controlled trial was conducted in Italy. Patients with mild to moderate AD were enrolled between September 1, 2017, and December 31, 2018. Data were analyzed from July 1 to September 1, 2019. INTERVENTIONS A rotigotine 2 mg transdermal patch for 1 week followed by a 4 mg patch for 23 weeks (n = 47) or a placebo transdermal patch for 24 weeks (n = 47). MAIN OUTCOMES AND MEASURES The primary end point was change from baseline on the Alzheimer Disease Assessment Scale-Cognitive Subscale. Secondary end points were changes in Frontal Assessment Battery, Alzheimer Disease Cooperative Study-Activities of Daily Living, and Neuropsychiatric Inventory scores. Prefrontal cortex activity was evaluated by transcranial magnetic stimulation combined with electroencephalography. RESULTS Among 94 patients randomized (mean [SD] age, 73.9 [5.6] years; 58 [62%] women), 78 (83%) completed the study. Rotigotine, as compared with placebo, had no significant effect on the primary end point: estimated mean change in Alzheimer Disease Assessment Scale-Cognitive Subscale score was 2.92 (95% CI, 2.51-3.33) for the rotigotine group and 2.66 (95% CI, 2.31-3.01) for the placebo group. For the secondary outcomes, there were significant estimated mean changes between groups for Alzheimer Disease Cooperative Study-Activities of Daily Living score (-3.32 [95% CI, -4.02 to -2.62] for rotigotine and -7.24 [95% CI, -7.84 to -6.64] for placebo) and Frontal Assessment Battery score (0.48 [95% CI, 0.31 to 0.65] for rotigotine and -0.66 [95% CI, -0.80 to -0.52] for placebo). There was no longitudinal change in Neuropsychiatric Inventory scores (1.64 [95% CI, 1.06-2.22] for rotigotine and 1.26 [95% CI, 0.77-1.75] for placebo group). Neurophysiological analysis of electroencephalography results indicated that prefrontal cortical activity increased in rotigotine but not in the placebo group. Adverse events were more common in the rotigotine group, with 11 patients dropping out compared with 5 in the placebo group. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, rotigotine treatment did not significantly affect global cognition in patients with mild to moderate AD; however, improvement was observed in cognitive functions highly associated with the frontal lobe and in activities of daily living. These findings suggest that treatment with the dopaminergic agonist rotigotine may reduce symptoms associated with frontal lobe cognitive dysfunction and thus may delay the impairment of activities of daily living. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03250741.
Collapse
Affiliation(s)
- Giacomo Koch
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Section of Human Physiology, University of Ferrara, Italy
| | - Caterina Motta
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Sonia Bonnì
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Concetta Pellicciari
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Picazio
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elias Paolo Casula
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Michele Maiella
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Di Lorenzo
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Viviana Ponzo
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Carlo Caltagirone
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Martorana
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease. PLoS One 2020; 15:e0232233. [PMID: 32365077 PMCID: PMC7197849 DOI: 10.1371/journal.pone.0232233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
The physiological actions of orally ingested peptides on the brain remain poorly understood. This study examined the effects of 39 orally administered synthetic Tyr-containing dipeptides on the enhancement of brain norepinephrine metabolism in mice by comparing the concentration of 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG). Although Tyr-Tyr administration increased blood and cerebral cortex (Cx) Tyr concentrations the most, Tyr-Trp increased Cx MHPG concentration the most. The oral administration of Tyr-Trp ameliorated a short-term memory deficit of a mouse model of cognitive dysfunction induced by amyloid beta peptide 25–35. Gene expression profiling of mouse brain using a microarray indicated that Tyr-Trp administration led to a wide variety of changes in mRNA levels, including the upregulation of genes encoding molecules involved in catecholamine metabolism. A comparative metabolome analysis of the Cx of mice given Tyr-Trp or Tyr-Tyr demonstrated that Tyr-Trp administration yielded higher concentrations of Trp and kynurenine pathway metabolites than Tyr-Tyr administration, as well as higher L-dopa levels, which is the initial product of catecholamine metabolism. Catecholamines were not significantly increased in the Cx of the Tyr-Tyr group compared with the Tyr-Trp group, despite a marked increase in Tyr. Presumably, Tyr-Trp administration enhances catecholamine synthesis and metabolism via the upregulation of genes involved in Tyr and Trp metabolism as well as metabolites of Tyr and Trp. These findings strongly suggest that orally ingested Tyr-Trp modulates the brain metabolome involved in catecholamine metabolism and contributes to higher brain function.
