1
|
Zhao Z, Yuan Y, Li S, Wang X, Yang X. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment. CNS Neurosci Ther 2024; 30:e14885. [PMID: 39129397 PMCID: PMC11317746 DOI: 10.1111/cns.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathogenesis is complex. The pathophysiology is not fully understood, and safe and effective treatments are needed. Glycogen synthase kinase 3β (GSK-3β) mediates AD progression through several signaling pathways. Recently, several studies have found that various natural compounds from herbs and nutraceuticals can significantly improve AD symptoms. AIMS This review aims to provide a comprehensive summary of the potential neuroprotective impacts of natural compounds as inhibitors of GSK-3β in the treatment of AD. MATERIALS AND METHODS We conducted a systematic literature search on PubMed, ScienceDirect, Web of Science, and Google Scholar, focusing on in vitro and in vivo studies that investigated natural compounds as inhibitors of GSK-3β in the treatment of AD. RESULTS The mechanism may be related to GSK-3β activation inhibition to regulate amyloid beta production, tau protein hyperphosphorylation, cell apoptosis, and cellular inflammation. By reviewing recent studies on GSK-3β inhibition in phytochemicals and AD intervention, flavonoids including oxyphylla A, quercetin, morin, icariin, linarin, genipin, and isoorientin were reported as potent GSK-3β inhibitors for AD treatment. Polyphenols such as schisandrin B, magnolol, and dieckol have inhibitory effects on GSK-3β in AD models, including in vivo models. Sulforaphene, ginsenoside Rd, gypenoside XVII, falcarindiol, epibrassinolides, 1,8-Cineole, and andrographolide are promising GSK-3β inhibitors. CONCLUSIONS Natural compounds from herbs and nutraceuticals are potential candidates for AD treatment. They may qualify as derivatives for development as promising compounds that provide enhanced pharmacological characteristics.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ye Yuan
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuang Li
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaofeng Wang
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
2
|
Hartz RA, Ahuja VT, Luo G, Chen L, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Xu S, Tokarski JS, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Discovery of 2-(Anilino)pyrimidine-4-carboxamides as Highly Potent, Selective, and Orally Active Glycogen Synthase Kinase-3 (GSK-3) Inhibitors. J Med Chem 2023. [PMID: 37235865 DOI: 10.1021/acs.jmedchem.3c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3β in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease. A series of analogues containing a pyrimidine-based hinge-binding heterocycle was synthesized and evaluated, leading to the identification of highly potent GSK-3 inhibitors with excellent kinase selectivity. Further evaluation of 34 and 40 in vivo demonstrated that these compounds are orally bioavailable, brain-penetrant GSK-3 inhibitors that lowered levels of phosphorylated tau in a triple-transgenic mouse Alzheimer's disease model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
3
|
Akhtar M, Woo KM, Tahir M, Wu W, Elango J, Mirza MR, Khan M, Shamim S, Arany PR, Rahman SU. Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold. Clin Oral Investig 2021; 26:2607-2618. [PMID: 34677694 DOI: 10.1007/s00784-021-04230-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation MATERIALS AND METHODS: Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). RESULTS We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. CONCLUSIONS Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. CLINICAL RELEVANCE Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering.
Collapse
Affiliation(s)
- Maria Akhtar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, 08826, Republic of Korea
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Munazza R Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Praveen R Arany
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan. .,Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA. .,Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 45000, Pakistan.
| |
Collapse
|
4
|
Barboro P, Benelli R, Tosetti F, Costa D, Capaia M, Astigiano S, Venè R, Poggi A, Ferrari N. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Carcinogenesis 2021; 41:1246-1252. [PMID: 32525968 DOI: 10.1093/carcin/bgaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an incurable stage of the disease. A multivariate principal component analysis on CRPC in vitro models identified aspartyl (asparaginyl) β hydrolase (ASPH) as the most relevant molecule associated with the CRPC phenotype. ASPH is overexpressed in various malignant neoplasms and catalyzes the hydroxylation of aspartyl and asparaginyl residues in the epidermal growth factor (EGF)-like domains of proteins like NOTCH receptors and ligands, enhancing cell motility, invasion and metastatic spread. Bioinformatics analyses of ASPH in prostate cancer (PCa) and CRPC datasets indicate that ASPH gene alterations have prognostic value both in PCa and CRPC patients. In CRPC cells, inhibition of ASPH expression obtained through specific small interfering RNA or culturing cells in hypoxic conditions, reduced cell proliferation, invasion and cyclin D1 expression through modulation of the NOTCH signaling. ASPH and HIF1α crosstalk, within a hydroxylation-regulated signaling pathway, might be transiently driven by the oxidative stress evidenced inside CRPC cells. In addition, increased phosphorylation of GSK3β by ASPH silencing demonstrates that ASPH regulates GSK3β activity inhibiting its interactions with upstream kinases. These findings demonstrate the critical involvement of ASPH in CRPC development and may represent an attractive molecular target for therapy.
Collapse
Affiliation(s)
- Paola Barboro
- Department of Oncology and Hematology, Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Benelli
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Tosetti
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Delfina Costa
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Capaia
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genova, Italy
| | - Simonetta Astigiano
- Department of Scientific Direction, Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Venè
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alessandro Poggi
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicoletta Ferrari
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Yang H, Li GP, Liu Q, Zong SB, Li L, Xu ZL, Zhou J, Cao L, Wang ZZ, Zhang QC, Li M, Fan QR, Hu HF, Xiao W. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother Res 2021; 35:2727-2744. [PMID: 33452698 DOI: 10.1002/ptr.7018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/07/2022]
Abstract
The present study was undertaken to identify whether prostaglandin E2 receptor is the potential receptor/binding site for Ginkgolide A, Ginkgolide B, Ginkgolide K, and Bilobalide, the four main ingredients of the Ginkgo biloba L., leaves. Using functional assays, we identified EP4, coupled with Gs protein, as a target of Ginkgolide B. In human neuroblastoma SH-SY5Y cells suffered from oxygen-glucose deprivation/reperfusion, Ginkgolide B-activated PKA, Akt, and ERK1/2 as well as Src-mediated transactivation of epidermal growth factor receptor. These resulted in downstream signaling pathways, which enhanced cell survival and inhibited apoptosis. Knockdown of EP4 prevented Ginkgolide B-mediated Src, epidermal growth factor receptor (EGFR), Akt, and ERK1/2 phosphorylation and neuroprotective effects. Moreover, Src inhibitor prevented Ginkgolide B-mediated EGFR transactivation and the downstream Akt and ERK1/2 activation, while the phosphorylation of PKA induced by Ginkgolide B was not affected, indicating Ginkgolide B might transactivate EGFR in a ligand-independent manner. EP4 knockdown in a rat middle cerebral artery occlusion (MCAO) model prevented Ginkgolide B-mediated infarct size reduction and neurological assessment improvement. At the same time, the increased expressions of p-Akt, p-ERK1/2, p-PKA, p-Src, and p-EGFR and the deceased expression of cleaved capases-3 induced by Ginkgolide B in cerebral cortex were blocked due to EP4 knockdown. In conclusion, Ginkgolide B exerts neuroprotective effects in rat MCAO model through the activation of EP4 and the downstream transactivation of EGFR.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Gui-Ping Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qiu Liu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shao-Bo Zong
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhi-Liang Xu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Cao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhen-Zhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Quan-Chang Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Ming Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qi-Ru Fan
