1
|
Kim H, Yoon HG, Yoo JY. Plumbagin ameliorates renal fibrosis by suppressing epithelial-mesenchymal transition. Biochem Biophys Res Commun 2025; 750:151325. [PMID: 39884006 DOI: 10.1016/j.bbrc.2025.151325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney diseases (CKDs), driven by excessive extracellular matrix (ECM) accumulation. Despite its prevalence, therapeutic candidates specifically targeting fibrosis are limited, and the role of renal tubular epithelial cells in fibrosis pathogenesis remains unclear. In this study, we evaluated the anti-fibrotic effects of Plumbagin, a plant-derived natural compound, using a folic acid-induced renal fibrosis model that simulates proximal tubular injury-driven fibrosis. Plumbagin treatment significantly attenuated renal fibrosis in a folic acid-induced model. Furthermore, using the human proximal tubular epithelial cell line HK-2, we assessed EMT, a key fibrosis-promoting biological process, and the expression of fibrosis-related factors. Plumbagin treatment reduced TGF-β-induced EMT and fibrosis-related factor expression in HK-2 cells. In summary, Plumbagin suppresses EMT in renal tubular epithelial cells under fibrotic conditions and alleviates renal fibrosis. These findings highlight the potential of Plumbagin as a therapeutic drug for renal fibrosis and propose a shared therapeutic strategy for CKD patients.
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju, 26493, South Korea.
| |
Collapse
|
2
|
Lata R, Gond SK. Antibacterial and antioxidant potentials, detection of host origin compounds, and metabolic profiling of endophytic Bacillus spp. isolated from Rauvolfia serpentina (L.) Benth. ex Kurz. Sci Rep 2025; 15:2094. [PMID: 39814849 PMCID: PMC11736096 DOI: 10.1038/s41598-024-84893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts. Nine bacterial isolates were obtained from R. serpentina leaves. These isolates exhibited positive results in various biochemical tests including indole production, methyl red, Voges-Proskauer, citrate utilization, catalase and oxidase production, nitrate reduction, oxidative fermentation, and citrate reduction tests. Endophytic isolates RSLB3 and RSLB18 exhibited most potential antibacterial activity against tested human pathogenic bacteria and were identified as Bacillus sp. The extract of RSLB3 and RSLB18 also showed significant antioxidant activity compared to leaf extract. The total phenol content was similar in both these isolates while flavonoids content and DPPH scavenging activity was higher in isolate RSLB3. RPHPLC analysis confirmed the presence of reserpine in bacterial metabolites when compared to a standard reference. UHPLC-HRMS profiling unveiled a diverse range of host-derived compounds and reaction intermediates with known and unknown bioactive properties in leaf extract, RSLB3, and RSLB18. To our knowledge, this is the first study to achieve a comprehensive profiling.
Collapse
Affiliation(s)
- Rusi Lata
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Ibacache JA, Espinoza M, Basualto-Díaz P, Pinto V, Modak B, Zapata P, Valenzuela B. Synthesis of 6-bromo-7-arylaminoisoquinoline-5,8-quinones and its effects on Piscirickettsia salmonis infection in vitro. JOURNAL OF FISH DISEASES 2024; 47:e14014. [PMID: 39244704 DOI: 10.1111/jfd.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Among the most important aquaculture resources for our country, salmon and trout stand out. Their production has increased significantly in recent decades, making them two of the most valuable resources in economic terms. However, high aquaculture production has allowed many pathogens to proliferate, causing infectious diseases and significant production losses. Piscirickettsia salmonis is a gram-negative, facultative intracellular bacterium that is responsible for causing severe disease in a variety of salmonid fish species. Despite the significant impact of P. salmonis on aquaculture, effective treatments for this disease remain limited. Current prevention and control strategies often include antibiotics and vaccines. However, these treatments have shown varying degrees of efficacy. A promising approach involves synthesizing bioactive analog compounds with antibacterial properties. Quinones, secondary metabolites that are abundant in nature, have become a focal point of interest due to their diverse physiological activities, including antibiotic, insecticidal, antifungal, and anticancer properties. In this study, it is shown the synthesis of series 6-bromo-7-arylaminoisoquinoline-5,8-quinones, the characterization of these compounds using classical spectroscopic methods such as one-dimensional nuclear magnetic resonance (NMR), FT-IR (infrared), mass spectrometry, and the biological activity against Piscirickettsia salmonis. The brominated derivative compounds showed no cytotoxicity at any concentration evaluated. Furthermore, the infectivity of P. salmonis after treatment with the analog compounds indicated that derivatives methyl 6-bromo-7-((4-methoxyphenyl)amino)-1,3-dimethy-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylate (4b) and methyl 7-((4'-amino-[1,1'-biphenyl]-4-yl)amino)-6-bromo-1,3-dimethy-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylate (4g) reduced the bacterial load at 25 μg/mL concentration.
Collapse
Affiliation(s)
- Juana A Ibacache
- Organic Synthesis Laboratory, Environmental Sciences Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Mario Espinoza
- Organic Synthesis Laboratory, Environmental Sciences Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Paz Basualto-Díaz
- Biology Department, Aquatic Biotechnology Center, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Victoria Pinto
- Biology Department, Aquatic Biotechnology Center, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Brenda Modak
- Biology Department, Aquatic Biotechnology Center, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Paula Zapata
- Polymer Group, Environmental Sciences Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Beatriz Valenzuela
- Escuela de Tecnología Médica, Universidad Santo Tomás, Viña del Mar, Chile
| |
Collapse
|
4
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
5
|
Kamsu GT, Ndebia EJ. Usefulness of Natural Phenolic Compounds in the Fight against Esophageal Cancer: A Systematic Review. FUTURE PHARMACOLOGY 2024; 4:626-650. [DOI: 10.3390/futurepharmacol4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected to double by 2030 if nothing is done. Due to their high representativeness in plants, phenolic compounds are a potential alternative for halting the spread of this disease, which bereaves many thousands of families every year. This study aims to identify phenolic compounds with activity against esophageal cancer, assess their toxicological profiles, and explore future perspectives. To achieve this, the literature search was meticulously carried out in the Google Scholar, Scopus, Web of Sciences, and Pub-Med/Medline databases, in accordance with the PRISMA 2020 guidelines. The results show that proanthocyanidin and curcumin represent promising therapeutic options, given their significant in vitro and in vivo activity, and their safety in human subjects in clinical trials. Moscatilin, Genistein, and pristimerin have anticancer activities (≤10 µM) very close to those of doxorubicin and 5-FU, although their safety has not yet been fully established. The compounds identified in vivo exhibit highly significant activities compared with the results obtained in vitro, and are sometimes more effective than the molecules conventionally used to treat EC. Generally, with the exceptions of plumbagin, lapachol, and β-lapachone, all other molecules are relatively non-toxic to normal human cells and represent a therapeutic avenue to be explored by pharmaceutical companies in the fight against esophageal cancer. However, more detailed toxicological studies of certain molecules remain a priority.