Collapse
|
22
|
Hase T, Shishido S, Yamamoto S, Yamashita R, Nukima H, Taira S, Toyoda T, Abe K, Hamaguchi T, Ono K, Noguchi-Shinohara M, Yamada M, Kobayashi S. Rosmarinic acid suppresses Alzheimer's disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep 2019; 9:8711. [PMID: 31213631 PMCID: PMC6581955 DOI: 10.1038/s41598-019-45168-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
A new mechanism is revealed by which a polyphenol, rosmarinic acid (RA), suppresses amyloid β (Aβ) accumulation in mice. Here we examined the brains of mice (Alzheimer's disease model) using DNA microarray analysis and revealed that the dopamine (DA)-signaling pathway was enhanced in the group fed RA versus controls. In the cerebral cortex, the levels of monoamines, such as norepinephrine, 3,4-dihydroxyphenylacetic acid, DA, and levodopa, increased after RA feeding. The expression of DA-degrading enzymes, such as monoamine oxidase B (Maob), was significantly downregulated in the substantia nigra and ventral tegmental area, both DA synthesis regions. Following in vitro studies showing that monoamines inhibited Aβ aggregation, this in vivo study, in which RA intake increased concentration of monoamine by reducing Maob gene expression, builds on that knowledge by demonstrating that monoamines suppress Aβ aggregation. In conclusion, RA-initiated monoamine increase in the brain may beneficially act against AD.
Collapse
Affiliation(s)
- Tomoki Hase
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Syun Shishido
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - So Yamamoto
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rei Yamashita
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Haruka Nukima
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1248, Japan
| | - Tsudoi Toyoda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Group of Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science Environment Research Center, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, 920-8640, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Hatano-dai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, 920-8640, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, 920-8640, Japan
| | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
23
|
Lee JY, Yoon EJ, Kim YK, Shin CW, Nam H, Jeong JM, Kim HJ, Jeon B. Nonmotor and Dopamine Transporter Change in REM Sleep Behavior Disorder by Olfactory Impairment. J Mov Disord 2019; 12:103-112. [PMID: 31158943 PMCID: PMC6547034 DOI: 10.14802/jmd.18061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
Objective It is unclear whether the decline in dopamine transporters (DAT) differs among idiopathic rapid eye movement sleep behavior disorder (iRBD) patients with different levels of olfactory impairment. This study aimed to characterize DAT changes in relation to nonmotor features in iRBD patients by olfactory loss. Methods This prospective cohort study consisted of three age-matched groups: 30 polysomnography-confirmed iRBD patients, 30 drug-naïve Parkinson’s disease patients, and 19 healthy controls without olfactory impairment. The iRBD group was divided into two groups based on olfactory testing results. Participants were evaluated for reported prodromal markers and then underwent 18F-FP-CIT positron emission tomography and 3T MRI. Tracer uptakes were analyzed in the caudate, anterior and posterior putamen, substantia nigra, and raphe nuclei. Results Olfactory impairment was defined in 38.5% of iRBD patients. Mild parkinsonian signs and cognitive functions were not different between the two iRBD subgroups; however, additional prodromal features, constipation, and urinary and sexual dysfunctions were found in iRBD patients with olfactory impairment but not in those without. Tracer uptake showed significant group differences in all brain regions, except the raphe nuclei. The iRBD patients with olfactory impairment had uptake reductions in the anterior and posterior putamen, caudate, and substantia nigra (p < 0.016 in all, adjusted for age), which ranged from 0.6 to 0.8 of age-normative values. In contrast, those without olfactory impairment had insignificant changes in all regions ranging above 0.8. Conclusion There was a clear distinction in DAT loss and nonmotor profiles by olfactory status in iRBD.
Collapse
Affiliation(s)
- Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jin Yoon
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul National University, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chae Won Shin
- Department of Neurology, Kyung Hee University Medical Center, Seoul, Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Min Jeong
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul National University, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Kyung Hee University Medical Center, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology and Movement Disorders Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
24
|
Morgese MG, Trabace L. Monoaminergic System Modulation in Depression and Alzheimer's Disease: A New Standpoint? Front Pharmacol 2019; 10:483. [PMID: 31156428 PMCID: PMC6533589 DOI: 10.3389/fphar.2019.00483] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
The prevalence of depression has dramatically increased, and it has been estimated that over 300 million people suffer from depression all over the world. Depression is highly comorbid with many central and peripheral disorders. In this regard, depressive states have been associated with the development of neurological disorders such as Alzheimer's disease (AD). Accordingly, depression is a risk factor for AD and depressive symptomatology is common in pre-clinical AD, representing an early manifestation of this disease. Neuropsychiatric symptoms may represent prodromal symptoms of dementia deriving from neurobiological changes in specific cerebral regions; thus, the search for common biological substrates is becoming an imperative and intriguing field of research. Soluble forms of beta amyloid peptide (Aβ) have been implicated both in the development of early memory deficits and neuropsychiatric symptoms. Indeed, soluble Aβ species have been shown to induce a depressive-like phenotype in AD animal models. Alterations in monoamine content are a common feature of these neuropathologies. Interestingly, serotonergic system modulation has been implicated in alteration of Aβ production. In addition, noradrenaline is considered crucially involved in compensatory mechanisms, leading to increased Aβ degradation via several mechanisms, including microglia modulation. In further agreement, antidepressant drugs have also been shown to potentially modulate cognitive symptoms in AD and depression. Thus, the present review summarizes the main knowledge about biological and pathological substrates, such as monoamine and related molecules, commonly involved in AD and depression pathology, thus shading light on new therapeutic approaches.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