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Han-Fei Hu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
6
|
Lindner AU, Carberry S, Monsefi N, Barat A, Salvucci M, O'Byrne R, Zanella ER, Cremona M, Hennessy BT, Bertotti A, Trusolino L, Prehn JHM. Systems analysis of protein signatures predicting cetuximab responses in
KRAS
,
NRAS
,
BRAF
and
PIK3CA
wild‐type patient‐derived xenograft models of metastatic colorectal cancer. Int J Cancer 2020; 147:2891-2901. [DOI: 10.1002/ijc.33226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas U. Lindner
- Department of Physiology and Medical Physics and Centre Systems Medicine Royal College of Surgeons in Ireland Dublin Ireland
| | - Steven Carberry
- Department of Physiology and Medical Physics and Centre Systems Medicine Royal College of Surgeons in Ireland Dublin Ireland
| | - Naser Monsefi
- Department of Physiology and Medical Physics and Centre Systems Medicine Royal College of Surgeons in Ireland Dublin Ireland
| | - Ana Barat
- Department of Physiology and Medical Physics and Centre Systems Medicine Royal College of Surgeons in Ireland Dublin Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics and Centre Systems Medicine Royal College of Surgeons in Ireland Dublin Ireland
| | - Robert O'Byrne
- Department of Physiology and Medical Physics and Centre Systems Medicine Royal College of Surgeons in Ireland Dublin Ireland
| | - Eugenia R. Zanella
- Translational Cancer Medicine, Surgical Oncology, and Clinical Trials Coordination Candiolo Cancer Institute Fondazione del Piemonte per l'Oncologia IRCCS Turin Italy
| | - Mattia Cremona
- Department of Medical Oncology Beaumont Hospital, Royal College of Surgeons in Ireland Dublin Ireland
| | - Bryan T. Hennessy
- Department of Medical Oncology Beaumont Hospital, Royal College of Surgeons in Ireland Dublin Ireland
| | - Andrea Bertotti
- Translational Cancer Medicine, Surgical Oncology, and Clinical Trials Coordination Candiolo Cancer Institute Fondazione del Piemonte per l'Oncologia IRCCS Turin Italy
- Department of Oncology University of Turin Medical School Turin Italy
| | - Livio Trusolino
- Translational Cancer Medicine, Surgical Oncology, and Clinical Trials Coordination Candiolo Cancer Institute Fondazione del Piemonte per l'Oncologia IRCCS Turin Italy
- Department of Oncology University of Turin Medical School Turin Italy
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics and Centre Systems Medicine Royal College of Surgeons in Ireland Dublin Ireland
| |
Collapse
|
7
|
Jabir NR, Shakil S, Tabrez S, Khan MS, Rehman MT, Ahmed BA. In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer's disease. J Biomol Struct Dyn 2020; 39:5083-5092. [PMID: 32588759 DOI: 10.1080/07391102.2020.1784796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a growing global health concern that affects 10% of the population aged above 65 years. A growing body of evidence indicates that multi-targeted drugs might be useful therapeutic options owing to the heterogeneity of AD pathology. The current study exploited advanced computational biology tools to identify ligands that might display effective binding to two protein targets in the context of AD. The present study used in silico virtual screening of small molecules library to identify effectiveness against two AD targets viz. acetyl cholinesterase (AChE) and glycogen synthase kinase-3β (GSK-3β). PyRX-Python prescription with AutodockVina was used to generate binding energy profiles. Further screening was accomplished using SwissADME and molecular interaction studies. The present study obtained 48 ligands (absolute binding energy >8 kcal/mol), by virtual screening of 100 ligands. Among those, 13 ligands (BRW, 6VK, 6Z5, SMH, X37, 55E, 65 A, IQ6, 6VL, 6VM, F1B, 6Z2 and GVP) were selected based on blood brain barrier (BBB) permeability, acceptable ADME properties as well as their molecular interaction profiles with the aforementioned AD-targets. The present study has predicted certain molecules that appear worthy to be tested for effectiveness against two AD targets, namely AChE and GSK-3β. However, the results warrant further wet laboratory validation, as computational studies are merely predictive in nature. This approach might be useful for future treatment of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| |
Collapse
|
8
|
Francisco CS, Javarini CL, de S Barcelos I, Morais PAB, de Paula H, de S Borges W, Neto ÁC, Lacerda V. Synthesis of Coumarin Derivatives as Versatile Scaffolds for GSK-3β Enzyme Inhibition. Curr Top Med Chem 2020; 20:153-160. [PMID: 31648640 DOI: 10.2174/1568026619666191019105349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycogen synthase kinase-3 (GSK-3) is involved in the phosphorylation and inactivation of glycogen synthase. GSK-3 inhibitors have been associated with a variety of diseases, including Alzheimer´s disease (AD), diabetes type II, neurologic disorders, and cancer. The inhibition of GSK-3β isoforms is likely to represent an effective strategy against AD. OBJECTIVE The present work aimed to design and synthesize coumarin derivatives to explore their potential as GSK-3β kinase inhibitors. METHODS The through different synthetic methods were used to prepare coumarin derivatives. The GSK-3β activity was measured through the ADP-Glo™ Kinase Assay, which quantifies the kinasedependent enzymatic production of ADP from ATP, using a coupled-luminescence-based reaction. A docking study was performed by using the crystallographic structure of the staurosporine/GSK-3β complex [Protein Data Bank (PDB) code: 1Q3D]. RESULTS The eleven coumarin derivatives were obtained and evaluated as potential GSK-3β inhibitors. Additionally, in silico studies were performed. The results revealed that the compounds 5c, 5d, and 6b inhibited GSK-3β enzymatic activity by 38.97-49.62% at 1 mM. The other coumarin derivatives were tested at 1 mM, 1 µM, and 1 nM concentrations and were shown to be inhibitor candidates, with significant IC50 (1.224-6.875 µM) values, except for compound 7c (IC50 = 10.809 µM). Docking simulations showed polar interactions between compound 5b and Lys85 and Ser203, clarifying the mechanism of the most potent activity. CONCLUSION The coumarin derivatives 3a and 5b, developed in this study, showed remarkable activity as GSK-3β inhibitors.
Collapse
Affiliation(s)
- Carla S Francisco
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Clara L Javarini
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | | | - Pedro A B Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500-000 Alegre - ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500-000 Alegre - ES, Brazil
| | - Warley de S Borges
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Álvaro Cunha Neto
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Valdemar Lacerda
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| |
Collapse
|
9
|
Yoshida J, Okawa Y, Oyama T, Shimoda N, Uesugi S, Takagi H, Ito Y, Kimura KI. Inhibition of Calcineurin and Glycogen Synthase Kinase-3β by Ricinoleic Acid Derived from Castor Oil. Lipids 2019; 55:89-99. [PMID: 31867745 DOI: 10.1002/lipd.12208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Ricinoleic acid (RA) is the main fatty acid component of castor oil and was found to inhibit Ca2+ -signal transduction pathway-mediated cell cycle regulation in a yeast-based drug screening assay. RA is expected to have antidiabetic, antiallergy, and/or anticancer properties but its target molecule is unknown. To identify a novel pharmacological effect of RA, we investigated its target molecule in the Ca2+ -signal transduction pathway. RA inhibition of calcineurin (CN) was examined in a yeast-based CN inhibitor screening assay using the rsp5A401E mutant and in a phosphatase assay using recombinant human CN. RA showed growth-restoration activity at 5 μg/spot in the CN inhibitor screening assay with the rsp5A401E yeast strain. Furthermore, it directly inhibited CN without immunophilins at Ki = 33.7 μM in a substrate-competitive manner. The effects of RA on CN in mammalian cells were further evaluated by measuring β-hexosaminidase (β-HEX) release in RBL-2H3 cells. RA at 50 μM suppressed the release of β-HEX from RBL-2H3 cells. Moreover, this compound was found to inhibit glycogen synthase kinase-3β (GSK-3β), as determined by a kinase assay using recombinant human GSK-3β. RA inhibited GSK-3β at Ki = 1.43 μM in a peptide substrate-competitive manner. The inhibition of GSK-3β by this molecule was further assessed in mammalian cells by measuring the inhibition of glucose production in H4IIE rat hepatoma cells. RA at 25 μM suppressed glucose production in these cells. These findings indicate that RA and/or castor oil could be a useful functional fatty acid to treat allergy or type 2 diabetes.
