1
|
Cao D, Wan JP, Liu Y. Metal-free hydrodifunctionalization of enaminones for the synthesis of ketomethylene-functionalized phosphoryl alcohols. Org Biomol Chem 2025; 23:799-802. [PMID: 39630156 DOI: 10.1039/d4ob01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Reported here is a set of three-component reactions of enaminones with diaryl phosphine oxides and water for the synthesis of ketomethylene-functionalized gem-phosphoryl alcohols via enaminone hydrodifunctionalization, enabling the cascade construction of new C-P, C-O and C-H bonds. The method displays notable advantages including mild metal-free conditions, a broad application scope and being free of the need to carry out chromatographic purification.
Collapse
Affiliation(s)
- Dingsheng Cao
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
2
|
Das F, Ghosh-Choudhury N, Kasinath BS, Sharma K, Choudhury GG. High glucose-induced downregulation of PTEN-Long is sufficient for proximal tubular cell injury in diabetic kidney disease. Exp Cell Res 2024; 440:114116. [PMID: 38830568 DOI: 10.1016/j.yexcr.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | | | | | - Kumar Sharma
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
3
|
Budnikova YH, Dolengovsky EL, Tarasov MV, Gryaznova TV. Recent advances in electrochemical C-H phosphorylation. Front Chem 2022; 10:1054116. [PMID: 36405320 PMCID: PMC9671283 DOI: 10.3389/fchem.2022.1054116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
The activation of C-H bond, and its direct one-step functionalization, is one of the key synthetic methodologies that provides direct access to a variety of practically significant compounds. Particular attention is focused on modifications obtained at the final stages of the synthesis of complicated molecules, which requires high tolerance to the presence of existing functional groups. Phosphorus is an indispensable element of life, and phosphorus chemistry is now experiencing a renaissance due to new emerging applications in medicinal chemistry, materials chemistry (polymers, flame retardants, organic electronics, and photonics), agricultural chemistry (herbicides, insecticides), catalysis (ligands) and other important areas of science and technology. In this regard, the search for new, more selective, low-waste synthetic routes become relevant. In this context, electrosynthesis has proven to be an eco-efficient and convenient approach in many respects, where the reagents are replaced by electrodes, where the reactants are replaced by electrodes, and the applied potential the applied potential determines their "oxidizing or reducing ability". An electrochemical approach to such processes is being developed rapidly and demonstrates some advantages over traditional classical methods of C-H phosphorylation. The main reasons for success are the exclusion of excess reagents from the reaction system: such as oxidants, reducing agents, and sometimes metal and/or other improvers, which challenge isolation, increase the wastes and reduce the yield due to frequent incompatibility with these functional groups. Ideal conditions include electron as a reactant (regulated by applied potential) and the by-products as hydrogen or hydrocarbon. The review summarizes and analyzes the achievements of electrochemical methods for the preparation of various phosphorus derivatives with carbon-phosphorus bonds, and collects data on the redox properties of the most commonly used phosphorus precursors. Electrochemically induced reactions both with and without catalyst metals, where competitive oxidation of precursors leads to either the activation of C-H bond or to the generation of phosphorus-centered radicals (radical cations) or metal high oxidation states will be examined. The review focuses on publications from the past 5 years.
Collapse
Affiliation(s)
- Yulia H. Budnikova
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
- Organic Chemistry Department, Kazan National Research Technological University, Kazan, Russia
| | - Egor L. Dolengovsky
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
- Organic Chemistry Department, Kazan National Research Technological University, Kazan, Russia
| | - Maxim V. Tarasov
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
| | - Tatyana V. Gryaznova
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
| |
Collapse
|
4
|
Zeng FL, Zhang ZY, Yin PC, Cheng FK, Chen XL, Qu LB, Cao ZY, Yu B. Visible-Light-Induced Cascade Cyclization of 3-(2-(Ethynyl)phenyl)quinazolinones to Phosphorylated Quinolino[2,1- b]quinazolinones. Org Lett 2022; 24:7912-7917. [PMID: 36269864 DOI: 10.1021/acs.orglett.2c02930] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-(2-(Ethynyl)phenyl)quinazolinones were designed and synthesized as a class of novel and efficient skeletons for phosphorylation/cyclization reactions. Under visible light irradiation, a series of phosphorylated quinolino[2,1-b]quinazolinones (35 examples, up to 87% yield) were first synthesized from 3-(2-(ethynyl)phenyl)quinazolinones and diarylphosphine oxides by using 4CzIPN as a photocatalyst under mild conditions. This reaction was also applicable under sunlight irradiation. Moreover, the reaction efficiency could be significantly improved under continuous-flow conditions.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Yang Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Cheng Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fu-Kun Cheng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Characterization of Aurintricarboxylic Acid (ATA) Interactions with Plasma Transporter Protein and SARS-CoV-2 Viral Targets: Correlation of Functional Activity and Binding Energetics. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060872. [PMID: 35743905 PMCID: PMC9227171 DOI: 10.3390/life12060872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