25
|
Chung SJ, Lee YH, Yoo HS, Sohn YH, Ye BS, Cha J, Lee PH. Distinct FP-CIT PET patterns of Alzheimer's disease with parkinsonism and dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2019; 46:1652-1660. [PMID: 30980099 DOI: 10.1007/s00259-019-04315-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/14/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Little is known regarding the clinical relevance or neurobiology of subtle motor disturbance in Alzheimer's disease (AD). This study aims to investigate the patterns of striatal 18F-FP-CIT uptake in patients with AD-related cognitive impairment (ADCI) with mild parkinsonism. METHODS We recruited 29 consecutive patients with ADCI with mild parkinsonism. All patients underwent 18F-FP-CIT PET scans and dopamine transporter (DAT) availability in striatal subregions (anterior/posterior caudate, anterior/posterior putamen, ventral putamen, ventral striatum) was quantified. Additionally, 32 patients with dementia with Lewy bodies (DLB) and 21 healthy controls were included to perform inter-group comparative analyses of the striatal DAT availability. The discriminatory power of striatal DAT availability to differentiate ADCI from DLB was assessed using receiver operating characteristics (ROC) analyses. The Spearman's correlation coefficient was calculated to assess the relationship between motor severity and DAT availability in striatal subregions. RESULTS Patients with ADCI with mild parkinsonism exhibited decreased DAT availability in the caudate that was intermediate between healthy controls and patients with DLB. The DAT availability in other striatal subregions, including the posterior putamen, did not differ between the ADCI with parkinsonism and healthy control groups. The ROC analysis showed that DAT availability of all striatal subregions, especially the whole striatum, had a fair discriminatory power. Parkinsonian motor severity did not correlate with the striatal DAT availability in ADCI with parkinsonism. CONCLUSIONS The present study demonstrated that patients with ADCI with mild parkinsonism had distinct DAT scan patterns and suggests that parkinsonism is associated with the extranigral source of pathology.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea.,Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Jungho Cha
- Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
26
|
Uhl GR. Dopamine compartmentalization, selective dopaminergic vulnerabilities in Parkinson's disease and therapeutic opportunities. Ann Clin Transl Neurol 2019; 6:406-415. [PMID: 30847375 PMCID: PMC6389739 DOI: 10.1002/acn3.707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/29/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Progressive depletion of selected dopamine neurons is central to much Parkinson's disease (PD) disability. Although symptomatic treatments can ameliorate the disabilities that this neuronal depletion causes, no current strategy is documented to slow these losses. There is substantial evidence that dopamine in intracytoplasmic/extravesicular neuronal compartments can be toxic. Here, I review evidence that supports roles for dopamine compartmentalization, mediated largely by serial actions of plasma membrane SLC6A3/DAT and vesicular SLC18A2/VMAT2 transporters, in the selective patterns of dopamine neuronal loss found in PD brains. This compartmentalization hypothesis for the dopamine cell type specificity of PD lesions nominates available drugs for amelioration of damage arising from miscompartmentalized dopamine and raises cautions in using other drugs.
Collapse
Affiliation(s)
- George R. Uhl
- Neurology and Research ServicesNew Mexico VA HealthCare SystemAlbuquerqueNew Mexico87108
- Biomedical Research Institute of New MexicoAlbuquerqueNew Mexico87108
- Departments of Neurology, Neuroscience and Molecular Genetics and MicrobiologyUniversity of New MexicoAlbuquerqueNew Mexico87108
- Departments of Neurology, Neuroscience and Mental HealthJohns Hopkins Medical InstitutionsBaltimoreMaryland21287
| |
Collapse
|
27
|
Mammadova N, Summers CM, Kokemuller RD, He Q, Ding S, Baron T, Yu C, Valentine RJ, Sakaguchi DS, Kanthasamy AG, Greenlee JJ, Heather West Greenlee M. Accelerated accumulation of retinal α-synuclein (pSer129) and tau, neuroinflammation, and autophagic dysregulation in a seeded mouse model of Parkinson's disease. Neurobiol Dis 2018; 121:1-16. [PMID: 30218757 DOI: 10.1016/j.nbd.2018.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded α-synuclein within the central nervous system (CNS). Visual problems in PD patients are common, although retinal pathology associated with PD is not well understood. The purpose of this study was to investigate retinal pathology in a transgenic mouse model (TgM83) expressing the human A53T α-synuclein mutation and assess the effect of α-synuclein "seeding" on the development of retinal pathology. Two-month-old TgM83 mice were intracerebrally inoculated with brain homogenate from old (12-18 months) TgM83 mice. Retinas were then analyzed at 5 months of age. We analyzed retinas from 5-month-old and 8-month-old uninoculated healthy TgM83 mice, and old (12-18 months) mice that were euthanized following the development of clinical signs. Retinas of B6C3H mice (genetic background of the TgM83 mouse) served as control. We used immunohistochemistry and western blot analysis to detect accumulation of α-synuclein, pTauThr231, inflammation, changes in macroautophagy, and cell death. Raman spectroscopy was used to test the potential to differentiate between retinal tissues of healthy mice and diseased mice. This work demonstrates retinal changes associated with the A53T mutation. Retinas of non-inoculated TgM83 mice had accumulation of α-synuclein, "pre-tangle" tau, activation of retinal glial cells, and photoreceptor cell loss by 8 months of age. The development of these changes is accelerated by inoculation with brain homogenate from clinically ill TgM83 mice. Compared to non-inoculated 5-month-old TgM83 mice, retinas of inoculated 5-month-old mice had increased accumulation of α-synuclein (pSer129) and pTauThr231 proteins, upregulated microglial activation, and dysregulated macroautophagy. Raman spectroscopic analysis was able to discriminate between healthy and diseased mice. This study describes retinal pathology resulting from the A53T mutation. We show that seeding with brain homogenates from old TgM83 mice accelerates retinal pathology. We demonstrate that Raman spectroscopy can be used to accurately identify a diseased retina based on its biochemical profile, and that α-synuclein accumulation may contribute to accumulation of pTauThr231 proteins, neuroinflammation, metabolic dysregulation, and photoreceptor cell death. Our work provides insight into retinal changes associated with Parkinson's disease, and may contribute to a better understanding of visual symptoms experienced by patients.