Collapse
Affiliation(s)
- Jun Yoshida
- Center for Liberal Arts and Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, 028-3694, Japan
| | - Yusuke Okawa
- Graduate School of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Takuya Oyama
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Nozomu Shimoda
- Graduate School of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Shota Uesugi
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
| | - Hiroshi Takagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yoshiaki Ito
- Graduate School of Agriculture, Iwate University, Morioka, 020-8550, Japan.,Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.,The United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
| | - Ken-Ichi Kimura
- Graduate School of Agriculture, Iwate University, Morioka, 020-8550, Japan.,Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.,The United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
10
|
The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer's disease in rodents. Sci Rep 2019; 9:18045. [PMID: 31792284 PMCID: PMC6888874 DOI: 10.1038/s41598-019-54557-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) has been identified as a promising target for the treatment of Alzheimer’s disease (AD), where abnormal activation of this enzyme has been associated with hyperphosphorylation of tau proteins. This study describes the effects of the selective GSK3 inhibitor, SAR502250, in models of neuroprotection and neuropsychiatric symptoms (NPS) associated with AD. In P301L human tau transgenic mice, SAR502250 attenuated tau hyperphosphorylation in the cortex and spinal cord. SAR502250 prevented the increase in neuronal cell death in rat embryonic hippocampal neurons following application of the neurotoxic peptide, Aβ25–35. In behavioral studies, SAR502250 improved the cognitive deficit in aged transgenic APP(SW)/Tau(VLW) mice or in adult mice after infusion of Aβ25–35. It attenuated aggression in the mouse defense test battery and improved depressive-like state of mice in the chronic mild stress procedure after 4 weeks of treatment. Moreover, SAR502250 decreased hyperactivity produced by psychostimulants. In contrast, the drug failed to modify anxiety-related behaviors or sensorimotor gating deficit. This profile confirms the neuroprotective effects of GSK3 inhibitors and suggests an additional potential in the treatment of some NPS associated with AD.
Collapse
|
11
|
Noori MS, Bhatt PM, Courreges MC, Ghazanfari D, Cuckler C, Orac CM, McMills MC, Schwartz FL, Deosarkar SP, Bergmeier SC, McCall KD, Goetz DJ. Identification of a novel selective and potent inhibitor of glycogen synthase kinase-3. Am J Physiol Cell Physiol 2019; 317:C1289-C1303. [PMID: 31553649 PMCID: PMC6962522 DOI: 10.1152/ajpcell.00061.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a multitasking protein kinase that regulates numerous critical cellular functions. Not surprisingly, elevated GSK-3 activity has been implicated in a host of diseases including pathological inflammation, diabetes, cancer, arthritis, asthma, bipolar disorder, and Alzheimer's. Therefore, reagents that inhibit GSK-3 activity provide a means to investigate the role of GSK-3 in cellular physiology and pathophysiology and could become valuable therapeutics. Finding a potent inhibitor of GSK-3 that can selectively target this kinase, among over 500 protein kinases in the human genome, is a significant challenge. Thus there remains a critical need for the identification of selective inhibitors of GSK-3. In this work, we introduce a novel small organic compound, namely COB-187, which exhibits potent and highly selective inhibition of GSK-3. Specifically, this study 1) utilized a molecular screen of 414 kinase assays, representing 404 unique kinases, to reveal that COB-187 is a highly potent and selective inhibitor of GSK-3; 2) utilized a cellular assay to reveal that COB-187 decreases the phosphorylation of canonical GSK-3 substrates indicating that COB-187 inhibits cellular GSK-3 activity; and 3) reveals that a close isomer of COB-187 is also a selective and potent inhibitor of GSK-3. Taken together, these results demonstrate that we have discovered a region of chemical design space that contains novel GSK-3 inhibitors. These inhibitors will help to elucidate the intricate function of GSK-3 and can serve as a starting point for the development of potential therapeutics for diseases that involve aberrant GSK-3 activity.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio
| | - Pooja M Bhatt
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio
| | | | - Davoud Ghazanfari
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio
| | - Chaz Cuckler
- Biomedical Engineering Program, Ohio University, Athens, Ohio
| | - Crina M Orac
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio
| | - Mark C McMills
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio
| | - Frank L Schwartz
- Department of Specialty Medicine, Ohio University, Athens, Ohio
- The Diabetes Institute, Ohio University, Athens, Ohio
| | | | - Stephen C Bergmeier
- Biomedical Engineering Program, Ohio University, Athens, Ohio
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio
| | - Kelly D McCall
- Department of Specialty Medicine, Ohio University, Athens, Ohio
- Biomedical Engineering Program, Ohio University, Athens, Ohio
- The Diabetes Institute, Ohio University, Athens, Ohio
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio
- Biomedical Engineering Program, Ohio University, Athens, Ohio
| |
Collapse
|
12
|
Hulcová D, Maříková J, Korábečný J, Hošťálková A, Jun D, Kuneš J, Chlebek J, Opletal L, De Simone A, Nováková L, Andrisano V, Růžička A, Cahlíková L. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer's disease. PHYTOCHEMISTRY 2019; 165:112055. [PMID: 31261031 DOI: 10.1016/j.phytochem.2019.112055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 06/23/2019] [Indexed: 05/27/2023]
Abstract
Twenty-one known Amaryllidaceae alkaloids of various structural types and one undescribed alkaloid, named narcimatuline, have been isolated from fresh bulbs of Narcissus pseudonarcissus L. cv. Dutch Master. The chemical structures were elucidated by combination of MS, HRMS, 1D and 2D NMR spectroscopic techniques, and by comparison with literature data. Narcimatuline amalgamates two basic scaffolds of Amaryllidaceae alkaloids in its core, namely galanthamine and galanthindole. All isolated compounds were evaluated for their in vitro acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), prolyl oligopeptidase (POP), and glycogen synthase kinase-3β (GSK-3β) inhibitory activities. The most interesting biological profile was demonstrated by newly isolated alkaloid narcimatuline.
Collapse
Affiliation(s)
- Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Maříková
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Korábečný
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05, Hradec Králové, Czech Republic; Department Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Daniel Jun
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05, Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10, Pardubice, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
13
|
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer's disease. Mol Neurodegener 2018; 13:64. [PMID: 30541602 PMCID: PMC6291983 DOI: 10.1186/s13024-018-0299-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's Disease (AD), the most prevalent neurodegenerative disease of aging, affects one in eight older Americans. Nearly all drug treatments tested for AD today have failed to show any efficacy. There is a great need for therapies to prevent and/or slow the progression of AD. The major challenge in AD drug development is lack of clarity about the mechanisms underlying AD pathogenesis and pathophysiology. Several studies support the notion that AD is a multifactorial disease. While there is abundant evidence that amyloid plays a role in AD pathogenesis, other mechanisms have been implicated in AD such as tangle formation and spread, dysregulated protein degradation pathways, neuroinflammation, and loss of support by neurotrophic factors. Therefore, current paradigms of AD drug design have been shifted from single target approach (primarily amyloid-centric) to developing drugs targeted at multiple disease aspects, and from treating AD at later stages of disease progression to focusing on preventive strategies at early stages of disease development. Here, we summarize current strategies and new trends of AD drug development, including pre-clinical and clinical trials that target different aspects of disease (mechanism-based versus non-mechanism based, e.g. symptomatic treatments, lifestyle modifications and risk factor management).
Collapse
Affiliation(s)
- Jiqing Cao
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Jianwei Hou
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jing Ping
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Pir2/Rnf144b is a potential endometrial cancer biomarker that promotes cell proliferation. Cell Death Dis 2018; 9:504. [PMID: 29724995 PMCID: PMC5938710 DOI: 10.1038/s41419-018-0521-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Endometrial cancer is one of the most common gynaecological cancers in developed countries. Its incidence has increased 20% over the last decade and the death rate has increased >100% over the past two decades. Current models for prediction of prognosis and treatment response are suboptimal, and as such biomarkers to support clinical decision-making and contribute to individualised treatment are needed. In this study, we show that the E3-ubiquitin ligase PIR2/RNF144B is a potential targetable biomarker in endometrial cancer. At transcript level, it is expressed both in normal endometrium and tumour samples, but at protein level, it is expressed in tumours only. By using endometrial cancer cell lines, we demonstrated that PIR2/RNF144B is stabilised via phosphorylation downstream of GSK3β and this is necessary for the proliferation of endometrial cancer cells, in the absence of oestrogenic growth stimuli. Here, inactivation of GSK3β activity is associated with loss of PIR2/RNF144B protein and consequent inhibition of cell proliferation. Our results, therefore, substantiate PIR2/RNF144B as a novel candidate for targeted therapy in endometrial cancer.
Collapse
|
15
|
Hulcová D, Breiterová K, Siatka T, Klímová K, Davani L, Šafratová M, Hošťálková A, De Simone A, Andrisano V, Cahlíková L. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors. Molecules 2018; 23:molecules23040719. [PMID: 29561817 PMCID: PMC6017564 DOI: 10.3390/molecules23040719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 μM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM)}.