Collapse
Affiliation(s)
- Gabriel Tchuente Kamsu
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| | - Eugene Jamot Ndebia
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| |
Collapse
|
6
|
Nair AS, Sekar M, Gan SH, Kumarasamy V, Subramaniyan V, Wu YS, Mat Rani NNI, Ravi S, Wong LS. Lawsone Unleashed: A Comprehensive Review on Chemistry, Biosynthesis, and Therapeutic Potentials. Drug Des Devel Ther 2024; 18:3295-3313. [PMID: 39081702 PMCID: PMC11288359 DOI: 10.2147/dddt.s463545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/25/2024] [Indexed: 08/02/2024] Open
Abstract
Lawsone, a naturally occurring organic compound also called hennotannic acid, obtained mainly from Lawsonia inermis (Henna). It is a potential drug-like molecule with unique chemical and biological characteristics. Traditionally, henna is used in hair and skin coloring and is also a medicinal herb for various diseases. It is also widely used as a starting material for the synthesis of various drug molecules. In this review, we investigate on the chemistry, biosynthesis, physical and biological properties of lawsone. The results showed that lawsone has potential antioxidant, anti-inflammatory, antimicrobial and antitumor properties. It also induces cell cycle inhibition and programmed cell death in cancer, making it a potential chemotherapeutic agent. Additionally, inhibition of pro-inflammatory cytokine production makes it an essential treatment for inflammatory diseases. Exploration of its biosynthetic pathway can pave the way for its development into targets for new drug development. In future, well-thought-out clinical studies should be made to verify its safety and efficacy.
Collapse
Affiliation(s)
- Aathira Sujathan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Yuan Seng Wu
- Sunway Microbiome Centre & Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| |
Collapse
|
7
|
Caña-Bozada VH, García-Gasca A, Martínez-Brown JM, Morales-Serna FN. Evaluation of bromocriptine and plumbagin against the monogenean Rhabdosynochus viridisi: Computational drug repositioning and in vitro approaches. Exp Parasitol 2024; 261:108748. [PMID: 38593863 DOI: 10.1016/j.exppara.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Monogeneans are parasitic platyhelminths that can harm the health of farmed fish. Few treatments are available against monogeneans, and the incentive to develop new antiparasitic agents is similar or even lower than the incentive for neglected parasitic diseases in humans. Considering that searching for and developing new antimonogenean compounds may require enormous investments of time, money, and animal sacrifice, the use of a computer-guided drug repositioning approach is a reasonable alternative. Under this context, this study aimed to evaluate the effectiveness of plumbagin and bromocriptine against adults and eggs of the monogenean Rhabdosynochus viridisi (Diplectanidae). Plumbagin is a phytochemical compound that has recently emerged as a potent antimonogenean; however, further investigation is required to determine its effects on different monogenean species. Bromocriptine was selected through a computational approach that included molecular docking analyses of 77 receptors of monogeneans (putative drug targets) and 77 ligands (putative inhibitors). In vitro experiments showed that bromocriptine does not exhibit mortality at concentrations of 0.1, 1, and 10 mg/L whereas plumbagin at 2 and 10 mg/L caused 100% monogenean mortality after 3 h and 30 min, respectively. The most effective concentration of plumbagin (10 mg/L) did not completely inhibit egg hatching. These findings underscore plumbagin as a highly effective agent against adult monogeneans and highlight the need for research to evaluate its effect(s) on fish. Although computational drug repositioning is useful for selecting candidates for experimental testing, it does not guarantee success due to the complexity of biological interactions, as observed here with bromocriptine. Therefore, it is crucial to examine the various compounds proposed by this method.
Collapse
Affiliation(s)
| | | | - Juan M Martínez-Brown
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán, Sinaloa, 82112, Mexico
| | - F Neptalí Morales-Serna
- Instituto de Ciencias Del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, 82040, Sinaloa, Mexico
| |
Collapse
|
8
|
Feineis D, Bringmann G. Structural variety and pharmacological potential of naphthylisoquinoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2024; 91:1-410. [PMID: 38811064 DOI: 10.1016/bs.alkal.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Naphthylisoquinoline alkaloids are a fascinating class of natural biaryl compounds. They show characteristic mono- and dimeric scaffolds, with chiral axes and stereogenic centers. Since the appearance of the last comprehensive overview on these secondary plant metabolites in this series in 1995, the number of discovered representatives has tremendously increased to more than 280 examples known today. Many novel-type compounds have meanwhile been discovered, among them naphthylisoquinoline-related follow-up products like e.g., the first seco-type (i.e., ring-opened) and ring-contracted analogues. As highlighted in this review, the knowledge on the broad structural chemodiversity of naphthylisoquinoline alkaloids has been decisively driven forward by extensive phytochemical studies on the metabolite pattern of Ancistrocladus abbreviatus from Coastal West Africa, which is a particularly "creative" plant. These investigations furnished a considerable number of more than 80-mostly new-natural products from this single species, with promising antiplasmodial activities and with pronounced cytotoxic effects against human leukemia, pancreatic, cervical, and breast cancer cells. Another unique feature of naphthylisoquinoline alkaloids is their unprecedented biosynthetic origin from polyketidic precursors and not, as usual for isoquinoline alkaloids, from aromatic amino acids-a striking example of biosynthetic convergence in nature. Furthermore, remarkable botanical results are presented on the natural producers of naphthylisoquinoline alkaloids, the paleotropical Dioncophyllaceae and Ancistrocladaceae lianas, including first investigations on the chemoecological role of these plant metabolites and their storage and accumulation in particular plant organs.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Gim J, Rubio PYM, Mohandoss S, Lee YR. Lewis Acid-Catalyzed Benzannulation of Vinyloxiranes with 3-Formylchromones or 1,4-Quinones for Diversely Functionalized 2-Hydroxybenzophenones, 1,4-Naphthoquinones, and Anthraquinones. J Org Chem 2024; 89:2538-2549. [PMID: 38302117 DOI: 10.1021/acs.joc.3c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A facile and convenient protocol for the regioselective construction of functionalized 2-hydroxybenzophenones is described. This protocol involves the Sc(OTf)3/BF3·OEt2-catalyzed benzannulation of 2-vinyloxirans with 3-formylchromone, which involves cascade in situ diene formation, [4 + 2] cycloaddition, elimination, and ring-opening strategies. Moreover, it provides an expedited synthetic pathway to access biologically intriguing 1,4-naphthoquinones and anthraquinones including vitamin K3 and tectoquinone. The synthesized compounds also hold potential for use as UV filters and show promise as chemosensors for Cu2+ and Mg2+ ions.