Collapse
Affiliation(s)
- Najiba Mammadova
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States; Immunobiology Graduate Program, Iowa State University, United States; Neuroscience Graduate Program, Iowa State University, United States.
| | - Corey M Summers
- Immunobiology Graduate Program, Iowa State University, United States; Department of Kinesiology, Iowa State University, United States.
| | - Robyn D Kokemuller
- Neuroscience Graduate Program, Iowa State University, United States; Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
| | - Qing He
- Department of Agriculture and Biosystems Engineering, Iowa State University, Ames, IA, United States.
| | - Shaowei Ding
- Department of Mechanical Engineering, Iowa State University, Ames, IA, United States.
| | - Thierry Baron
- Anses, Laboratoire de Lyon, Unité Maladies Neurodégénératives, Lyon, France.
| | - Chenxu Yu
- Department of Agriculture and Biosystems Engineering, Iowa State University, Ames, IA, United States.
| | - Rudy J Valentine
- Immunobiology Graduate Program, Iowa State University, United States; Department of Kinesiology, Iowa State University, United States.
| | - Donald S Sakaguchi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States; Neuroscience Graduate Program, Iowa State University, United States.
| | - Anumantha G Kanthasamy
- Immunobiology Graduate Program, Iowa State University, United States; Neuroscience Graduate Program, Iowa State University, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States.
| | - M Heather West Greenlee
- Immunobiology Graduate Program, Iowa State University, United States; Neuroscience Graduate Program, Iowa State University, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
| |
Collapse
|
28
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, Missale C, Spano P. Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 2016; 42:77-94. [PMID: 26613567 DOI: 10.1111/nan.12297] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with prominent loss of nigro-striatal dopaminergic neurons. The resultant dopamine (DA) deficiency underlies the onset of typical motor symptoms (MS). Nonetheless, individuals affected by PD usually show a plethora of nonmotor symptoms (NMS), part of which may precede the onset of motor signs. Besides DA neuron degeneration, a key neuropathological alteration in the PD brain is Lewy pathology. This is characterized by abnormal intraneuronal (Lewy bodies) and intraneuritic (Lewy neurites) deposits of fibrillary aggregates mainly composed of α-synuclein. Lewy pathology has been hypothesized to progress in a stereotypical pattern over the course of PD and α-synuclein mutations and multiplications have been found to cause monogenic forms of the disease, thus raising the question as to whether this protein is pathogenic in this disorder. Findings showing that the majority of α-synuclein aggregates in PD are located at presynapses and this underlies the onset of synaptic and axonal degeneration, coupled to the fact that functional connectivity changes correlate with disease progression, strengthen this idea. Indeed, by altering the proper action of key molecules involved in the control of neurotransmitter release and re-cycling as well as synaptic and structural plasticity, α-synuclein deposition may crucially impair axonal trafficking, resulting in a series of noxious events, whose pressure may inevitably degenerate into neuronal damage and death. Here, we provide a timely overview of the molecular features of synaptic loss in PD and disclose their possible translation into clinical symptoms through functional disconnection.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Annalena Venneri
- IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Fondazione Ospedale San Camillo (NHS-Italy), Venice Lido, Italy
| |
Collapse
|
30
|
Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Front Neurosci 2016; 10:541. [PMID: 27932945 PMCID: PMC5121249 DOI: 10.3389/fnins.2016.00541] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson's disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable strategies for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity), the identification of monoamines in the diseases processes (Parkinson's disease, addiction) and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer's disease, stroke). In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Montse Sole
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity College DublinDublin, Ireland
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | | | | | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), Institut of Neurodegenerative DiseasesBordeaux Cedex, France
| |
Collapse
|
31