In an effort to identify functional-energetic correlations leading to the development of efficient anti-SARS-CoV-2 therapeutic agents, we have designed synthetic analogs of aurintricarboxylic acid (ATA), a heterogeneous polymeric mixture of structurally related linear homologs known to exhibit a host of biological properties, including antiviral activity. These derivatives are evaluated for their ability to interact with a plasma transporter protein (human serum albumin), eukaryotic (yeast) ribosomes, and a SARS-CoV-2 target, the RNA-dependent RNA polymerase (RdRp). The resultant data are critical for characterizing drug distribution, bioavailability, and effective inhibition of host and viral targets. Promising lead compounds are selected on the basis of their binding energetics which have been characterized and correlated with functional activities as assessed by inhibition of RNA replication and protein synthesis. Our results reveal that the activity of heterogeneous ATA is mimicked by linear compounds of defined molecular weight, with a dichlorohexamer salicylic-acid derivative exhibiting the highest potency. These findings are instrumental for optimizing the design of structurally defined ATA analogs that fulfill the requirements of an antiviral drug with respect to bioavailability, homogeneity, and potency, thereby expanding the arsenal of therapeutic regimens that are currently available to address the urgent need for effective SARS-CoV-2 treatment strategies.
Collapse
|
6
|
Gu Y, Guo Y, Gao N, Fang Y, Xu C, Hu G, Guo M, Ma Y, Zhang Y, Zhou J, Luo Y, Zhang H, Wen Q, Qiao H. The proteomic characterization of the peritumor microenvironment in human hepatocellular carcinoma. Oncogene 2022; 41:2480-2491. [PMID: 35314790 PMCID: PMC9033583 DOI: 10.1038/s41388-022-02264-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/29/2023]
Abstract
The tumor microenvironment (TME) was usually studied in tumor tissue and in relation to only tumor progression, with little involved in occurrence, recurrence and metastasis of tumor. Thus, a new concept "peritumor microenvironment (PME)" was proposed in the proteomic characterization of peritumor liver tissues in human hepatocellular carcinoma (HCC). The PME for occurrence (PME-O) and progression (PME-P) were almost totally different at proteome composition and function. Proteins for occurrence and progression rarely overlapped and crossed. Immunity played a central role in PME-O, whereas inflammation, angiogenesis and metabolism were critical in PME-P. Proteome profiling identified three PME subtypes with different features of HCC. Thymidine phosphorylase (TYMP) was validated as an antiangiogenic target in an orthotopic HCC mouse model. Overall, the proteomic characterization of the PME revealed that the entire processes of HCC occurrence and progression differ substantially. These findings could enable advances in cancer biology, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yuhan Gu
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Guo
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China ,grid.412633.10000 0004 1799 0733Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Gao
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Yan Fang
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Chen Xu
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Guiming Hu
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Mengxue Guo
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Yaxing Ma
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Yunfei Zhang
- grid.414008.90000 0004 1799 4638Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhou
- grid.414011.10000 0004 1808 090XAffiliated People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanlin Luo
- grid.414008.90000 0004 1799 4638Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Haifeng Zhang
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Qiang Wen
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Hailing Qiao
- grid.207374.50000 0001 2189 3846Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Xu MM, Kou LY, Bao XG, Xu XP, Ji SJ. A radical addition and cyclization relay promoted by Mn(OAc)3⋅2H2O: Synthesis of 1,2-oxaphospholoindoles and mechanistic study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Identification of SARS-CoV-2 Receptor Binding Inhibitors by In Vitro Screening of Drug Libraries. Molecules 2021; 26:molecules26113213. [PMID: 34072087 PMCID: PMC8198929 DOI: 10.3390/molecules26113213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global pandemic. The first step of viral infection is cell attachment, which is mediated by the binding of the SARS-CoV-2 receptor binding domain (RBD), part of the virus spike protein, to human angiotensin-converting enzyme 2 (ACE2). Therefore, drug repurposing to discover RBD-ACE2 binding inhibitors may provide a rapid and safe approach for COVID-19 therapy. Here, we describe the development of an in vitro RBD-ACE2 binding assay and its application to identify inhibitors of the interaction of the SARS-CoV-2 RBD to ACE2 by the high-throughput screening of two compound libraries (LOPAC®1280 and DiscoveryProbeTM). Three compounds, heparin sodium, aurintricarboxylic acid (ATA), and ellagic acid, were found to exert an effective binding inhibition, with IC50 values ranging from 0.6 to 5.5 µg/mL. A plaque reduction assay in Vero E6 cells infected with a SARS-CoV-2 surrogate virus confirmed the inhibition efficacy of heparin sodium and ATA. Molecular docking analysis located potential binding sites of these compounds in the RBD. In light of these findings, the screening system described herein can be applied to other drug libraries to discover potent SARS-CoV-2 inhibitors.