Collapse
Affiliation(s)
- Jihwan Gim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
10
|
Xiong J, Wang L, Feng Z, Hang S, Yu J, Feng Y, Lu H, Jiang Y. Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to Candida albicans. Antioxidants (Basel) 2024; 13:223. [PMID: 38397821 PMCID: PMC10886025 DOI: 10.3390/antiox13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against C. albicans presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and H2O2) by suppressing the response of C. albicans to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the Galleria mellonella infection model. These findings provide evidence that targeting the oxidative stress response of C. albicans and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
11
|
Dalai PG, Swain S, Mohapatra S, Panda N. Metal-Free C-H Sulfamidation of 1,4-Naphthoquinone in Water. J Org Chem 2023; 88:13760-13770. [PMID: 37676688 DOI: 10.1021/acs.joc.3c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Direct sulfamidation of 1,4-naphthoquinones using N-methoxy sulfonamides under metal-free conditions in water was developed. Base-mediated nucleophilic addition of N-methoxy sulfonamides, followed by N-O bond cleavage allowed the formation of enesulfonamides. Further, the synthesis of pyrrolonaphthoquinones proved the practicability of the current approach.
Collapse
Affiliation(s)
- Pallaba Ganjan Dalai
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swayamprava Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Soumya Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
12
|
Catalani E, Del Quondam S, Brunetti K, Cherubini A, Bongiorni S, Taddei AR, Zecchini S, Giovarelli M, De Palma C, Perrotta C, Clementi E, Prantera G, Cervia D. Neuroprotective role of plumbagin on eye damage induced by high-sucrose diet in adult fruit fly Drosophila melanogaster. Biomed Pharmacother 2023; 166:115298. [PMID: 37597318 DOI: 10.1016/j.biopha.2023.115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023] Open
Abstract
The natural compound plumbagin has a wide range of pharmacological and potential therapeutic activities, although its role in neuroretina degeneration is unknown. Here we evaluated the effects of plumbagin on retina homeostasis of the fruit fly Drosophila melanogaster fed with high glucose diet, a model of hyperglycemia-induced eye impairment to study the pathophysiology of diabetic retinopathy at the early stages. To this aim, the visual system of flies orally administered with plumbagin has been analyzed at structural, functional, and molecular/cellular level as for instance neuronal apoptosis/autophagy dysregulation and oxidative stress-related signals. Our results demonstrated that plumbagin ameliorates the visual performance of hyperglycemic flies. Drosophila eye-structure, clearly altered by hyperglycemia, i.e. defects of the pattern of ommatidia, irregular rhabdomeres, vacuoles, damaged mitochondria, and abnormal phototransduction units were rescued, at least in part, by plumbagin. In addition, it reactivated autophagy, decreased the presence of cell death/apoptotic features, and exerted antioxidant effects in the retina. In terms of mechanisms favoring death/survival ratio, Nrf2 signaling activation may be one of the strategies by which plumbagin reduced redox unbalance mainly increasing the levels of glutathione-S-transferase. Likewise, plumbagin may act additively and/or synergistically inhibiting the mitochondrial-endoplasmic reticulum stress and unfolded protein response pathways, which prevented neuronal impairment and eye damage induced by reactive oxygen species. These results provide an avenue for further studies, which may be helpful to develop novel therapeutic candidates and drug targets against eye neurotoxicity by high glucose, a key aspect in retinal complications of diabetes.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Agnese Cherubini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; Scientific Institute IRCCS "Eugenio Medea", via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
13
|
Sameni S, Viswanathan R, Ng GYQ, Martinez-Lopez W, Hande MP. Telomerase Inhibition by MST-312 Sensitizes Breast Cancer Cells to the Anti-cancer Properties of Plumbagin. Genome Integr 2023; 14:e20230002. [PMID: 38765717 PMCID: PMC11102071 DOI: 10.14293/genint.14.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Breast cancer is the most common cause of malignancy and the second most common cause of death due to cancer in women. This heterogeneous disease is currently broadly classified as estrogen receptor (ER), progesterone receptor (PR) positive luminal tumors, human epidermal growth factor receptor 2 (HER2) amplified tumors and triple-negative breast cancers (TNBC). Phytochemicals are proven to be promising anti-cancer chemotherapeutics agents with minimal cytotoxic effects on normal cells. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) is a phytochemical derived from the roots of Plumbago zeylanica and it is known to possess anti-cancer properties similar to other compounds of naphthoquinones. In about 90% of cancer cells, the telomerase enzyme activity is revived to add telomeric repeats to evade apoptosis. In this study, a combinatorial approach of combining the anti-cancer compound plumbagin to induce genotoxicity and a potent telomerase inhibitor, MST-312 (synthetic derivative of tea catechins), was used to determine the combinational treatment-induced lethality in breast cancer cells such as MDA-MB-231 (TNBC) and MCF-7 (lumina) cells. MDA-MB-231 cells were responsive to combination treatment in both short-term (48 h) and long-term treatment (14 days) in a synergistic manner, whereas in MCF-7, the combination treatment was more effective in the long-term regimen. Furthermore, the cytotoxic effects of the plumbagin and MST-312 combination treatment were not recoverable after the short-term treatment. In conclusion, a combination treatment of MST-312 and plumbagin is proven to be more effective than a single plumbagin compound treatment in inducing DNA damage and telomere dysfunction leading to greater genome instability, cell cycle arrest and eventually cell death in cancer cells.