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Li H, Park G, Bae N, Kim J, Oh MS, Yang HO. Anti-apoptotic effect of modified Chunsimyeolda-tang, a traditional Korean herbal formula, on MPTP-induced neuronal cell death in a Parkinson's disease mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:336-344. [PMID: 26593210 DOI: 10.1016/j.jep.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The modified-Chungsimyeolda-tang (DG) is an important traditional Korean herbal formula used in traditional oriental medicine for treatment of cerebrovascular disorders, including stroke. The formula is based on the book "Dongui Sasang Shinpyun". AIM OF THE STUDY In the previous studies, the neuroprotective effect of DG is demonstrated in an in vitro Parkinson's disease (PD) model, and in this study, the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD is used to evaluate the behavioral effect of DG and possible mechanism through anti-apoptosis of DG. 6-Hydroxydopamine (6-OHDA) also is used to evaluate the anti-apoptosis effect of DG in SH-SY5Y cells. MATERIALS AND METHODS MPTP was used to evaluate the behavioral damage and neurotoxicity in mice. The bradykinesia symptom was measured by a Pole test and a Rota-rod test in mice. Also the loss of tyrosine hydroxylase (TH)-positive neurons induced by MPTP was examined by an immunohistochemical assay. The DG-mediated anti-apoptosis effect was measured using an immunoblotting assay with apoptosis-related markers such as Bax and cleaved caspase-3. DG and 1-methyl-4-phenylpyridinium (MPP(+)) were co-treated with primary dopaminergic neurons to evaluate the protective effect of DG. The expression of caspase-3 and PARP was measured to detect the protective effect of DG from the damage by 6-OHDA. RESULTS AND CONCLUSIONS The treatment with DG resulted in prophylactic effects on MPTP-induced Parkinsonian bradykinesia and the immunohistochemical analysis showed that DG provided the neuroprotection against the MPP(+)-induced dopaminergic neurons loss through the anti-apoptosis effect. The present results suggested that it might be possible to use DG for the prevention of substantia nigra pars compacta (SNpc) degeneration induced by exposure to the toxic substances, such as MPTP/MPP(+), in PD mouse model.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Antiparkinson Agents/pharmacology
- Antiparkinson Agents/therapeutic use
- Apoptosis/drug effects
- Behavior, Animal/drug effects
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Caspase 3/metabolism
- Cell Death/drug effects
- Cell Line, Tumor
- Cells, Cultured
- Disease Models, Animal
- Dopaminergic Neurons/drug effects
- Humans
- Korea
- Male
- Medicine, Traditional
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neurotoxins
- Parkinson Disease/drug therapy
- Parkinson Disease/metabolism
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Rats, Sprague-Dawley
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Huan Li
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Biological Chemistry, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Gunhyuk Park
- Department of Life and Nanopharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Nayoung Bae
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Sasang Constitution Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Joonki Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Biological Chemistry, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea.
| |
Collapse
|
33
|
Aumann TD. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra. J Chem Neuroanat 2015; 73:21-32. [PMID: 26718607 DOI: 10.1016/j.jchemneu.2015.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/10/2023]
Abstract
The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2) Imbalances in midbrain DA cause symptoms associated with several prominent brain and behavioral disorders such as schizophrenia, addiction, obsessive-compulsive disorder, depression, Parkinson's disease and attention-deficit and hyperactivity disorder. Midbrain DA neurotransmitter plasticity may therefore play a role in the etiology of these symptoms, and might also offer new treatment options.
Collapse
Affiliation(s)
- Tim D Aumann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
34
|
Da-bu-yin-wan and qian-zheng-san to neuroprotect the mouse model of Parkinson's disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:729195. [PMID: 25610480 PMCID: PMC4290155 DOI: 10.1155/2014/729195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/03/2014] [Indexed: 12/01/2022]
Abstract
Da-Bu-Yin-Wan (DBYW) and Qian-Zheng-San (QZS), two classic traditional Chinese medicinal formulas, were clinically employed to treat Parkinson's disease (PD). Our previous studies demonstrated neuroprotective effects of them on mitochondrial function in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The purpose of this research was to investigate their possible mechanisms in the light of mitochondrial ATP-sensitive potassium (mitoKATP) channels. The neuroprotective effect of DBYW and QZS on dopamine (DA) neurons in substantia nigra (SN) in the MPTP-induced PD mice was investigated by behavioral test (pole test) and immunohistochemistry. Adenosine triphosphate (ATP) level in the midbrain tissue was detected by firefly luciferase method. MitoKATP channel subunits SUR1 and Kir6.2 mRNA and protein expressions were tested by real-time PCR (RT-PCR) and Western blot. It was observed that DBYW and/or QZS served to ameliorate MPTP-induced behavioral impairment and prevent the loss of substantia nigra dopamine neurons, as well as increase ATP level in the midbrain tissue and downregulate SUR1 expression at mRNA and protein levels with no marked influence on Kir6.2. We concluded that DBYW and QZS exhibit neuroprotective effects probably through the regulation of ATP level and mitoKATP channel subunit expressions.