Collapse
Affiliation(s)
- Daniela Hulcová
- ADINACO Research Group, Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Kateřina Breiterová
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Tomáš Siatka
- ADINACO Research Group, Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Kamila Klímová
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Lara Davani
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy.
| | - Marcela Šafratová
- ADINACO Research Group, Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Anna Hošťálková
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy.
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy.
| | - Lucie Cahlíková
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
16
|
Usui Y, Uehara F, Hiki S, Watanabe K, Tanaka H, Shouda A, Yokoshima S, Aritomo K, Adachi T, Fukunaga K, Sunada S, Nabeno M, Saito KI, Eguchi JI, Yamagami K, Asano S, Tanaka S, Yuki S, Yoshii N, Fujimura M, Horikawa T. Discovery of novel 2-(3-phenylpiperazin-1-yl)-pyrimidin-4-ones as glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2017; 27:3726-3732. [PMID: 28712708 DOI: 10.1016/j.bmcl.2017.06.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
We herein describe the results of further evolution of glycogen synthase kinase (GSK)-3β inhibitors from our promising compounds containing a 2-phenylmorpholine moiety. Transformation of the morpholine moiety into a piperazine moiety resulted in potent GSK-3β inhibitors. SAR studies focused on the phenyl moiety revealed that a 4-fluoro-2-methoxy group afforded potent inhibitory activity toward GSK-3β. Based on docking studies, new hydrogen bonding between the nitrogen atom of the piperazine moiety and the oxygen atom of the main chain of Gln185 has been indicated, which may contribute to increased activity compared with that of the corresponding phenylmorpholine analogues. Effect of the stereochemistry of the phenylpiperazine moiety is also discussed.
Collapse
Affiliation(s)
- Yoshihiro Usui
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Fumiaki Uehara
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shinsuke Hiki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kazutoshi Watanabe
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| | - Hiroshi Tanaka
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Aya Shouda
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Yokoshima
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Keiichi Aritomo
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Takashi Adachi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kenji Fukunaga
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shinji Sunada
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Mika Nabeno
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Ken-Ichi Saito
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Jun-Ichi Eguchi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Keiji Yamagami
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shouichi Asano
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Shinji Tanaka
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Yuki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Narihiko Yoshii
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masatake Fujimura
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Takashi Horikawa
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| |
Collapse
|
17
|
Palomo V, Perez DI, Roca C, Anderson C, Rodríguez-Muela N, Perez C, Morales-Garcia JA, Reyes JA, Campillo NE, Perez-Castillo AM, Rubin LL, Timchenko L, Gil C, Martinez A. Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases. J Med Chem 2017; 60:4983-5001. [PMID: 28548834 DOI: 10.1021/acs.jmedchem.7b00395] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycogen synthase kinase 3 β (GSK-3β) is a central target in several unmet diseases. To increase the specificity of GSK-3β inhibitors in chronic treatments, we developed small molecules allowing subtle modulation of GSK-3β activity. Design synthesis, structure-activity relationships, and binding mode of quinoline-3-carbohydrazide derivatives as allosteric modulators of GSK-3β are presented here. Furthermore, we show how allosteric binders may overcome the β-catenin side effects associated with strong GSK-3β inhibition. The therapeutic potential of some of these modulators has been tested in human samples from patients with congenital myotonic dystrophy type 1 (CDM1) and spinal muscular atrophy (SMA) patients. We found that compound 53 improves delayed myogenesis in CDM1 myoblasts, while compounds 1 and 53 have neuroprotective properties in SMA-derived cells. These findings suggest that the allosteric modulators of GSK-3β may be used for future development of drugs for DM1, SMA, and other chronic diseases where GSK-3β inhibition exhibits therapeutic effects.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Daniel I Perez
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Roca
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Cara Anderson
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Hospital , Cincinnati, Ohio 45219, United States
| | - Natalia Rodríguez-Muela
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Concepción Perez
- Instituto de Quimica Médica-CSIC , Juan del Cierva 3, 28006 Madrid, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomedicas-CSIC , Arturo Duperier 4, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Calle de Valderrebollo 5, 28031 Madrid, Spain
| | - Julio A Reyes
- Instituto de Quimica Médica-CSIC , Juan del Cierva 3, 28006 Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana M Perez-Castillo
- Instituto de Investigaciones Biomedicas-CSIC , Arturo Duperier 4, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Calle de Valderrebollo 5, 28031 Madrid, Spain
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Lubov Timchenko
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Hospital , Cincinnati, Ohio 45219, United States
| | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC , Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
18
|
Fessel WJ. Concordance of Several Subcellular Interactions Initiates Alzheimer's Dementia: Their Reversal Requires Combination Treatment. Am J Alzheimers Dis Other Demen 2017; 32:166-181. [PMID: 28423937 PMCID: PMC10852791 DOI: 10.1177/1533317517698790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenesis of Alzheimer's disease involves multiple pathways that, at the macrolevel, include decreased proliferation plus increased loss affecting neurons, astrocytes, and capillaries and, at the subcellular level, involve several elements: amyloid/amyloid precursor protein, presenilins, the unfolded protein response, the ubiquitin/proteasome system, the Wnt/catenin system, the Notch signaling system, mitochondria, mitophagy, calcium, and tau. Data presented show the intimate, anatomical interactions between neurons, astrocytes, and capillaries; the interactions between the several subcellular factors affecting those cells; and the treatments that are currently available and that might correct dysfunctions in the subcellular factors. Available treatments include lithium, valproate, pioglitazone, erythropoietin, and prazosin. Since the subcellular pathogenesis involves multiple interacting elements, combination treatment would be more effective than administration of a single drug directed at only 1 element. The overall purpose of this presentation is to describe the pathogenesis in detail and to explain the proposed treatments.
Collapse
Affiliation(s)
- W. J. Fessel
- University of California, San Francisco, CA, USA
- Kaiser Permanente Medical Care Program, San Francisco, CA, USA
| |
Collapse
|
19
|
(4Z,15Z)-Octadecadienoic Acid Inhibits Glycogen Synthase Kinase-3β and Glucose Production in H4IIE Cells. Lipids 2017; 52:295-301. [DOI: 10.1007/s11745-017-4236-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
20
|
Zhao S, Zhu J, Xu L, Jin J. Theoretical studies on the selective mechanisms of GSK3β and CDK2 by molecular dynamics simulations and free energy calculations. Chem Biol Drug Des 2016; 89:846-855. [PMID: 27863047 DOI: 10.1111/cbdd.12907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase which is widely involved in cell signaling and controls a broad number of cellular functions. GSK3 contains α and β isoforms, and GSK3β has received more attention and becomes an attractive drug target for the treatment of several diseases. The binding pocket of cyclin-dependent kinase 2 (CDK2) shares high sequence identity to that of GSK3β, and therefore, the design of highly selective inhibitors toward GSK3β remains a big challenge. In this study, a computational strategy, which combines molecular docking, molecular dynamics simulations, free energy calculations, and umbrella sampling simulations, was employed to explore the binding mechanisms of two selective inhibitors to GSK3β and CDK2. The simulation results highlighted the key residues critical for GSK3β selectivity. It was observed that although GSK3β and CDK2 share the conserved ATP-binding pockets, some different residues have significant contributions to protein selectivity. This study provides valuable information for understanding the GSK3β-selective binding mechanisms and the rational design of selective GSK3β inhibitors.