Collapse
|
9
|
Gbubele JD, Olszewski TK. Asymmetric synthesis of organophosphorus compounds using H-P reagents derived from chiral alcohols. Org Biomol Chem 2021; 19:2823-2846. [PMID: 33710223 DOI: 10.1039/d1ob00124h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral organophosphorus compounds, especially those containing C-stereogenic carbons in the proximity of the phosphorus atom, are known for their unique properties and have found wide applications that span from medicinal chemistry to enantioselective catalysis. However, the synthesis of such chiral molecules, especially with the precise control of stereochemistry at chiral carbon atoms, still remains a very challenging task. This review summarizes recent advances in the highly stereoselective formation of C- and, in some cases, also P-stereogenic organophosphorus compounds. The presented synthesis strategy is based on the use of H-P reagents bearing TADDOL, BINOL or a menthol moiety attached to the phosphorus atom and serving as a chiral auxiliary. Reactions of such chiral H-P species with different partners, e.g., alkenes, alkynes, imines, and carbonyl compounds, leading to structurally diverse chiral organophosphorus compounds with up to five chiral centers are comprehensively discussed. In each case, the stereochemical outcome of the reaction is influenced by the presence of the chiral alcohol used; therefore, the content of this review is compiled into sections with respect to the type of chiral alcohol attached to the phosphorus atom in the H-P species applied.
Collapse
Affiliation(s)
- Joseph D Gbubele
- Faculty of Chemistry, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | |
Collapse
|
10
|
Liu Y, Li S, Chen X, Fan L, Li X, Zhu S, Qu L, Yu B. Mn(III)‐Mediated Regioselective 6‐
endo
‐trig Radical Cyclization of
o
‐Vinylaryl Isocyanides to Access 2‐Functionalized Quinolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901300] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
- College of Biological and Pharmaceutical Engineering Xinyang Agriculture & Forestry University Xinyang 464000 People's Republic of China
| | - Shi‐Jun Li
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Xiao‐Lan Chen
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Lu‐Lu Fan
- School of Chemistry & Chemical Engineering Henan University of Technology Zhengzhou 450001 People's Republic of China
| | - Xiao‐Yun Li
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Shan‐Shan Zhu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Ling‐Bo Qu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Bing Yu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
11
|
Identification of aurintricarboxylic acid as a potent allosteric antagonist of P2X1 and P2X3 receptors. Neuropharmacology 2019; 158:107749. [PMID: 31461640 DOI: 10.1016/j.neuropharm.2019.107749] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
The homotrimeric P2X3 receptor, one of the seven members of the ATP-gated P2X receptor family, plays a crucial role in sensory neurotransmission. P2X3 receptor antagonists have been identified as promising drugs to treat chronic cough and are suggested to offer pain relief in chronic pain such as neuropathic pain. Here, we analysed whether compounds affect P2X3 receptor activity by high-throughput screening of the Spectrum Collection of 2000 approved drugs, natural products and bioactive substances. We identified aurintricarboxylic acid (ATA) as a nanomolar-potency antagonist of P2X3 receptor-mediated responses. Two-electrode voltage clamp electrophysiology-based concentration-response analysis and selectivity profiling revealed that ATA strongly inhibits the rP2X1 and rP2X3 receptors (with IC50 values of 8.6 nM and 72.9 nM, respectively) and more weakly inhibits P2X2/3, P2X2, P2X4 or P2X7 receptors (IC50 values of 0.76 μM, 22 μM, 763 μM or 118 μM, respectively). Patch-clamp analysis of mouse DRG neurons revealed that ATA inhibited native P2X3 and P2X2/3 receptors to a similar extent than rat P2X3 and P2X2/3 receptors expressed in Xenopus oocytes. In a radioligand binding assay, up to 30 μM ATA did not compete with [3H]-ATP for rP2X3 receptor binding, indicating a non-competitive mechanism of action. Molecular docking studies, site-directed mutagenesis and concentration-response analysis revealed that ATA binds to the negative allosteric site of the hP2X3 receptor. In summary, ATA as a drug-like pharmacological tool compound is a nanomolar-potency, allosteric antagonist with selectivity towards αβ-methylene-ATP-sensitive P2X1 and P2X3 receptors.