Collapse
|
35
|
Martorana A, Koch G. "Is dopamine involved in Alzheimer's disease?". Front Aging Neurosci 2014; 6:252. [PMID: 25309431 PMCID: PMC4174765 DOI: 10.3389/fnagi.2014.00252] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/06/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and dementia. Recent advances indicate that AD pathogenesis appears more complex than its mere neuropathology. Changes in synaptic plasticity, neuronal disarray and cell death are pathways commonly recognized as pathogenic mechanisms of AD. It is thought that the altered metabolism of certain membrane proteins may lead to the production of amyloid (Aβ) oligomers that are characterized by an highly toxic effect on neurotransmission pathways, such as those mediated by Acetylcholine. The interaction of Aβ oligomers with these neurotansmitters systems would in turn induce cell dysfunction, neurotransmitters signaling imbalance and finally lead to the appearance of neurological signs. In this perspective, it is still debated how and if these mechanisms may also engage the dopaminergic system in AD. Recent experimental work revealed that the dopaminergic system may well be involved in the occurrence of cognitive decline, often being predictive of rapidly progressive forms of AD. However, a clear idea on the role of the dopamine system in AD is still missing. Here we review the more recent evidences supporting the notion that the dopaminergic dysfunction has a pathogenic role in cognitive decline symptoms of AD.
Collapse
Affiliation(s)
- Alessandro Martorana
- Clinica Neurologica-Memory Clinic, System Medicine Department, Università di Roma "Tor Vergata" Rome, Italy ; Non Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS Rome, Italy
| | - Giacomo Koch
- Clinica Neurologica-Memory Clinic, System Medicine Department, Università di Roma "Tor Vergata" Rome, Italy ; Non Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS Rome, Italy
| |
Collapse
|
36
|
Zhou Y, Michelhaugh SK, Schmidt CJ, Liu JS, Bannon MJ, Lin Z. Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addict Biol 2014; 19:122-31. [PMID: 22026501 DOI: 10.1111/j.1369-1600.2011.00391.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Altered activity of the human dopamine transporter gene (hDAT) is associated with several common and severe brain disorders, including cocaine abuse. However, there is little a priori information on whether such alterations are due to nature (genetic variation) or nurture (human behaviors such as cocaine abuse). This study investigated the correlation between seven markers throughout hDAT and its mRNA levels in postmortem ventral midbrain tissues from 18 cocaine abusers and 18 strictly matched drug-free controls in the African-American population. Here, we show that one major haplotype with the same frequency in cocaine abusers versus drug-free controls displays a 37.1% reduction of expression levels in cocaine abusers compared with matched controls (P=0.0057). The most studied genetic marker, variable number tandem repeats (VNTR) located in Exon 15 (3'VNTR), is not correlated with hDAT mRNA levels. A 5' upstream VNTR (rs70957367) has repeat numbers that are positively correlated with expression levels in controls (r(2)=0.9536, P=0.0235), but this positive correlation disappears in cocaine abusers. The findings suggest that varying hDAT activity is attributable to both genetics and cocaine abuse.
Collapse
Affiliation(s)
- Yanhong Zhou
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA Department of Statistics, Harvard University, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Huang L, Chen L, Hao D, Chen J. Neuroprotection by tetrahydroxystilbene glucoside in the MPTP mouse model of Parkinson's disease. Toxicol Lett 2013; 222:155-63. [PMID: 23911879 DOI: 10.1016/j.toxlet.2013.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
Our in vitro experiments suggested that tetrahydroxystilbene glucoside (TSG) affords a significant neuroprotective effect against MPP⁺-induced damage and apoptosis in PC12 cells though activation of the PI3K/Akt pathway. This study was aimed to investigate the potential neuroprotective effect of TSG in 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-treated mouse model of Parkinson's disease (PD). We found that treatment of TSG protected dopaminergic neurons by preventing MPTP-induced decreases in substantia nigra tyrosine hydroxylase (TH)-positive cells and striatal dopaminergic transporter (DAT) protein levels. Furthermore, it was also associated with increasing striatal Akt and GSK3β phosphorylation, up-regulation of the Bcl-2/BAD ratio, and inhibition of the activation of caspase-9 and caspase-3. These results showed that TSG promoted dopamine neuron survival in vivo, the PI3K/Akt signaling pathway may have mediated the protection of TSG against MPTP, suggesting that TSG treatment might represent a neuroprotective treatment for PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | | | | | | | | |
Collapse
|
38
|
Fauss D, Motter R, Dofiles L, Rodrigues MAV, You M, Diep L, Yang Y, Seto P, Tanaka K, Baker J, Bergeron M. Development of an enzyme-linked immunosorbent assay (ELISA) to measure the level of tyrosine hydroxylase protein in brain tissue from Parkinson's disease models. J Neurosci Methods 2013; 215:245-57. [DOI: 10.1016/j.jneumeth.2013.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/06/2023]
|
39
|
Aumann T, Horne M. Activity‐dependent regulation of the dopamine phenotype in substantia nigra neurons. J Neurochem 2012; 121:497-515. [DOI: 10.1111/j.1471-4159.2012.07703.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tim Aumann
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Neuroscience, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mal Horne
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- St Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
40
|