Collapse
Affiliation(s)
- Safoura Sameni
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ramya Viswanathan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wilner Martinez-Lopez
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Associate Unit on Genomic Stability, Faculty of Medicine, University of the Republic (UdelaR), Montevideo, Uruguay
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
14
|
Silva LMN, França WWM, Santos VHB, Souza RAF, Silva AM, Diniz EGM, Aguiar TWA, Rocha JVR, Souza MAA, Nascimento WRC, Lima Neto RG, Cruz Filho IJ, Ximenes ECPA, Araújo HDA, Aires AL, Albuquerque MCPA. Plumbagin: A Promising In Vivo Antiparasitic Candidate against Schistosoma mansoni and In Silico Pharmacokinetic Properties (ADMET). Biomedicines 2023; 11:2340. [PMID: 37760782 PMCID: PMC10525874 DOI: 10.3390/biomedicines11092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Schistosomiasis, a potentially fatal chronic disease whose etiological agents are blood trematode worms of the genus Schistosoma spp., is one of the most prevalent and debilitating neglected diseases. The treatment of schistosomiasis depends exclusively on praziquantel (PZQ), a drug that has been used since the 1970s and that already has reports of reduced therapeutic efficacy, related with the development of Schistosoma-resistant or -tolerant strains. Therefore, the search for new therapeutic alternatives is an urgent need. Plumbagin (PLUM), a naphthoquinone isolated from the roots of plants of the genus Plumbago, has aroused interest in research due to its antiparasitic properties against protozoa and helminths. Here, we evaluated the in vivo schistosomicidal potential of PLUM against Schistosoma mansoni and the in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The study was carried out with five groups of infected mice and divided as follows: an untreated control group, a control group treated with PZQ, and three groups treated orally with 8, 16, or 32 mg/kg of PLUM. After treatment, the Kato-Katz technique was performed to evaluate a quantity of eggs in the feces (EPG). The animals were euthanized for worm recovery, intestine samples were collected to evaluate the oviposition pattern, the load of eggs was determined on the hepatic and intestinal tissues and for the histopathological and histomorphometric evaluation of tissue and hepatic granulomas. PLUM reduced EPG by 65.27, 70.52, and 82.49%, reduced the total worm load by 46.7, 55.25, and 72.4%, and the female worm load by 44.01, 52.76, and 71.16%, for doses of 8, 16, and 32 mg/kg, respectively. PLUM also significantly reduced the number of immature eggs and increased the number of dead eggs in the oogram. A reduction of 36.11, 46.46, and 64.14% in eggs in the hepatic tissue, and 57.22, 65.18, and 80.5% in the intestinal tissue were also observed at doses of 8, 16, and 32 mg/kg, respectively. At all doses, PLUM demonstrated an effect on the histopathological and histomorphometric parameters of the hepatic granuloma, with a reduction of 41.11, 48.47, and 70.55% in the numerical density of the granulomas and 49.56, 57.63, and 71.21% in the volume, respectively. PLUM presented itself as a promising in vivo antiparasitic candidate against S. mansoni, acting not only on parasitological parameters but also on hepatic granuloma. Furthermore, in silico, PLUM showed good predictive pharmacokinetic profiles by ADMET.
Collapse
Affiliation(s)
- Lucas M. N. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
| | - Wilza W. M. França
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Victor H. B. Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Renan A. F. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Adriana M. Silva
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Emily G. M. Diniz
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Thierry W. A. Aguiar
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - João V. R. Rocha
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Mary A. A. Souza
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
| | - Wheverton R. C. Nascimento
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Reginaldo G. Lima Neto
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Iranildo J. Cruz Filho
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Eulália C. P. A. Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Hallysson D. A. Araújo
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - André L. Aires
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Mônica C. P. A. Albuquerque
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
15
|
Ribeiro A, Serrano R, da Silva IBM, Gomes ET, Pinto JF, Silva O. The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora. PLANTS (BASEL, SWITZERLAND) 2023; 12:2833. [PMID: 37570987 PMCID: PMC10421099 DOI: 10.3390/plants12152833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Species of the Diospyros L. genus (Ebenaceae family) have been largely used in traditional medicine for the treatment of several diseases, especially infectious ones. To date, active major compounds such as naphthoquinones, triterpenoids, and tannins have been isolated and pharmacologically validated from Diospyros species. The present study summarizes the information available in the literature on the species described in the Flora of Mozambique. To do so, scientific databases (e.g., PubMed, Scopus, Web of Science, and Google Scholar) were searched using various keywords and Boolean connectors to gather and summarize the information. Of the 31 native and naturalized species in the Flora of Mozambique, 17 are used in different regions of Africa and were described for their traditional uses. They were reported to treat more than 20 diseases, mostly infectious, in the gastrointestinal and oral cavity compartments. This work provides an overview of the therapeutical potential of Diospyros species and explores novel insights on the antimicrobial potential of extracts and/or isolated compounds of these Mozambican species.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (A.R.); (R.S.); (I.B.M.d.S.); (E.T.G.); (J.F.P.)
| |
Collapse
|
16
|
Petrocelli G, Marrazzo P, Bonsi L, Facchin F, Alviano F, Canaider S. Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties. Life (Basel) 2023; 13:1303. [PMID: 37374085 DOI: 10.3390/life13061303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.