Collapse
|
12
|
Alpha-carboxynucleoside phosphonates: direct-acting inhibitors of viral DNA polymerases. Future Med Chem 2019; 11:137-154. [PMID: 30648904 DOI: 10.4155/fmc-2018-0324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acyclic nucleoside phosphonates represent a well-defined class of clinically used nucleoside analogs. All acyclic nucleoside phosphonates need intracellular phosphorylation before they can bind viral DNA polymerases. Recently, a novel class of alpha-carboxynucleoside phosphonates have been designed to mimic the natural 2'-deoxynucleotide 5'-triphosphate substrates of DNA polymerases. They contain a carboxyl group in the phosphonate moiety linked to the nucleobase through a cyclic or acyclic bridge. Alpha-carboxynucleoside phosphonates act as viral DNA polymerase inhibitors without any prior requirement of metabolic conversion. Selective inhibitory activity against retroviral reverse transcriptase and herpesvirus DNA polymerases have been demonstrated. These compounds have a unique mechanism of inhibition of viral DNA polymerases, and provide possibilities for further modifications to optimize and fine tune their antiviral DNA polymerase spectrum.
Collapse
|
13
|
Liu Y, Chen XL, Zeng FL, Sun K, Qu C, Fan LL, An ZL, Li R, Jing CF, Wei SK, Qu LB, Yu B, Sun YQ, Zhao YF. Phosphorus Radical-Initiated Cascade Reaction To Access 2-Phosphoryl-Substituted Quinoxalines. J Org Chem 2018; 83:11727-11735. [DOI: 10.1021/acs.joc.8b01657] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Xiao-Lan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Fan-Lin Zeng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Qu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lu-Lu Fan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Long An
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chun-Feng Jing
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Kai Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Qiang Sun
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Fen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Li C, Ding H, Ruan Z, Zhou Y, Xiao Q. First total synthesis of kipukasin A. Beilstein J Org Chem 2017; 13:855-862. [PMID: 28546843 PMCID: PMC5433220 DOI: 10.3762/bjoc.13.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
Abstract
In this paper, a practical approach for the total synthesis of kipukasin A is presented with 22% overall yield by using tetra-O-acetyl-β-D-ribose as starting material. An improved iodine-promoted acetonide-forming reaction was developed to access 1,2-O-isopropylidene-α-D-ribofuranose. For the first time, ortho-alkynylbenzoate was used as protecting group for the 5-hydoxy group. After subsequent Vorbrüggen glycosylation, the protecting group could be removed smoothly in the presence of 5 mol % Ph3PAuOTf in dichloromethane to provide kipukasin A in high yield and regioselectivity.
Collapse
Affiliation(s)
- Chuang Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Haixin Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Zhizhong Ruan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Yirong Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| |
Collapse
|
15
|
Hu C, Ruan Z, Ding H, Zhou Y, Xiao Q. An Expedient Total Synthesis of Triciribine. Molecules 2017; 22:molecules22040643. [PMID: 28420174 PMCID: PMC6154533 DOI: 10.3390/molecules22040643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
In the present paper, we report an expedient total synthesis of triciribine, a tricyclic 7-deazapurine nucleoside and protein kinase B (AKT ) inhibitor, in 35% overall yield. Our synthesis route features a highly regioselective substitution of 1-N-Boc-2-methylhydrazine and a trifluoroacetic acid catalyzed one-pot transformation which combined the deprotection of the tert-butylcarbonyl (Boc) group and ring closure reaction together to give a tricyclic nucleobase motif.
Collapse
Affiliation(s)
- Chen Hu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Zhizhong Ruan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Haixin Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Yirong Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
16
|
Ding H, Li C, Zhou Y, Hong S, Zhang N, Xiao Q. Stereoselective synthesis of 2′-modified nucleosides by using ortho-alkynyl benzoate as a gold(i)-catalyzed removable neighboring participation group. RSC Adv 2017. [DOI: 10.1039/c6ra27790j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ortho-Alkynyl benzoate was developed as a neighboring participation group in stereoselective synthesis of nucleosides, which could be removed using gold(i)-catalysis to afford 2′-OH nucleosides in high yield and selectivity.