Al-Sweidi S, Morissette M, Bourque M, Di Paolo T. Estrogen receptors and gonadal steroids in vulnerability and protection of dopamine neurons in a mouse model of Parkinson’s disease. Neuropharmacology 2011; 61:583-91. [DOI: 10.1016/j.neuropharm.2011.04.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/17/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
|
41
|
Warner LR, Babbitt CC, Primus AE, Severson TF, Haygood R, Wray GA. Functional consequences of genetic variation in primates on tyrosine hydroxylase (TH) expression in vitro. Brain Res 2009; 1288:1-8. [DOI: 10.1016/j.brainres.2009.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 11/16/2022]
|
42
|
Gibrat C, Saint-Pierre M, Bousquet M, Lévesque D, Rouillard C, Cicchetti F. Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and α-synuclein inclusions. J Neurochem 2009; 109:1469-82. [DOI: 10.1111/j.1471-4159.2009.06072.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Id2 is required for specification of dopaminergic neurons during adult olfactory neurogenesis. J Neurosci 2009; 28:14074-86. [PMID: 19109490 DOI: 10.1523/jneurosci.3188-08.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the biology of adult neural stem cells has important implications for nervous system development and may contribute to our understanding of neurodegenerative disorders and their treatment. We have characterized the process of olfactory neurogenesis in adult mice lacking inhibitor of DNA binding 2(-/-) (Id2(-/-)). We found a diminished olfactory bulb containing reduced numbers of granular and periglomerular neurons with a distinct paucity of dopaminergic periglomerular neurons. While no deficiency of the stem cell compartment was detectable, migrating neuroblasts in Id2(-/-) mutant mice prematurely undergo astroglial differentiation within a disorganized rostral migratory stream. Further, when evaluated in vitro loss of Id2 results in decreased proliferation of neural progenitors and decreased expression of the Hes1 and Ascl1 (Mash1) transcription factors, known mediators of neuronal differentiation. These data support a novel role for sustained Id2 expression in migrating neural progenitors mediating olfactory dopaminergic neuronal differentiation in adult animals.
Collapse
|
44
|
1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Does Not Elicit Long-Lasting Increases in Cyclooxygenase-2 Expression in Dopaminergic Neurons of Monkeys. J Neuropathol Exp Neurol 2009; 68:26-36. [DOI: 10.1097/nen.0b013e3181919275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Blanchet J, Longpré F, Bureau G, Morissette M, DiPaolo T, Bronchti G, Martinoli MG. Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1243-50. [PMID: 18471948 DOI: 10.1016/j.pnpbp.2008.03.024] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
Abstract
Phytoestrogens, and particularly resveratrol, a red wine polyphenol, are currently under study for their therapeutic antioxidant properties. Administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57BL/6 mice targets nigrostriatal dopaminergic neurons, leading to cell death and striatal dopamine (DA) depletion. The aim of the present study was to analyze the protective effect of a diet rich in resveratrol against MPTP-induced neuronal death. Male mice were kept on a phytoestrogen-free diet, supplemented or not with 50 or 100 mg/kg/day of resveratrol for 1 or 2 weeks, after which MPTP was injected intraperitoneally. We observed that daily administration of resveratrol prevented MPTP-induced depletion of striatal DA, and maintained striatal tyrosine hydroxylase (TH) protein levels. Our results also demonstrated that mice treated with resveratrol prior to MPTP administration showed more abundant TH-immunopositive neurons than mice given only MPTP, indicating that resveratrol protects nigral neurons from MPTP insults. Altogether, these data revealed that resveratrol can counteract the toxic effects of the neurotoxin MPTP and, as such, it may be regarded as a powerful molecule for complementary neuroprotective therapy.
Collapse
Affiliation(s)
- Julie Blanchet
- Department of Biochemistry, Université du Québec, Trois-Rivières, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Gründemann J, Schlaudraff F, Haeckel O, Liss B. Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease. Nucleic Acids Res 2008; 36:e38. [PMID: 18332041 PMCID: PMC2367701 DOI: 10.1093/nar/gkn084] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The presynaptic protein α-synuclein is involved in several neurodegenerative diseases, including Parkinson's disease (PD). In rare familial forms of PD, causal mutations (PARK1) as well as multiplications (PARK4) of the α-synuclein gene have been identified. In sporadic, idiopathic PD, abnormal accumulation and deposition of α-synuclein might also cause degeneration of dopaminergic midbrain neurons, the clinically most relevant neuronal population in PD. Thus, cell-specific quantification of α-synuclein expression-levels in dopaminergic neurons from idiopathic PD patients in comparison to controls would provide essential information about contributions of α-synuclein to the etiology of PD. However, a number of previous studies addressing this question at the tissue-level yielded varying results regarding α-synuclein expression. To increase specificity, we developed a cell-specific approach for mRNA quantification that also took into account the important issue of variable RNA integrities of the individual human postmortem brain samples. We demonstrate that PCR –amplicon size can confound quantitative gene-expression analysis, in particular of partly degraded RNA. By combining optimized UV-laser microdissection- and quantitative RT–PCR-techniques with suitable PCR assays, we detected significantly elevated α-synuclein mRNA levels in individual, surviving neuromelanin- and tyrosine hydroxylase-positive substantia nigra dopaminergic neurons from idiopathic PD brains compared to controls. These results strengthen the pathophysiologic role of transcriptional dysregulation of the α-synuclein gene in sporadic PD.