Collapse
Affiliation(s)
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, BO, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| |
Collapse
|
17
|
Yao L, Yan D, Jiang B, Xue Q, Chen X, Huang Q, Qi L, Tang D, Chen X, Liu J. Plumbagin is a novel GPX4 protein degrader that induces apoptosis in hepatocellular carcinoma cells. Free Radic Biol Med 2023; 203:1-10. [PMID: 37011699 DOI: 10.1016/j.freeradbiomed.2023.03.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, remains a global health challenge requiring novel and effective therapeutic agents and approaches. Here, we found that a natural product plumbagin can inhibit the growth of HCC cells by inducing the downregulation of GPX4, but not other antioxidant enzymes such as CAT, SOD1, and TXN. Functionally, genetic silence of GPX4 enhances, whereas the overexpression of GPX4 inhibits plumbagin-induced apoptosis (rather than ferroptosis) in HCC cells. Furthermore, GPX4 protein specifically binds the deubiquitinase USP31, but not other deubiquitinases such as CYLD, USP1, USP14, USP20, USP30, USP38, UCHL1, UCHL3, and UCHL5. As an inhibitor of deubiquitinating enzymes, especially USP31, plumbagin induces ubiquitination of GPX4 and subsequent proteasomal degradation of GPX4 in HCC cells. Accordingly, plumbagin-mediated tumor suppression is also associated with the downregulation of GPX4 and the upregulation of apoptosis in a subcutaneous xenograft tumor model. Taken together, these findings demonstrate a novel anticancer mechanism of plumbagin by inducing GPX4 protein degradation.
Collapse
Affiliation(s)
- Leyi Yao
- Institute of Digestive Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ding Yan
- Institute of Digestive Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baoyi Jiang
- Institute of Digestive Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qian Xue
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qingtian Huang
- Institute of Digestive Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ling Qi
- Institute of Digestive Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Chen
- Institute of Digestive Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jinbao Liu
- Institute of Digestive Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
18
|
Bhattacharyya S, Ghosh H, Covarrubias-Zambrano O, Jain K, Swamy KV, Kasi A, Hamza A, Anant S, VanSaun M, Weir SJ, Bossmann SH, Padhye SB, Dandawate P. Anticancer Activity of Novel Difluorinated Curcumin Analog and Its Inclusion Complex with 2-Hydroxypropyl-β-Cyclodextrin against Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24076336. [PMID: 37047307 PMCID: PMC10093935 DOI: 10.3390/ijms24076336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the primary reason for cancer-related deaths in the US. Genetic mutations, drug resistance, the involvement of multiple signaling pathways, cancer stem cells (CSCs), and desmoplastic stroma, which hinders drug penetrance, contribute to poor chemotherapeutic efficacy. Hence, there is a need to identify novel drugs with improved delivery to improve treatment outcomes. Curcumin is one such compound that can inhibit multiple signaling pathways and CSCs. However, curcumin’s clinical applicability for treating PDAC is limited because of its poor solubility in water and metabolic instability. Hence, we developed a difluorinated curcumin (CDF) analog that accumulates selectively in the pancreas and inhibits PDAC growth in vitro and in vivo. In the present work, we developed its 2-hydroxy-propyl-β-cyclodextrin (HCD) inclusion complex to increase its water solubility and hydrolytic stability. The CDFHCD inclusion complex was characterized by spectroscopic, thermal, and microscopic techniques. The inclusion complex exhibited increased aqueous solubility, hydrolytic stability, and antiproliferative activity compared to parent CDF. Moreover, CDF and CDFHCD inhibited colony and spheroid formation, and induced cell cycle and apoptosis in PDAC cell lines. Hence, CDFHCD self-assembly is an efficient approach to increase water solubility and anticancer therapeutic efficacy, which now warrants advancement towards a clinical proof of concept in PDAC patients.
Collapse
Affiliation(s)
- Sangita Bhattacharyya
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Hindole Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | | | - Krishan Jain
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - K. Venkateswara Swamy
- MIT School of Bioengineering, Sciences & Research, MIT Art, Design and Technology University, Pune 412201, India
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
| | - Ameer Hamza
- Pathology and Laboratory Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Subhash B. Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Interdisciplinary Science & Technology Research Academy (ISTRA), Azam Campus, University of Pune, Pune 411001, India
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Correspondence: ; Tel.: +1-913-945-6336
| |
Collapse
|
19
|
Navarro-Tovar G, Vega-Rodríguez S, Leyva E, Loredo-Carrillo S, de Loera D, López-López LI. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:ph16040496. [PMID: 37111253 PMCID: PMC10144089 DOI: 10.3390/ph16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Natural product derivatives are essential in searching for compounds with important chemical, biological, and medical applications. Naphthoquinones are secondary metabolites found in plants and are used in traditional medicine to treat diverse human diseases. Considering this, the synthesis of naphthoquinone derivatives has been explored to contain compounds with potential biological activity. It has been reported that the chemical modification of naphthoquinones improves their pharmacological properties by introducing amines, amino acids, furan, pyran, pyrazole, triazole, indole, among other chemical groups. In this systematic review, we summarized the preparation of nitrogen naphthoquinones derivatives and discussed their biological effect associated with redox properties and other mechanisms. Preclinical evaluation of antibacterial and/or antitumoral naphthoquinones derivatives is included because cancer is a worldwide health problem, and there is a lack of effective drugs against multidrug-resistant bacteria. The information presented herein indicates that naphthoquinone derivatives could be considered for further studies to provide drugs efficient in treating cancer and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Gabriela Navarro-Tovar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City 03940, Mexico
| | - Sarai Vega-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Silvia Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Correspondence: (D.d.L.); (L.I.L.-L.)
| | - Lluvia Itzel López-López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78377, Mexico
- Correspondence: (D.d.L.); (L.I.L.-L.)
| |
Collapse
|
20
|
Plumbagin Enhances the Anticancer Effects of PF Chemotherapy via Downregulation of the PI3K/AKT/mTOR/p70S6K Pathway in Human Tongue Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:8306514. [PMID: 36814557 PMCID: PMC9940972 DOI: 10.1155/2023/8306514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Cisplatin plus 5-fluorouracil (PF) is used as the standard neoadjuvant chemotherapy (also called preoperative chemotherapy) in the treatment of tongue squamous cell carcinoma (TSCC). Although PF chemotherapy reduces the distant metastasis of TSCC, the five-year survival rate has not significantly improved. In recent years, components considered in traditional Chinese medicine have been researched as adjuvant drugs for radiotherapy and chemotherapy. Plumbagin (PB) is a quinone component isolated from Plumbago zeylanica L. Notably, PB demonstrates numerous anticancer properties. In order to examine the chemosensitization effect of PB on PF and its associated mechanisms, in vitro experiments using TSCC Cal27 and cisplatin (CDDP)-resistant Cal27/CDDP cells were carried out in the present study, and the results were subsequently verified using nude mice xenografts. Results of the present study demonstrated that PB enhanced the anticancer effects of PF on the proliferation, migration, and invasion of Cal27 and Cal27/CDDP cells. Cell cycle assays demonstrated that both Cal27 and Cal27/CDDP cells were arrested in the S phase following the combined treatment of PF and PB. Moreover, the PF and PB combination group induced higher levels of apoptosis in Cal27 and Cal27/CDDP cells compared with the group treated with PF alone. In addition, the results of the present study demonstrated that combined PB and PF inhibited the PI3K/AKT/mTOR/p70S6K pathway in TSCC cells. Moreover, the weight and volumes of tumors in nude mice were reduced following treatment with a combination of PF and PB. Results of the present study also demonstrated that the expression levels of Ki67 were markedly reduced in the combined treatment group compared with the group treated with PF alone. In summary, the results of the present study demonstrated that PB enhanced the PF sensitivity of TSCC through induction of S-phase arrest and apoptosis via the PI3K/AKT/mTOR/p70S6K pathway.