Collapse
Affiliation(s)
- Haixin Ding
- Department of Chemistry
- Nanchang University
- Nanchang
- China
- Jiangxi Key Laboratory of Organic Chemistry
| | - Chuang Li
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Yirong Zhou
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Sanguo Hong
- Department of Chemistry
- Nanchang University
- Nanchang
- China
| | - Ning Zhang
- Department of Chemistry
- Nanchang University
- Nanchang
- China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| |
Collapse
|
17
|
Jahnz-Wechmann Z, Framski GR, Januszczyk PA, Boryski J. Base-Modified Nucleosides: Etheno Derivatives. Front Chem 2016; 4:19. [PMID: 27200341 PMCID: PMC4848297 DOI: 10.3389/fchem.2016.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/07/2016] [Indexed: 11/13/2022] Open
Abstract
This review presents synthesis and chemistry of nucleoside analogs, possessing an additional fused, heterocyclic ring of the "etheno" type, such as 1,N(6)-ethenoadenosine, 1,N(4)-ethenocytidine, 1,N(2)-ethenoguanosine, and other related derivatives. Formation of ethenonucleosides, in the presence of α-halocarbonyl reagents and their mechanism, stability, and degradation, reactions of substitution and transglycosylation, as well as their application in the nucleoside synthesis, have been described. Some of the discussed compounds may be applied as chemotherapeutic agents in antiviral and anticancer treatment, acting as pro-nucleosides of already known, biologically active nucleoside analogs.
Collapse
Affiliation(s)
| | - Grzegorz R Framski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences Poznan, Poland
| | - Piotr A Januszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences Poznan, Poland
| | - Jerzy Boryski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences Poznan, Poland
| |
Collapse
|
18
|
Budnikova YH, Sinyashin OG. Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4525] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Jahnz-Wechmann Z, Framski G, Januszczyk P, Boryski J. Bioactive fused heterocycles: Nucleoside analogs with an additional ring. Eur J Med Chem 2015; 97:388-96. [DOI: 10.1016/j.ejmech.2014.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/05/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
|
20
|
Kelesidis T, Mastoris I, Metsini A, Tsiodras S. How to approach and treat viral infections in ICU patients. BMC Infect Dis 2014; 14:321. [PMID: 25431007 PMCID: PMC4289200 DOI: 10.1186/1471-2334-14-321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Patients with severe viral infections are often hospitalized in intensive care units (ICUs) and recent studies underline the frequency of viral detection in ICU patients. Viral infections in the ICU often involve the respiratory or the central nervous system and can cause significant morbidity and mortality especially in immunocompromised patients. The mainstay of therapy of viral infections is supportive care and antiviral therapy when available. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host proteins that regulate immunity and are involved in the viral life cycle. These novel treatments need to be further validated in animal and human randomized controlled studies.
Collapse
Affiliation(s)
| | | | | | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, 1 Rimini Street, GR-12462 Haidari, Athens, Greece.
| |
Collapse
|
21
|
Schang LM. Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action. Future Virol 2014. [DOI: 10.2217/fvl.13.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT: Antivirals have traditionally been developed to act by biochemical principles targeting proteins, such as inhibition of enzymes or protein–protein interactions. This approach has resulted in 57 clinical antivirals or boosters, and multiple others under development. However, viral infection also requires specific unique biophysical activities from the lipids in the viral envelope. These biophysical activities could also be targeted with small molecules. Several phospholipids, for example, inhibit infectivity in model systems. Such knowledge had not been applied to antiviral development until recently. However, two families of small molecules that inhibit viral infectivity by biophysical mechanisms affecting the lipids of the virion envelope were independently identified in 2010. Although they have yet to prove strong antiviral activities in vivo, and their long-term toxicological profiles have yet to be characterized, they do provide proof-of-principle that small molecule ‘drug-like’ compounds can act by biophysical principles affecting the lipids of the virion envelope.
Collapse
Affiliation(s)
- Luis M Schang
- *Department of Biochemistry, Li Ka Shing Institute of Virology & Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; 6-142G KATZ, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
22
|
Pechan P, Ardinger J, Ketavarapu J, Rubin H, Wadsworth SC, Scaria A. Aurintricarboxylic acid increases yield of HSV-1 vectors. Mol Ther Methods Clin Dev 2014; 1:6. [PMID: 26015945 PMCID: PMC4365865 DOI: 10.1038/mtm.2013.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/15/2013] [Indexed: 01/07/2023]
Abstract
Production of large quantities of viral vectors is crucial for the success of gene therapy in the clinic. There is a need for higher titers of herpes simplex virus-1 (HSV-1) vectors both for therapeutic use as well as in the manufacturing of clinical grade adeno-associated virus (AAV) vectors. HSV-1 yield increased when primary human fibroblasts were treated with anti-inflammatory drugs like dexamethasone or valproic acid. In our search for compounds that would increase HSV-1 yield, we investigated another anti-inflammatory compound, aurintricarboxylic acid (ATA). Although ATA has been previously shown to have antiviral effects, we find that low (micromolar) concentrations of ATA increased HSV-1 vector production yields. Our results showing the use of ATA to increase HSV-1 titers have important implications for the production of certain HSV-1 vectors as well as recombinant AAV vectors.