Collapse
Affiliation(s)
- Jan Gründemann
- Molecular Neurobiology, Department of Physiology, Philipps-University Marburg, Deutschhausstrasse 2, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
47
|
Scheller D, Stichel-Gunkel C, Lübbert H, Porras G, Ravenscroft P, Hill M, Bezard E. Neuroprotective effects of rotigotine in the acute MPTP-lesioned mouse model of Parkinson's disease. Neurosci Lett 2008; 432:30-4. [DOI: 10.1016/j.neulet.2007.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/21/2007] [Accepted: 12/01/2007] [Indexed: 11/29/2022]
|
48
|
Bousquet M, Saint-Pierre M, Julien C, Salem N, Cicchetti F, Calon F. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. FASEB J 2007; 22:1213-25. [PMID: 18032633 DOI: 10.1096/fj.07-9677com] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we examined whether omega-3 (n-3) polyunsaturated fatty acids (PUFAs) may exert neuroprotective action in Parkinson's disease, as previously shown in Alzheimer's disease. We exposed mice to either a control or a high n-3 PUFA diet from 2 to 12 months of age and then treated them with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 140 mg/kg in 5 days). High n-3 PUFA dietary consumption completely prevented the MPTP-induced decrease of tyrosine hydroxylase (TH)-labeled nigral cells (P<0.01 vs. MPTP mice on control diet), Nurr1 mRNA (P<0.01 vs. MPTP mice on control diet), and dopamine transporter mRNA levels (P<0.05 vs. MPTP mice on control diet) in the substantia nigra. Although n-3 PUFA dietary treatment had no effect on striatal dopaminergic terminals, the high n-3 PUFA diet protected against the MPTP-induced decrease in dopamine (P<0.05 vs. MPTP mice on control diet) and its metabolite dihydroxyphenylacetic acid (P<0.05 vs. MPTP mice on control diet) in the striatum. Taken together, these data suggest that a high n-3 PUFA dietary intake exerts neuroprotective actions in an animal model of Parkinsonism.
Collapse
Affiliation(s)
- M Bousquet
- Centre de Recherche en Endocrinologie Moléculaire et Oncologique, Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Saldaña M, Mullol J, Aguilar E, Bonastre M, Marin C. Nuclear factor kappa-B p50 and p65 subunits expression in dementia with Lewy bodies. Neuropathol Appl Neurobiol 2007; 33:308-16. [PMID: 17442064 DOI: 10.1111/j.1365-2990.2007.00806.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Parkinsonism in DLB is mainly caused by neuronal loss with Lewy bodies (LBs) in the substantia nigra, thereby inducing degeneration of the nigrostriatal dopaminergic pathway similar to that in Parkinson's disease (PD). To clarify the pathogenesis of DLB, it is important to investigate the mechanisms involved in the degenerative process of LB-bearing neurones. Several reports suggest a role for nuclear factor kappa-B (NFkappaB) in the manifestation of neurodegenerative conditions such as AD and PD. The aim of the present study was to investigate whether NFkappaB subunits are involved in the pathogenesis of neurodegeneration in DLB by measuring tyrosine hydroxylase (TH), NFkappaB p65 and p50 protein expression in frontal cortex and substantia nigra pars compacta of DLB and control human brains. An increase, although not statistically significant, in nigral TH expression in DLB cases was observed. There were no differences in the cortical and nigral expression levels of NFkappaB p65 subunit between control and DLB cases. Western blots of the frontal cortex showed no differences in the expression levels of NFkappaB p50 subunit. However, NFkappaB p50 levels were significantly decreased (P < 0.05) in the pars compacta of the substantia nigra in the DLB cases in comparison with controls. The decrease in the expression of the p50 subunit in the substantia nigra of DLB cases achieved in the present study may increase the vulnerability of the dopaminergic neurones to a possible neurotoxic effect of p65 subunit. Thus, normal levels of NFkappaB p65 might be toxic in neurones with a low expression of the NFkappaB p50 subunit.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
50
|
Pellicano C, Buttarelli FR, Circella A, Tiple D, Giovannelli M, Benincasa D, Colosimo C, Pontieri FE. Dopamine transporter immunoreactivity in peripheral blood lymphocytes discriminates Parkinson's disease from essential tremor. J Neural Transm (Vienna) 2007; 114:935-8. [PMID: 17260170 DOI: 10.1007/s00702-006-0623-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/20/2006] [Indexed: 12/12/2022]
Abstract
Peripheral blood lymphocytes (PBL) provide a model to study the changes of neurotransmitter-receptor systems in neurodegenerative disorders, including Parkinson's disease (PD). In this study, densitometric analysis was applied to measure dopamine transporter (DAT) immunoreactivity in PBL from dopaminergic drug-free patients suffering PD or essential tremor (ET) with respect to healthy subjects. The results showed a significant reduction of DAT immunoreactivity in PBL in PD but not in ET. These finding suggests that DAT immunoreactivity in PBL may discriminate between PD and ET in the early clinical stages.
Collapse
Affiliation(s)
- C Pellicano
- Department of Neurological Sciences, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|