Collapse
|
21
|
Mukherjee S, Sawant AV, Prassanawar SS, Panda D. Copper-Plumbagin Complex Produces Potent Anticancer Effects by Depolymerizing Microtubules and Inducing Reactive Oxygen Species and DNA Damage. ACS OMEGA 2023; 8:3221-3235. [PMID: 36713695 PMCID: PMC9878539 DOI: 10.1021/acsomega.2c06691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Here, we have synthesized a copper complex of plumbagin (Cu-PLN) and investigated its antiproliferative activities in different cancer cells. The crystal structure of Cu-PLN showed that the complex was square planar with a binding stoichiometry of 1:2 (Cu/Plumbagin). Cu-PLN inhibited the proliferation of human cervical carcinoma (HeLa), human breast cancer (MCF-7), and murine melanoma (B16F10) cells with half-maximal inhibitory concentrations (IC50) of 0.85 ± 0.05, 2.3 ± 0.1, and 1.1 ± 0.1 μM, respectively. Plumbagin inhibited the proliferation of HeLa, MCF-7, and B16F10 cells with IC50 of 7 ± 0.1, 8.2 ± 0.2, and 6.2 ± 0.4 μM, respectively, showing that Cu-PLN is a stronger antiproliferative agent than plumbagin. Interestingly, Cu-PLN showed much stronger toxicity against breast carcinoma and skin melanoma cells than noncancerous breast epithelial and skin fibroblast cells, indicating its specific cytotoxicity toward cancer cells. A short exposure of Cu-PLN triggered microtubule disassembly in cultured cancer cells, and the complex also inhibited the polymerization of purified tubulin much more strongly than plumbagin. Furthermore, Cu-PLN inhibited the binding of colchicine to tubulin. In addition to microtubule depolymerization, the antiproliferative mechanism of Cu-PLN involved induction of reactive oxygen species, reduction of the mitochondrial membrane potential, and DNA damage. Moreover, the cytotoxic effects of Cu-PLN reduced significantly in cells pre-treated with N-acetyl cysteine, suggesting that reactive oxygen species generation is crucial in Cu-PLN's mode of action. Thus, the complexation of plumbagin with copper yields a promising antitumor agent having a stronger antiproliferative activity than cisplatin, a widely used anticancer drug.
Collapse
Affiliation(s)
- Sandipan Mukherjee
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Avishkar V. Sawant
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Shweta S. Prassanawar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
- National
Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| |
Collapse
|
22
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
23
|
Rani R, Sethi K, Kumar S, Varma RS, Kumar R. Natural naphthoquinones and their derivatives as potential drug molecules against trypanosome parasites. Chem Biol Drug Des 2022; 100:786-817. [PMID: 35852920 DOI: 10.1111/cbdd.14122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 01/25/2023]
Abstract
Over the past decades, a number of 1,4-naphthoquinones have been isolated from natural resources and several of naphthoquinone derivatives with diverse structural motif have been synthesized; they possess a multitude of biochemical properties and modulate numerous pharmacological roles that offer new targets for addressing the challenges pertaining to novel drug developments. Among natural naphthoquinones, lapachol, α-lapachone, β-lapachone, lawsone, juglone, and plumbagin have been evaluated for its potential as antitrypanosomal activities. The chemotherapeutic drugs available for combating human trypanosomiasis, that is, American trypanosomiasis and African trypanosomiasis caused by Trypanosoma cruzi and Trypanosoma brucei, respectively, and animal tripanosomosis caused by Trypanosoma evansi have a problem of drug resistance and several toxic effect. Therefore, search of alternative effective drug molecules, without toxic effects, have enthused the researchers for searching new drug entity with potential clinical efficacy. In the search for new antitrypanosomal compound, this review focuses on different natural quinones and their synthetic derivatives associated with antitrypanosomal studies. In this context, this review will be useful for the development of new antitrypanosomal drugs mainly based on different structural modification of natural and synthetic naphthoquinones.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjay Kumar
- ICAR-National Research Centre on Equines, Hisar, India
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| | | |
Collapse
|
24
|
Khalil RG, Ibrahim AM, Bakery HH. Juglone: “A novel immunomodulatory, antifibrotic, and schistosomicidal agent to ameliorate liver damage in murine schistosomiasis mansoni”. Int Immunopharmacol 2022; 113:109415. [DOI: 10.1016/j.intimp.2022.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
|
25
|
Miernicka K, Tokarz B, Makowski W, Mazur S, Banasiuk R, Tokarz KM. The Adjustment Strategy of Venus Flytrap Photosynthetic Apparatus to UV-A Radiation. Cells 2022; 11:cells11193030. [PMID: 36230991 PMCID: PMC9564066 DOI: 10.3390/cells11193030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the response of the photosynthetic apparatus of the Venus flytrap (Dionaea muscipula J. Ellis) to UV-A radiation stress as well as the role of selected secondary metabolites in this process. Plants were subjected to 24 h UV-A treatment. Subsequently, chl a fluorescence and gas exchange were measured in living plants. On the collected material, analyses of the photosynthetic pigments and photosynthetic apparatus proteins content, as well as the contents and activity of selected antioxidants, were performed. Measurements and analyses were carried out immediately after the stress treatment (UV plants) and another 24 h after the termination of UV-A exposure (recovery plants). UV plants showed no changes in the structure and function of their photosynthetic apparatus and increased contents and activities of some antioxidants, which led to efficient CO2 carboxylation, while, in recovery plants, a disruption of electron flow was observed, resulting in lower photosynthesis efficiency. Our results revealed that D. muscipula plants underwent two phases of adjustment to UV-A radiation. The first was a regulatory phase related to the exploitation of available mechanisms to prevent the over-reduction of PSII RC. In addition, UV plants increased the accumulation of plumbagin as a potential component of a protective mechanism against the disruption of redox homeostasis. The second was an acclimatization phase initiated after the running down of the regulatory process and decrease in photosynthesis efficiency.