Collapse
Affiliation(s)
- Peter Pechan
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | - Jeffery Ardinger
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | - Jyothi Ketavarapu
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | - Hillard Rubin
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| | | | - Abraham Scaria
- Gene Therapy, Sanofi-Genzyme R&D Center, Framingham, Massachusetts, USA
| |
Collapse
|
23
|
Abstract
This review highlights ten "hot topics" in current antiviral research: (i) new nucleoside derivatives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii) cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infections; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising activity against both α- and γ-herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipiravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073); (viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)], showing activity against influenza and other viruses; and (x) two structurally unrelated compounds (i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA viruses.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| |
Collapse
|
24
|
Identification of potent and orally bioavailable nucleotide competing reverse transcriptase inhibitors: in vitro and in vivo optimization of a series of benzofurano[3,2-d]pyrimidin-2-one derived inhibitors. Bioorg Med Chem Lett 2013; 23:3967-75. [PMID: 23673016 DOI: 10.1016/j.bmcl.2013.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 02/05/2023]
Abstract
Recently, a new class of HIV reverse transcriptase (HIV-RT) inhibitors has been reported. The novel mechanism of inhibition by this class involves competitive binding to the active site of the RT enzyme and has been termed Nucleotide-Competing Reverse Transcriptase Inhibitors (NcRTIs). In this publication we describe the optimization of a novel benzofurano[3,2-d]pyrimidin-2-one series of NcRTIs. The starting point for the current study was inhibitor 2, which had high biochemical and antiviral potency but only moderate permeability in a Caco-2 assay and high B-to-A efflux, resulting in moderate rat bioavailability and low Cmax. We present herein the results and strategies we employed to optimize both the potency as well as the permeability, metabolic stability and pharmacokinetic profile of this series. One of the key observations of the present study was the importance of shielding polar functionality, at least in the context of the current chemotype, to enhance permeability. These studies led to the identification of inhibitors 39 and 45, which display sub-nanomolar antiviral potency in a p24 ELISA assay with significantly reduced efflux ratios (ratios <1.5). These inhibitors also display excellent rat pharmacokinetic profiles with high bioavailabilities and low clearance.
Collapse
|
25
|
De Clercq E. The Acyclic Nucleoside Phosphonates (ANPs): Antonín Holý's Legacy. Med Res Rev 2013; 33:1278-303. [DOI: 10.1002/med.21283] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research; KU Leuven, B-3000 Leuven Belgium
| |
Collapse
|
26
|
Viral enzymes containing magnesium: Metal binding as a successful strategy in drug design. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Abstract
Explorations of the therapeutic potential of heparin mimetics, anionic compounds that are analogues of glycosaminoglycans (GAGs), have gone hand-in-hand with the emergence of understanding as to the role of GAGs in many essential biological processes. A myriad of structurally different heparin mimetics have been prepared and examined in many diverse applications. They range in complexity from heterogeneous polysaccharides that have been chemically sulphated to well-defined compounds, designed in part to mimic the natural ligand, but with binding specificity and potency increased by conjugation to non-carbohydrate pharmacophores. The maturity of the field is illustrated by the seven heparin mimetics that have achieved marketing approval and there are several more in late-stage clinical development. An overview of the structural determinants of heparin mimetics is presented together with an indication of their activities. The challenges in developing heparin mimetics as drugs, specificity and potential toxicity issues, are highlighted. Finally, the development path of three structurally very different mimetics, PI-88(®), GMI-1070 and RGTAs, each of which is in clinical trials, is described.
Collapse
|
28
|
De Clercq E. Ten paths to the discovery of antivirally active nucleoside and nucleotide analogues. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:339-52. [PMID: 22444195 DOI: 10.1080/15257770.2012.657383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nucleoside and nucleotide analogues have proven to be an effective approach toward the development of antiviral compounds. This approach has so far yielded a number of clinically useful antiviral drugs, such as BVDU (brivudin), (val)aciclovir, cidofovir, adefovir dipivoxil, and tenofovir disoproxil fumarate, and current perspectives justify the further development of other nucleoside analogues, such as FV-100, and that of the DAPy-based nucleotide analogues, the 5-aza analogue of cidofovir, and prodrug derivatives thereof.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Abstract
Influenza neuraminidase is the target of two licensed antivirals that have been very successful, with several more in development. However, neuraminidase has been largely ignored as a vaccine target despite evidence that inclusion of neuraminidase in the subunit vaccine gives increased protection. This article describes current knowledge on the structure, enzyme activity, and antigenic significance of neuraminidase.