Collapse
Affiliation(s)
- Sufang Zhao
- Department of Gastroenterology, The 2nd Hospital of Shenzhen (The First Affiliated Hospital of Shenzhen University), ShenZhen, Guangdong, China
| | - Jingyu Zhu
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Jian Jin
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Iwagami Y, Huang CK, Olsen MJ, Thomas JM, Jang G, Kim M, Lin Q, Carlson RI, Wagner CE, Dong X, Wands JR. Aspartate β-hydroxylase modulates cellular senescence through glycogen synthase kinase 3β in hepatocellular carcinoma. Hepatology 2016; 63:1213-26. [PMID: 26683595 PMCID: PMC4805474 DOI: 10.1002/hep.28411] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Aspartate β-hydroxylase (ASPH) is an enzyme overexpressed in human hepatocellular carcinoma (HCC) tumors that participates in the malignant transformation process. We determined if ASPH was a therapeutic target by exerting effects on cellular senescence to retard HCC progression. ASPH knockdown or knockout was achieved by short hairpin RNAs or the CRISPR/Cas9 system, respectively, whereas enzymatic inhibition was rendered by a potent second-generation small molecule inhibitor of ASPH. Alterations of cell proliferation, colony formation, and cellular senescence were evaluated in human HCC cell lines. The potential mechanisms for activating cellular senescence were explored using murine subcutaneous and orthotopic xenograft models. Inhibition of ASPH expression and enzymatic activity significantly reduced cell proliferation and colony formation but induced tumor cell senescence. Following inhibition of ASPH activity, phosphorylation of glycogen synthase kinase 3β and p16 expression were increased to promote senescence, whereas cyclin D1 and proliferating cell nuclear antigen were decreased to reduce cell proliferation. The mechanisms involved demonstrate that ASPH binds to glycogen synthase kinase 3β and inhibits its subsequent interactions with protein kinase B and p38 upstream kinases as shown by coimmunoprecipitation. In vivo experiments demonstrated that small molecule inhibitor treatment of HCC bearing mice resulted in significant dose-dependent reduced tumor growth, induced phosphorylation of glycogen synthase kinase 3β, enhanced p16 expression in tumor cells, and promoted cellular senescence. CONCLUSIONS We have identified a new mechanism that promotes HCC growth and progression by modulating senescence of tumor cells; these findings suggest that ASPH enzymatic activity is a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yoshifumi Iwagami
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Chiung-Kuei Huang
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Mark J. Olsen
- Department of Medical Chemistry, College of Pharmacy Glendale, Midwestern University, Glendale, Arizona 85308
| | - John-Michael Thomas
- Department of Medical Chemistry, College of Pharmacy Glendale, Midwestern University, Glendale, Arizona 85308
| | - Grace Jang
- Department of Medical Chemistry, College of Pharmacy Glendale, Midwestern University, Glendale, Arizona 85308
| | - Miran Kim
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Rolf I. Carlson
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | | | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jack R. Wands
- Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903,Correspondence to: Jack R. Wands, M.D., Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, 55 Claverick Street, 4 Fl., Providence, RI 02903. ; Tel: 401-444-2795; Fax: 401-444-2939
| |
Collapse
|
22
|
Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease. Eur J Med Chem 2015; 107:63-81. [PMID: 26562543 DOI: 10.1016/j.ejmech.2015.10.018] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 02/09/2023]
Abstract
Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India
| | - Mohammad Mobashir
- Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India; SciLifeLab, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Box 1031, 17121 Stockholm, Sweden
| | - Nasimul Hoda
- Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India.
| |
Collapse
|
23
|
Kumata K, Yui J, Xie L, Zhang Y, Nengaki N, Fujinaga M, Yamasaki T, Shimoda Y, Zhang MR. Radiosynthesis and preliminary PET evaluation of glycogen synthase kinase 3β (GSK-3β) inhibitors containing [(11)C]methylsulfanyl, [(11)C]methylsulfinyl or [(11)C]methylsulfonyl groups. Bioorg Med Chem Lett 2015; 25:3230-3. [PMID: 26067173 DOI: 10.1016/j.bmcl.2015.05.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 01/25/2023]
Abstract
Three compounds 1-3 containing methyl-sufanyl, sufinyl, or sulfonyl groups are strong inhibitors of glycogen synthase kinase 3β (GSK-3β), an enzyme associated with Alzheimer's disease. We labeled 1-3 with (11)C for a positron emission tomography (PET) brain imaging study. A novel thiophenol precursor 4 for radiosynthesis was prepared by reacting sulfoxide 2 with trifluoroacetic anhydride. [(11)C]1 was synthesized by reacting 4 with [(11)C]methyl iodide in 52 ± 5% radiochemical yield (n = 5, based on [(11)C]CO2, corrected for decay). Oxidation of [(11)C]1 with Oxone® produced [(11)C]2 and [(11)C]3, respectively. PET with [(11)C]1 and [(11)C]3 showed 2 fold higher brain uptake of radioactivity in a mouse model of cold water stress in which GSK-3β expression was increased, than in the controls.
Collapse
Affiliation(s)
- Katsushi Kumata
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service Co. Ltd, 5-9-11 Kitashinagawa, Shinagawa-ku, Tokyo 141-8686, Japan
| | - Masayuki Fujinaga
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoko Shimoda
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
24
|
Marchand B, Arsenault D, Raymond-Fleury A, Boisvert FM, Boucher MJ. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J Biol Chem 2015; 290:5592-605. [PMID: 25561726 DOI: 10.1074/jbc.m114.616714] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK3) are ubiquitously expressed serine-threonine kinases involved in a plethora of functions ranging from the control of glycogen metabolism to transcriptional regulation. We recently demonstrated that GSK3 inhibition triggers JNK-cJUN-dependent apoptosis in human pancreatic cancer cells. However, the comprehensive picture of downstream GSK3-regulated pathways/functions remains elusive. Herein, counterbalancing the death signals, we show that GSK3 inhibition induces prosurvival signals through increased activity of the autophagy/lysosomal network. Our data also reveal a contribution of GSK3 in the regulation of the master transcriptional regulator of autophagy and lysosomal biogenesis, transcription factor EB (TFEB) in pancreatic cancer cells. Similarly to mammalian target of rapamycin (mTOR) inhibition, GSK3 inhibitors promote TFEB nuclear localization and leads to TFEB dephosphorylation through endogenous serine/threonine phosphatase action. However, GSK3 and mTOR inhibition impinge differently and independently on TFEB phosphorylation suggesting that TFEB is regulated by a panel of kinases and/or phosphatases. Despite their differential impact on TFEB phosphorylation, both GSK3 and mTOR inhibitors promote 14-3-3 dissociation and TFEB nuclear localization. Quantitative mass spectrometry analyses further reveal an increased association of TFEB with nuclear proteins upon GSK3 and mTOR inhibition suggesting a positive impact on TFEB transcriptional function. Finally, a predominant nuclear localization of TFEB is unveiled in fully fed pancreatic cancer cells, whereas a reduction in TFEB expression significantly impairs their capacity for growth in an anchorage-independent manner. In addition, TFEB-restricted cells are more sensitive to apoptosis upon GSK3 inhibition. Altogether, our data uncover new functions under the control of GSK3 in pancreatic cancer cells in addition to providing key insight into TFEB regulation.
Collapse
Affiliation(s)
- Benoît Marchand
- From the Department of Medicine, Gastroenterology Division, and
| | | | | | - François-Michel Boisvert
- the Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | | |
Collapse
|
25
|
Ma Z, Zhong Z, Zheng Z, Shi XM, Zhang W. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro. PLoS One 2014; 9:e105528. [PMID: 25127359 PMCID: PMC4134315 DOI: 10.1371/journal.pone.0105528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD), the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β) is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.