Collapse
Affiliation(s)
- Karolina Miernicka
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Stanisław Mazur
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Rafał Banasiuk
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland
| | - Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| |
Collapse
|
26
|
Rahman MM, Islam MR, Akash S, Shohag S, Ahmed L, Supti FA, Rauf A, Aljohani AM, Al Abdulmonem W, Khalil AA, Sharma R, Thiruvengadam M. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem Biol Interact 2022; 368:110198. [PMID: 36179774 DOI: 10.1016/j.cbi.2022.110198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
One of the leading global causes of death is cancer; even though several treatment methods have improved survival rates, the incidence and fatality rates remain high. Naphthoquinones are a type of quinone that is found in nature and has vital biological roles. These chemicals have anticancer (antineoplastic), analgesic, anti-inflammatory, antimalarial, antifungal, antiviral, antitrypanosomal, antischistosomal, leishmanicidal, and anti-ulcerative effects. Direct addition of a substituent group to the 1,4-naphthoquinone ring can alter the naphthoquinone's oxidation/reduction and acid/base characteristics, and the activity can be altered. Because of their pharmacological properties, such as anticancer activity and probable therapeutic application, naphthoquinones have greatly interested the scientific community. Some chemicals having a quinone ring in malignant cells have been found to have antiproliferative effects. Naphthoquinones' deadly impact is connected with the inhibition of electron transporters, the uncoupling of oxidative phosphorylation, the creation of ROS, and the formation of protein adducts, notably with -SH enzyme groups. This review article aims to discuss naphthoquinones and their derivatives, which act against cancer and their future perspectives. This review covers several studies highlighting the potent anticancer properties of naphthoquinones. Further, various proposed mechanisms of anticancer actions of naphthoquinones have been summarized in this review.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - AbdullahS M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Pakistan, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, College of Life and Environmental Sciences, Seoul, 05029, South Korea.
| |
Collapse
|
27
|
Jampasri S, Reabroi S, Tungmunnithum D, Parichatikanond W, Pinthong D. Plumbagin Suppresses Breast Cancer Progression by Downregulating HIF-1α Expression via a PI3K/Akt/mTOR Independent Pathway under Hypoxic Condition. Molecules 2022; 27:molecules27175716. [PMID: 36080483 PMCID: PMC9457614 DOI: 10.3390/molecules27175716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional regulator that plays a crucial role in the hypoxic response of rapidly growing tumors. Overexpression of HIF-1α has been associated with breast cancer metastasis and poor clinical prognosis. Plumbagin, the main phytochemical from Plumbago indica, exerts anticancer effects via multiple mechanisms. However, its precise mechanisms on breast cancer cells under hypoxic conditions has never been investigated. This study aims to examine the anticancer effect of plumbagin on MCF-7 cell viability, transcriptional activity, and protein expression of HIF-1α under normoxia and hypoxia-mimicking conditions, as well as reveal the underlying signaling pathways. The results demonstrate that plumbagin decreased MCF-7 cell viability under normoxic conditions, and a greater extent of reduction was observed upon exposure to hypoxic conditions induced by cobalt chloride (CoCl2). Mechanistically, MCF-7 cells upregulated the expression of HIF-1α protein, mRNA, and the VEGF target gene under CoCl2-induced hypoxia, which were abolished by plumbagin treatment. In addition, inhibition of HIF-1α and its downstream targets did not affect the signaling transduction of the PI3K/Akt/mTOR pathway under hypoxic state. This study provides mechanistic insight into the anticancer activity of plumbagin in breast cancer cells under hypoxic conditions by abolishing HIF-1α at transcription and post-translational modifications.
Collapse
Affiliation(s)
- Supawan Jampasri
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somrudee Reabroi
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Center of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Darawan Pinthong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
28
|
López-Orenes A, Ferrer MA, Calderón AA. Microwave Radiation as an Inducer of Secondary Metabolite Production in Drosera rotundifolia In Vitro Plantlets. JOURNAL OF NATURAL PRODUCTS 2022; 85:2104-2109. [PMID: 35855561 DOI: 10.1021/acs.jnatprod.2c00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, low-intensity microwave irradiation (frequency of 2.45 GHz; 26.3 kW m-3 power density) for 0, 5, and 30 s was tested for the first time on Drosera rotundifolia in vitro plantlets to explore its effect on the production of highly valued phenolic compounds. Analysis of the extracts obtained from irradiated plantlets revealed time-dependent increases in the levels of photosynthetic pigments, particularly the carotenoids, whereas symptoms of growth decline were not observed. Similarly, the highest total antioxidant capacity and total phenolic and flavonoid contents were detected in 30-s-irradiated plantlets. High-performance liquid chromatography analysis revealed that the content of the bioactive phenolics 5-hydroxy-7-methylnaphthalene-1,4-dione (1), 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one (2), and 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one (3), which are considered to be responsible for the pharmacological properties of this species, was around twofold higher in 30-s-irradiated plantlets than in controls. Nevertheless, the accumulation of 5-hydroxy-2-methylnaphthalene-1,4-dione (4), which was present only in trace amounts in the plant roots, decreased by 30% upon microwave irradiation. The results indicate that microwave treatment acts as an effective inducer of the production of phenylpropanoid compounds, which opens up new opportunities for its use in biotechnological applications.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - María A Ferrer
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Antonio A Calderón
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| |
Collapse
|
29
|
Bakery HH, Allam GA, Abuelsaad ASA, Abdel‐Latif M, Elkenawy AE, Khalil RG. Anti‐inflammatory, antioxidant, anti‐fibrotic, and schistosomicidal properties of plumbagin in murine schistosomiasis. Parasite Immunol 2022; 44:e12945. [DOI: 10.1111/pim.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Heba H. Bakery
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| | - Gamal A. Allam