Collapse
Affiliation(s)
- Gillian M Air
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
30
|
El Amri C, Martin AR, Vasseur JJ, Smietana M. Borononucleotides as substrates/binders for human NMP kinases: enzymatic and spectroscopic evaluation. Chembiochem 2012; 13:1605-12. [PMID: 22733592 DOI: 10.1002/cbic.201200199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 11/06/2022]
Abstract
Borononucleotides are a family of natural nucleotide monophosphate analogues with a 5'-boronic acid function. As B-O-P linkages are known to be unstable in solution, we evaluated the ability of borononucleotides to be recognized by nucleoside monophosphate kinases and eventually foil the phosphorylation process. In this context, and with the idea of probing the influence of their size, shape, and flexibility, a library of borononucleotides were synthetized starting from the borononucleotide analogue of thymidine, which was shown to behave as a slow substrate of human TMP kinase. This study thus constitutes a good starting point for the development of new monophosphate mimics as potential substrates or ligands for NMP kinases.
Collapse
Affiliation(s)
- Chahrazade El Amri
- Groupe d'Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
31
|
Mutations conferring resistance to viral DNA polymerase inhibitors in camelpox virus give different drug-susceptibility profiles in vaccinia virus. J Virol 2012; 86:7310-25. [PMID: 22532673 DOI: 10.1128/jvi.00355-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cidofovir or (S)-HPMPC is one of the three antiviral drugs that might be used for the treatment of orthopoxvirus infections. (S)-HPMPC and its 2,6-diaminopurine counterpart, (S)-HPMPDAP, have been described to select, in vitro, for drug resistance mutations in the viral DNA polymerase (E9L) gene of vaccinia virus (VACV). Here, to extend our knowledge of drug resistance development among orthopoxviruses, we selected, in vitro, camelpox viruses (CMLV) resistant to (S)-HPMPDAP and identified a single amino acid change, T831I, and a double mutation, A314V+A684V, within E9L. The production of recombinant CMLV and VACV carrying these amino acid substitutions (T831I, A314V, or A314V+A684V) demonstrated clearly their involvement in conferring reduced sensitivity to viral DNA polymerase inhibitors, including (S)-HPMPDAP. Both CMLV and VACV harboring the A314V change showed comparable drug-susceptibility profiles to various antivirals and similar impairments in viral growth. In contrast, the single change T831I and the double change A314V+A684V in VACV were responsible for increased levels of drug resistance and for cross-resistance to viral DNA polymerase antivirals that were not observed with their CMLV counterparts. Each amino acid change accounted for an attenuated phenotype of VACV in vivo. Modeling of E9L suggested that the T→I change at position 831 might abolish hydrogen bonds between E9L and the DNA backbone and have a direct impact on the incorporation of the acyclic nucleoside phosphonates. Our findings demonstrate that drug-resistance development in two related orthopoxvirus species may impact drug-susceptibility profiles and viral fitness differently.
Collapse
|
32
|
Stanley M, Cattle N, McCauley J, Martin SR, Rashid A, Field RA, Carbain B, Streicher H. ‘TamiGold’: phospha-oseltamivir-stabilised gold nanoparticles as the basis for influenza therapeutics and diagnostics targeting the neuraminidase (instead of the hemagglutinin). MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20034a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Yuk HJ, Curtis-Long MJ, Ryu HW, Jang KC, Seo WD, Kim JY, Kang KY, Park KH. Pterocarpan profiles for soybean leaves at different growth stages and investigation of their glycosidase inhibitions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12683-90. [PMID: 21988571 DOI: 10.1021/jf203326c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Soybean leaves are eaten as seasonal edible greens in Korea. Analysis of the ethyl acetate extract of these leaves showed that it exhibited potent and selective neuraminidase inhibition, which began at the R3 stage and peaked at R7. Ten pterocarpans, including the new 6a-hydroxypterocarpan 10, were isolated from soybean leaves and their inhibition activities tested against a range of glycosidases. The relationship between structure and enzyme inhibition was investigated: 6a-hydroxypterocarpans exhibited much higher inhibition against neuraminidase (IC(50) = 2.4-89.4 μM) than α-glucosidase (IC(50) = 90.4- >100 μM). Glyceollin VII (7) displayed 40-fold greater activity (IC(50) = 2.4 μM) against neuraminidase than α-glucosidase (IC(50) = 90.4 μM). On the other hand, coumestanes (1-3) were good α-glucosidase inhibitors (IC(50) = 6.0-42.6 μM). In kinetic analysis, the most potent neuraminidase inhibitors (5-10) were noncompetitive. HPLC analysis indicated that most pterocarpan synthesis began from the R3 stage, and a rapid change of pterocarpan concentrations was observed between the R4 and R7 stages.