Collapse
Affiliation(s)
- Zhenyu Ma
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhigang Zhong
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhenyang Zheng
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xing-Ming Shi
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
| | - Weixi Zhang
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- * E-mail:
| |
Collapse
|
26
|
Trazzi S, Fuchs C, De Franceschi M, Mitrugno VM, Bartesaghi R, Ciani E. APP-dependent alteration of GSK3β activity impairs neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2014; 67:24-36. [DOI: 10.1016/j.nbd.2014.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/02/2014] [Indexed: 12/31/2022] Open
|
27
|
Kocakaya SO. The Molecular Modeling of Novel Inhibitors of Protein Tyrosine Phosphatase 1B Based on Catechol by MD and MM-GB (PB)/SA Calculations. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Kitamura K, Tamura Y, Ueki T, Ogata K, Noda S, Himeno R, Chuman H. Binding Free-Energy Calculation Is a Powerful Tool for Drug Optimization: Calculation and Measurement of Binding Free Energy for 7-Azaindole Derivatives to Glycogen Synthase Kinase-3β. J Chem Inf Model 2014; 54:1653-60. [DOI: 10.1021/ci400719v] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kunihiro Kitamura
- Nihon Pharmaceutical University, 10281 Komuro, Ina-cho, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Yunoshin Tamura
- Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Tomokazu Ueki
- Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Koji Ogata
- RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shigeho Noda
- RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | - Hiroshi Chuman
- Institute of Health
Biosciences, University of Tokushima Graduate School, 1-78 Shomachi, Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
29
|
Glycogen Synthase Kinase-3β Inhibition of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonicaMatsum). Biosci Biotechnol Biochem 2014; 75:136-9. [DOI: 10.1271/bbb.100507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Carter YM, Kunnimalaiyaan S, Chen H, Gamblin TC, Kunnimalaiyaan M. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth. Cancer Biol Ther 2014; 15:510-5. [PMID: 24521712 DOI: 10.4161/cbt.28015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Neuroblastoma is a common neuroendocrine (NE) tumor that presents in early childhood, with a high incidence of malignancy and recurrence. The glycogen synthase kinase-3 (GSK-3) pathway is a potential therapeutic target, as this pathway has been shown to be crucial in the management of other NE tumors. However, it is not known which isoform is necessary for growth inhibition. In this study, we investigated the effect of the GSK-3 inhibitor AR-A014418 on the different GSK-3 isoforms in neuroblastoma. METHODS NGP and SH-5Y-SY cells were treated with 0-20 μM of AR-A014418 and cell viability was measured by MTT assay. Expression levels of NE markers CgA and ASCL1, GSK-3 isoforms, and apoptotic markers were analyzed by western blot. RESULTS Neuroblastoma cells treated with AR-A014418 had a significant reduction in growth at all doses and time points (P<0.001). A reduction in growth was noted in cell lines on day 6, with 10 μM (NGP-53% vs. 0% and SH-5Y-SY-38% vs. 0%, P<0.001) treatment compared to control, corresponding with a noticeable reduction in tumor marker ASCL1 and CgA expression. CONCLUSION Treatment of neuroblastoma cell lines with AR-A014418 reduced the level of GSK-3α phosphorylation at Tyr279 compared to GSK-3β phosphorylation at Tyr216, and attenuated growth via the maintenance of apoptosis. This study supports further investigation to elucidate the mechanism(s) by which GSK-3α inhibition downregulates the expression of NE tumor markers and growth of neuroblastoma.
Collapse
Affiliation(s)
- Yvette M Carter
- University of Wisconsin Endocrine Surgery Laboratory; Madison, WI USA
| | - Selvi Kunnimalaiyaan
- University of Wisconsin Endocrine Surgery Laboratory; Madison, WI USA; Medical College of Wisconsin; Milwaukee, WI USA
| | - Herbert Chen
- University of Wisconsin Endocrine Surgery Laboratory; Madison, WI USA
| | | | - Muthusamy Kunnimalaiyaan
- University of Wisconsin Endocrine Surgery Laboratory; Madison, WI USA; Medical College of Wisconsin; Milwaukee, WI USA
| |
Collapse
|
31
|
La Pietra V, La Regina G, Coluccia A, Famiglini V, Pelliccia S, Plotkin B, Eldar-Finkelman H, Brancale A, Ballatore C, Crowe A, Brunden KR, Marinelli L, Novellino E, Silvestri R. Design, synthesis, and biological evaluation of 1-phenylpyrazolo[3,4-e]pyrrolo[3,4-g]indolizine-4,6(1H,5H)-diones as new glycogen synthase kinase-3β inhibitors. J Med Chem 2013; 56:10066-78. [PMID: 24295046 DOI: 10.1021/jm401466v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compound 5 was selected from our in-house library as a suitable starting point for the rational design of new GSK-3β inhibitors. MC/FEP calculations of 5 led to the identification of a structural class of new GSK-3β inhibitors. Compound 18 inhibited GSK-3β with an IC50 of 0.24 μM and inhibited tau phosphorylation in a cell-based assay. It proved to be a selective inhibitor of GSK-3 against a panel of 17 kinases and showed >10-fold selectivity against CDK2. Calculated physicochemical properties and Volsurf predictions suggested that compound 18 has the potential to diffuse passively across the blood-brain barrier.
Collapse
Affiliation(s)
- Valeria La Pietra
- Dipartimento di Farmacia, Università di Napoli Federico II , Via Domenico Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
6-(4-Pyridyl)pyrimidin-4(3H)-ones as CNS penetrant glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2013; 23:6928-32. [DOI: 10.1016/j.bmcl.2013.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 12/30/2022]
|
33
|
Inhibition of glycogen synthase kinase-3β suppresses inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes and collagen-induced arthritis. Joint Bone Spine 2013; 81:240-6. [PMID: 24176738 DOI: 10.1016/j.jbspin.2013.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Glycogen synthase kinase (GSK)-3β, a serine/threonine protein kinase, has been implicated as a regulator of the inflammatory response. This study was performed to evaluate the effect of selective GSK-3β inhibitors in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and collagen-induced arthritis (CIA). METHOD FLS from RA patients were treated with selective GSK-3β inhibitors, including lithium chloride, 6-bromoindirubin-3'-oxime (BIO), or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). The effects of GSK-3β inhibition on pro-inflammatory mediators were determined by real-time PCR and ELISA. The levels of NF-κB, phosphorylated JNK, c-jun, ATF-2 and p-38 proteins were evaluated by western blot analysis. The in vivo effects of GSK-3β inhibitors were examined in mice with CIA. RESULTS Treatment of RA FLS with GSK-3β inhibitors induced dose-dependent reductions in gene expression and the production of pro-inflammatory mediators. The levels of NF-κB, phosphorylated JNK, c-jun, ATF-2 and p-38 were decreased following treatment with GSK-3β inhibitors. GSK-3β inhibitors treatment attenuated clinical and histological severities of CIA in mice. Infiltration of T-cells, macrophages, and tartrate-resistant acid phosphatase positive cells was decreased in joint sections of CIA mice by GSK-3β inhibitors treatment. Serum levels of IL-1β, IL-6, TNF-α and IFN-γ in CIA mice were also significantly decreased in dose-dependent manners by treatment with GSK-3β inhibitors. CONCLUSION Treatment with GSK-3β inhibitors suppressed inflammatory responses in RA FLS and CIA mice. These findings suggest that the inhibition of GSK-3β can be used as an effective therapeutic agent for RA.
Collapse
|
34
|
Yoshida J, Seino H, Ito Y, Nakano T, Satoh T, Ogane Y, Suwa S, Koshino H, Kimura KI. Inhibition of glycogen synthase kinase-3β by falcarindiol isolated from Japanese Parsley (Oenanthe javanica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7515-7521. [PMID: 23895038 DOI: 10.1021/jf401042m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new biological activity of falcarindiol isolated from Japanese parsley (Oenanthe javanica) using the mutant yeast YNS17 strain (zds1Δ erg3Δ pdr1Δ pdr3Δ) was discovered as an inhibitor of glycogen synthase kinase-3β (GSK-3β). Falcarindiol inhibited GSK-3β in an ATP noncompetitive manner with a Ki value of 86.9 μM using a human enzyme and luminescent kinase assay platform. Falcarindiol also both suppressed gene expression of glucose-6-phosphatase (G6Pase) in rat hepatoma H4IIE cells and protected mouse neuroblastoma HT22 cells from glutamate-induced oxidative cell death at 10 μM. During an oral glucose tolerance test (OGTT), the blood glucose level was significantly decreased in the rats treated with oral administration of O. javanica extract containing falcarindiol (15 mg/kg). These findings indicate that Japanese parsley could be a useful food ingredient against type-2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Jun Yoshida
- Chemical Biology Laboratory, The United Graduate School of Agricultural Sciences, §Graduate School of Agriculture, and ∥Faculty of Agriculture, Iwate University , Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Flepisi TB, Lochner A, Huisamen B. The Consequences of Long-Term Glycogen Synthase Kinase-3 Inhibition on Normal and Insulin Resistant Rat Hearts. Cardiovasc Drugs Ther 2013; 27:381-92. [DOI: 10.1007/s10557-013-6467-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
37
|
King MR, Anderson NJ, Guernsey LS, Jolivalt CG. Glycogen synthase kinase-3 inhibition prevents learning deficits in diabetic mice. J Neurosci Res 2013; 91:506-14. [PMID: 23362012 DOI: 10.1002/jnr.23192] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/29/2012] [Accepted: 11/21/2012] [Indexed: 12/20/2022]
Abstract
There is an increasing awareness that diabetes has an impact on the central nervous system, with reports of impaired learning, memory, and mental flexibility being more common in diabetic subjects than in the general population. Insulin-deficient diabetic mice also display learning deficits associated with defective insulin-signaling in the brain and increased activity of GSK3. In the present study, AR-A014418, a GSK3β inhibitor, and TX14(A), a neurotrophic factor with GSK3 inhibitory properties, were tested against the development of learning deficits in mice with insulin-deficient diabetes. Treatments were started at onset of diabetes and continued for 10 weeks. Treatment with AR-A014418 or TX14(A) prevented the development of learning deficits, assessed by the Barnes maze, but only AR-A014418 prevented memory deficits, as assessed by the object recognition test. Diabetes-induced increased levels of amyloid β protein and phosphorylated tau were not significantly affected by the treatments. However, the diabetes-induced decrease in synaptophysin, a presynaptic protein marker of hippocampal plasticity, was partially prevented by both treatments. These results suggest a role for GSK3 and/or reduced neurotrophic support in the development of cognitive deficits in diabetic mice that are associated with synaptic damage.
Collapse
Affiliation(s)
- Matthew R King
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
38
|
Lee S, Yang WK, Song JH, Ra YM, Jeong JH, Choe W, Kang I, Kim SS, Ha J. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochem Pharmacol 2013; 85:965-76. [PMID: 23337568 DOI: 10.1016/j.bcp.2012.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 11/30/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) plays a central role in cellular energy metabolism, and dysregulation of GSK-3 activity is implicated in a variety of metabolic disorders, including obesity, type 2 diabetes, and cancer. Hence, GSK-3 has emerged as an attractive target molecule for the treatment of metabolic disorders. Therefore, this research focused on identification and characterization of a novel small-molecule GSK-3 inhibitor. Compound 1a, a structure based on 3-hydroxychromone bearing isothiazolidine-1,1-dione, was identified from chemical library as a highly potent GSK-3 inhibitor. An in vitro kinase assay utilizing a panel of kinases demonstrated that compound 1a strongly inhibits GSK-3β. The potential effects of compound 1a on the inactivation of GSK-3 were confirmed in human liver HepG2 and human embryonic kidney HEK293 cells. Stabilization of glycogen synthase and β-catenin, which are direct targets of GSK-3, by compound 1a was assessed in comparison with two other GSK-3 inhibitors: LiCl and SB-415286. In mouse 3T3-L1 preadipocytes, compound 1a markedly blocked adipocyte differentiation. Consistently, intraperitoneal administration of compound 1a to diet-induced obese mice significantly ameliorated their key symptoms such as body weight gain, increased adiposity, dyslipidemia, and hepatic steatosis due to the marked reduction of whole-body lipid level. In vitro and in vivo effects were accompanied by upregulation of β-catenin stability and downregulation of the expression of several critical genes related to lipid metabolism. From these results, it can be concluded that compound 1a, a novel small-molecule inhibitor of GSK-3, has potential as a new class of therapeutic agent for obesity treatment.
Collapse
Affiliation(s)
- Sooho Lee
- Department of Biochemistry and Molecular Biology, Medical Research Center and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
40
|
Maixner DW, Weng HR. The Role of Glycogen Synthase Kinase 3 Beta in Neuroinflammation and Pain. ACTA ACUST UNITED AC 2013; 1:001. [PMID: 25309941 DOI: 10.13188/2327-204x.1000001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation is a crucial mechanism related to many neurological diseases. Extensive studies in recent years have indicated that dysregulation of Glycogen Synthase Kinase 3 Beta (GSK3β) contributes to the development and progression of these disorders through regulating the neuroinflammation processes. Inhibitors of GSK3β have been shown to be beneficial in many neuroinflammatory disease models including Alzheimer's disease, multiple sclerosis and AIDS dem entia complex. Glial activation and elevated pro-inflammation cytokines (signs of neuroinflammation) in the spinal cord have been widely recognized as a pivotal mechanism underlying the development and maintenance of many types of pathological pain. The role of GSK3β in the pathogenesis of pain has recently emerged. In this review, we will first review the GSK3β structure, regulation, and mechanisms by which GSK3βregulates inflammation. We will then describe neuroinflammationin general and in specific types of neurological diseases and the potential beneficial effects induced by inhibiting GSK3β. Finally, we will provide new evidence linking aberrant levels of GSK3β in the development of pathological pain.
Collapse
Affiliation(s)
- Dylan Warren Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, 30606, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, 30606, USA
| |
Collapse
|
41
|
Zhang P, Hu HR, Bian SH, Huang ZH, Chu Y, Ye DY. Design, synthesis and biological evaluation of benzothiazepinones (BTZs) as novel non-ATP competitive inhibitors of glycogen synthase kinase-3β (GSK-3β). Eur J Med Chem 2012; 61:95-103. [PMID: 23047001 DOI: 10.1016/j.ejmech.2012.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/31/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) plays a key role in type II diabetes and Alzheimer's diseases, to which non-ATP competitive inhibitors represent an effectively therapeutical approach due to their good specificity. Herein, a series of small molecules benzothiazepinones (BTZs) as novel non-ATP competitive inhibitors of GSK-3β have been designed and synthesized. The in vitro evaluation performed by luminescent assay showed most BTZ derivatives have inhibitory effects in micromolar scale. Among them compounds 6l, 6t and 6v have the IC50 values of 25.0 μM, 27.8 μM and 23.0 μM, respectively. Moreover 6v is devoid of any inhibitory activity in the assays to other thirteen protein kinases. Besides, SAR is analyzed and a hypothetical enzymatic binding mode is proposed by molecular docking study, which would be useful for new candidates design.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
42
|
Susín C, Morales-Garcia JA, Aguilar-Morante D, Palomo V, Sanz-Sancristobal M, Alonso-Gil S, Gil C, Santos A, Martinez A, Perez-Castillo A. The new iminothiadiazole derivative VP1.14 ameliorates hippocampal damage after an excitotoxic injury. J Neurochem 2012; 122:1193-202. [DOI: 10.1111/j.1471-4159.2012.07866.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Ma Z, Zhu L, Luo X, Zhai S, Li P, Wang X. Perifosine enhances mTORC1-targeted cancer therapy by activation of GSK3β in NSCLC cells. Cancer Biol Ther 2012; 13:1009-17. [PMID: 22825337 DOI: 10.4161/cbt.20989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
mTORC1 inhibitors, including rapamycin and its analogs, have been actively studied both pre-clinically and clinically. However, the single treatment of mTORC1 inhibitors has been modest in most cancer types. We have previously demonstrated that the activation of PI3K/Akt and MEK/ERK signaling pathways attenuates the anticancer efficacy of mTORC1 inhibitors. In this study, we report that mTORC1 inhibition also phosphorylates and inactivates GSK3β, which is a tumor suppressor in lung cancer. Moreover, we show that perifosine, as an Akt inhibitor, decreases rapamycin-induced phosphorylation of GSK3β and elevated p-GSK3β levels in rapamycin-resistant cell lines. Combination of perifosine with mTORC1 inhibitors showed enhanced anticancer efficacy both in cell cultures and in a xenograft mouse model. In addition, perifosine inhibits the growth of both rapamycin sensitive and resistant A549 cells. However, inhibition of GSK3β by a selective inhibitor- LiCl, or downregulation of GSK3β expression by siRNA, reverses the growth inhibitory effects of perifosine on rapamycin resistant cells, suggesting the important role of GSK3β activation in enhancing mTORC1 inhibitors efficacy by perifosine. Thus, our results provide a potential therapeutic strategy to enhance mTORC1-targeted cancer therapy by using perifosine or targeting GSK3β.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
44
|
Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models. Int J Alzheimers Dis 2012; 2012:381029. [PMID: 22888461 PMCID: PMC3408674 DOI: 10.1155/2012/381029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022] Open
Abstract
The world health organization (WHO) estimated that 18 million people are struck by Alzheimer's disease (AD). The USA, France, Germany, and other countries launched major programmes targeting the identification of risk factors, the improvement of caretaking, and fundamental research aiming to postpone the onset of AD. The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of several diseases including diabetes mellitus, cancer, and AD. Inhibition of GSK-3 leads to neuroprotective effects, decreased β-amyloid production, and a reduction in tau hyperphosphorylation, which are all associated with AD. Various classes of small molecule GSK-3 inhibitors have been published in patents and original publications. Herein, we present a comprehensive summary of small molecules reported to interact with GSK-3. We illustrate the interactions of the inhibitors with the active site. Furthermore, we refer to the biological characterisation in terms of activity and selectivity for GSK-3, elucidate in vivo studies and pre-/clinical trials.