Collapse
Affiliation(s)
- Heung Joo Yuk
- Division of Applied Life Science (BK21 Program), IALS, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Demmer CS, Krogsgaard-Larsen N, Bunch L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem Rev 2011; 111:7981-8006. [PMID: 22010799 DOI: 10.1021/cr2002646] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charles S Demmer
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
35
|
De Clercq E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates. The magic of the phosphonate bond. Biochem Pharmacol 2011; 82:99-109. [DOI: 10.1016/j.bcp.2011.03.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/29/2022]
|
36
|
Abstract
While cidofovir, adefovir and tenofovir are the three acyclic nucleoside phosphonates (ANPs) that have been licensed for clinical use (the latter as a single-, double- and triple-drug combination), there are many more ANPs that await their application for medical or veterinary use: (S)-HPMPA, (S)-HPMPDAP, cPrPMEDAP, (R)-HPMPO-DAPy, PMEO-DAPy, 5-X-PMEO-DAPy, (R)-PMPO-DAPy, (S)-HPMP-5-azaC, and cyclic (S)-HPMP-5-azaC, and alkoxyalkyl prodrugs thereof.
Collapse
|
37
|
Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X. HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev 2011; 33 Suppl 1:E1-72. [PMID: 21523792 DOI: 10.1002/med.20241] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) nowadays represent very potent and most promising anti-AIDS agents that specifically target the HIV-1 reverse transcriptase (RT). However, the effectiveness of NNRTI drugs can be hampered by rapid emergence of drug-resistant viruses and severe side effects upon long-term use. Therefore, there is an urgent need to develop novel, highly potent NNRTIs with broad spectrum antiviral activity and improved pharmacokinetic properties, and more efficient strategies that facilitate and shorten the drug discovery process would be extremely beneficial. Fortunately, the structural diversity of NNRTIs provided a wide space for novel lead discovery, and the pharmacophore similarity of NNRTIs gave valuable hints for lead discovery and optimization. More importantly, with the continued efforts in the development of computational tools and increased crystallographic information on RT/NNRTI complexes, structure-based approaches using a combination of traditional medicinal chemistry, structural biology, and computational chemistry are being used increasingly in the design of NNRTIs. First, this review covers two decades of research and development for various NNRTI families based on their chemical scaffolds, and then describes the structural similarity of NNRTIs. We have attempted to assemble a comprehensive overview of the general approaches in NNRTI lead discovery and optimization reported in the literature during the last decade. The successful applications of medicinal chemistry strategies, crystallography, and computational tools for designing novel NNRTIs are highlighted. Future directions for research are also outlined.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Hung HC, Chen TC, Fang MY, Yen KJ, Shih SR, Hsu JTA, Tseng CP. Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid. J Antimicrob Chemother 2010; 65:676-83. [PMID: 20089540 PMCID: PMC7110181 DOI: 10.1093/jac/dkp502] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Enterovirus 71 (EV71) causes serious diseases in humans. The aim of this study was to examine the effects of aurintricarboxylic acid (ATA) on EV71 replication and to explore the underlying mechanism. Methods To measure the activity of ATA in inhibiting the cytopathic effect (CPE) of EV71, a cell-based neutralization (inhibition of virus-induced CPE) assay was performed. The effect of ATA was further confirmed using plaque reduction and viral yield reduction assays. A time of addition assay was performed to identify the mechanisms of ATA's anti-EV71 activity. We examined the effects of ATA on the following key steps involved in virus replication: (i) translation of the internal ribosomal entry site (IRES)-mediated viral polyprotein; (ii) the proteolytic activity of viral proteases 2A and/or 3C; and (iii) the viral 3D RNA-dependent RNA polymerase (RdRp) activity. Results In this study, ATA was found to be a potent inhibitor of the replication of EV71. In the antiviral neutralization assay, ATA exhibited inhibitory activity against EV71 (TW/4643/98) and EV71 (TW/2231/98). Plaque assay further demonstrated that ATA inhibited EV71 replication with an EC50 (effective concentration at which 50% of plaques were removed) of 2.9 µM. Studies on the mechanism of action revealed that ATA targets the early stage of the viral life cycle after viral entry. ATA was able to inhibit the RdRp activity of EV71, while neither the IRES-mediated translation of viral polyprotein nor the viral 3C protease activity was affected. Conclusions Overall, the findings in this study suggest that ATA is able to effectively inhibit EV71 replication through interfering with the viral 3D polymerase.
Collapse
Affiliation(s)
- Hui-Chen Hung
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | | | | | | | | | | | | |
Collapse
|