Collapse
|
45
|
Boutajangout A, Sigurdsson EM, Krishnamurthy PK. Tau as a therapeutic target for Alzheimer's disease. Curr Alzheimer Res 2012; 8:666-77. [PMID: 21679154 DOI: 10.2174/156720511796717195] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 01/02/2023]
Abstract
Neurofibrillary tangles (NFTs) are one of the pathological hallmarks of Alzheimer's disease (AD) and are primarily composed of aggregates of hyperphosphorylated forms of the microtubule associated protein tau. It is likely that an imbalance of kinase and phosphatase activities leads to the abnormal phosphorylation of tau and subsequent aggregation. The wide ranging therapeutic approaches that are being developed include to inhibit tau kinases, to enhance phosphatase activity, to promote microtubule stability, and to reduce tau aggregate formation and/or enhance their clearance with small molecule drugs or by immunotherapeutic means. Most of these promising approaches are still in preclinical development whilst some have progressed to Phase II clinical trials. By pursuing these lines of study, a viable therapy for AD and related tauopathies may be obtained.
Collapse
Affiliation(s)
- A Boutajangout
- Departments of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
46
|
Lo Monte F, Kramer T, Gu J, Anumala UR, Marinelli L, La Pietra V, Novellino E, Franco B, Demedts D, Van Leuven F, Fuertes A, Dominguez JM, Plotkin B, Eldar-Finkelman H, Schmidt B. Identification of Glycogen Synthase Kinase-3 Inhibitors with a Selective Sting for Glycogen Synthase Kinase-3α. J Med Chem 2012; 55:4407-24. [DOI: 10.1021/jm300309a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fabio Lo Monte
- Clemens Schöpf—Institute of Organic Chemistry and Biochemistry,
Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Thomas Kramer
- Clemens Schöpf—Institute of Organic Chemistry and Biochemistry,
Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Jiamin Gu
- Clemens Schöpf—Institute of Organic Chemistry and Biochemistry,
Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Upendra Rao Anumala
- Clemens Schöpf—Institute of Organic Chemistry and Biochemistry,
Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Luciana Marinelli
- Dipartimento di Chimica Farmaceutica
e Tossicologica, Università di Napoli “Federico II”,
80131 Napoli, Italy
| | - Valeria La Pietra
- Dipartimento di Chimica Farmaceutica
e Tossicologica, Università di Napoli “Federico II”,
80131 Napoli, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica
e Tossicologica, Università di Napoli “Federico II”,
80131 Napoli, Italy
| | - Bénédicte Franco
- Experimental
Genetics Group, Department of Human Genetics, Katholieke Universiteit
Leuven, 3000 Leuven, Belgium
| | - David Demedts
- Experimental
Genetics Group, Department of Human Genetics, Katholieke Universiteit
Leuven, 3000 Leuven, Belgium
| | - Fred Van Leuven
- Experimental
Genetics Group, Department of Human Genetics, Katholieke Universiteit
Leuven, 3000 Leuven, Belgium
| | - Ana Fuertes
- Noscira SA, Drug Discovery, Tres Cantos 28760-Madrid, Spain
| | | | - Batya Plotkin
- Department of Human Molecular Genetics
and Biochemistry, Sackler School of Medicine, Tel Aviv University,
69978 Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics
and Biochemistry, Sackler School of Medicine, Tel Aviv University,
69978 Tel Aviv, Israel
| | - Boris Schmidt
- Clemens Schöpf—Institute of Organic Chemistry and Biochemistry,
Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
47
|
Abstract
The canonical Wnt signaling pathway is evolutionarily conserved and plays key roles during development of many organ systems. This pathway utilizes TCF/LEF transcription factors, β-catenin coactivator, and TLE/GRG corepressors to achieve balanced regulation of its downstream gene expression. It is well established that several Wnt ligands and their effector proteins are crucial for normal T cell development. Recent studies have also revealed critical requirements for TCF-1 in generation and persistence of functional memory CD8(+) T cells, and in promoting Th2-differentiation and suppressing Th17-differentiation of activated CD4(+) T cells. Activation of β-catenin facilitated CD8(+) memory T cell formation, with enhanced protective capacity and extended survival of CD4(+) CD25(+) regulatory T cells. Upregulation of Wnt ligands was observed in Drosophila in response to Toll signaling as well as in mammalian dendritic cells and macrophages upon microbial stimulation. These new findings suggest that modulating the activity of Wnt pathway may be a powerful approach to enhance protective immunity and treat autoimmune diseases.
Collapse
Affiliation(s)
- Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
48
|
Abstract
Acute myeloid leukemia (AML) is the most common form of leukemia in adults. Unfortunately, the standard therapeutic agents used for this disease have high toxicities and poor efficacy. The one exception to these poor outcomes is the use of the retinoid, all-trans retinoic acid (ATRA), for a rare subtype of AML (APL). The use of the differentiation agent, ATRA, in combination with low-dose chemotherapy leads to the long-term survival and presumed cure of 75-85% of patients. Unfortunately ATRA has not been clinically useful for other subtypes of AML. Though many non-APL leukemic cells respond to ATRA, they require significantly higher concentrations of ATRA for effective differentiation. Here we show that the combination of ATRA with glycogen synthase kinase 3 (GSK3) inhibition significantly enhances ATRA-mediated AML differentiation and growth inhibition. These studies have revealed that ATRA's receptor, the retinoic acid receptor (RAR), is a novel target of GSK3 phosphorylation and that GSK3 can impact the expression and transcriptional activity of the RAR. Overall, our studies suggest the clinical potential of ATRA and GSK3 inhibition for AML and provide a mechanistic framework to explain the promising activity of this combination regimen.
Collapse
|
49
|
McAlpine CS, Bowes AJ, Khan MI, Shi Y, Werstuck GH. Endoplasmic Reticulum Stress and Glycogen Synthase Kinase-3β Activation in Apolipoprotein E–Deficient Mouse Models of Accelerated Atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:82-91. [DOI: 10.1161/atvbaha.111.237941] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Cameron S. McAlpine
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Anna J. Bowes
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Mohammad I. Khan
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Geoff H. Werstuck
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Marchand B, Tremblay I, Cagnol S, Boucher MJ. Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms. Carcinogenesis 2011; 33:529-37. [PMID: 22201186 DOI: 10.1093/carcin/bgr309] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent evidences suggest that the activity of glycogen synthase kinase-3 (GSK3) contributes to the tumorigenic potential of pancreatic cancer cells through modulation of cell proliferation and survival. However, further investigations are needed to identify GSK3-dependent mechanisms involved in the control of pancreatic cancer cell proliferation and survival. This study was undertaken to provide further support for a role of GSK3 in pancreatic cancer cell growth as well as to identify new cellular and molecular mechanisms involved. Herein, we demonstrate that prolonged inhibition of GSK3 triggers an apoptotic response only in human pancreatic cancer cells but not in human non-transformed pancreatic epithelial cells. We show that prolonged inhibition of GSK3 activity increases Bim messenger RNA and protein expressions. Moreover, we provide evidence that activation of the c-jun N-terminal kinase (JNK) pathway is necessary for the GSK3 inhibition-mediated increase in Bim expression and apoptotic response. Finally, we demonstrate that concomitant inhibition of GSK3 potentiates the death ligand-induced apoptotic response in pancreatic cancer cells but not in non-transformed pancreatic epithelial cells and that this effect also requires JNK activity. Considering that different approaches leading to stimulation of death receptor signaling are under clinical trials for treatment of unresectable or metastatic pancreatic cancer, inhibition of GSK3 could represent an attractive new avenue to improve their effectiveness.
Collapse
Affiliation(s)
- Benoît Marchand
- Service de Gastroentérologie, Département de Médecine, Université de Sherbrooke, 3001, 12e avenue nord, Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|