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| | | | - Mahmoud Abdel‐Latif
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| | - Ayman E. Elkenawy
- Department of Pathology College of Medicine, Taif University, P.O. Box 11099 Taif Saudi Arabia
- Department of Molecular Biology, GEBRI University of Sadat City Sadat City Egypt
| | - Rehab G. Khalil
- Immunology Divisions, Zoology Department Faculty of Science, Beni‐Suef University Beni‐Suef Egypt
| |
Collapse
|
30
|
Qian W, Wang W, Zhang J, Fu Y, Liu Q, Li X, Wang T, Zhang Q. Exploitation of the antifungal and antibiofilm activities of plumbagin against Cryptococcus neoformans. BIOFOULING 2022; 38:558-574. [PMID: 35818738 DOI: 10.1080/08927014.2022.2094260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Cryptococcus neoformans is an important opportunistic fungal pathogen that causes various infections. Here, the antifungal and antibiofilm activities of plumbagin against C. neoformans and the underlying mechanisms were evaluated. The minimum inhibitory concentration (MIC) of plumbagin against C. neoformans H99 was 8 μg ml-1. Plumbagin disrupted the cell membrane integrity and reduced the metabolic activities of C. neoformans H99. C. neoformans H99 biofilm cells were damaged by plumbagin at a concentration of 64 μg ml-1, whereas 48-h mature biofilms were dispersed at a plumbagin concentration of 128 μg ml-1. Whole-transcriptome analysis of plumbagin-treated C. neoformans H99 in the biofilm and planktonic states identified differentially expressed genes enriched in several important cellular processes (cell membrane, ribosome biogenesis, fatty acid synthesis, melanin and capsule production). Notably, plumbagin damaged biofilm cells by downregulating FAS1 and FAS2 expression. Thus, plumbagin can be exploited as an antifungal agent to combat C. neoformans-related infections.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Wenjing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Qiming Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Qian Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| |
Collapse
|
31
|
Valente PM, Valente VMM, Silva MC, dos Reis LB, Silva FD, Praça-Fontes MM. Phytotoxicity and cytogenotoxicity of Dionaea muscipula Ellis extracts and its major compound against Lactuca sativa and Allium cepa. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Shaikh S, Shaikh J, Naba YS, Doke K, Ahmed K, Yusufi M. Curcumin: reclaiming the lost ground against cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:298-320. [PMID: 35582033 PMCID: PMC9019276 DOI: 10.20517/cdr.2020.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Curcumin, a polyphenol, has a wide range of biological properties such as anticancer, antibacterial, antitubercular, cardioprotective and neuroprotective. Moreover, the anti-proliferative activities of Curcumin have been widely studied against several types of cancers due to its ability to target multiple pathways in cancer. Although Curcumin exhibited potent anticancer activity, its clinical use is limited due to its poor water solubility and faster metabolism. Hence, there is an immense interest among researchers to develop potent, water-soluble, and metabolically stable Curcumin analogs for cancer treatment. While drug resistance remains a major problem in cancer therapy that renders current chemotherapy ineffective, curcumin has shown promise to overcome the resistance and re-sensitize cancer to chemotherapeutic drugs in many studies. In the present review, we are summarizing the role of curcumin in controlling the proliferation of drug-resistant cancers and development of curcumin-based therapeutic applications from cell culture studies up to clinical trials.
Collapse
Affiliation(s)
- Siraj Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Javed Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Yusufi Sadia Naba
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India
| | - Kailas Doke
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Khursheed Ahmed
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Mujahid Yusufi
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| |
Collapse
|
33
|
Xu L, Zhou Y, Niu S, Liu Z, Zou Y, Yang Y, Feng H, Liu D, Niu X, Deng X, Wang Y, Wang J. A novel inhibitor of monooxygenase reversed the activity of tetracyclines against tet(X3)/tet(X4)-positive bacteria. EBioMedicine 2022; 78:103943. [PMID: 35306337 PMCID: PMC8933826 DOI: 10.1016/j.ebiom.2022.103943] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tigecycline is one of the few last-resort antibiotics for the treatment of carbapenem-resistant Enterobacteriaceae infection, the incidence of which has been rapidly increasing. However, the emergence and spread of tigecycline resistance genes tet(X) (including tet(X3) and tet(X4)) has largely compromised the efficient usage of tetracyclines in the clinical settings. METHODS The synergistic effect was determined by a checkerboard minimum inhibitory concentration (MIC) assay, a time-killing assay and scanning electron microscopy (SEM) analysis. In-depth mechanisms were defined using an enzyme inhibition assay, western blotting, RT-PCR analysis, molecular dynamics (MD) simulations, biolayer interferometry (BLI) assay and metabolomics analysis. FINDINGS Herein, our work identified a natural compound, plumbagin, as an effective broad-spectrum inhibitor of Tet(X) (also known as monooxygenase) by simultaneously inhibiting the activity and the production of Tet(X3)/Tet(X4). Plumbagin in combination with tetracyclines showed a synergistic bactericidal effect against Tet(X3)/Tet(X4)-producing bacteria. Mechanistic studies revealed that direct engagement of plumbagin with the catalytic pocket of Tet(X3)/Tet(X4) induced an alternation in its secondary structure to inhibit the activity of these monooxygenases. As a consequence, monotherapy or combination therapy with plumbagin increases the oxidative stress and metabolism in bacteria. Moreover, in a mouse systemic infection model of tet(X4)-positive E. coli, the combination of plumbagin and methacycline exhibited remarkable treatment benefits, as shown by a reduced bacterial load and the alleviation of pathological injury. INTERPRETATION Plumbagin, as an inhibitor of Tet(X3)/Tet(X4), represents a promising lead drug, as well as an adjunct with tetracyclines to treat bacterial infections, especially for extensively drug-resistant bacteria harbouring Tet(X3)/Tet(X4). FUNDING The National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sen Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiying Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yinuo Zou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodi Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
34
|
Li YL, Zhu XM, Chen NF, Chen ST, Yang Y, Liang H, Chen ZF. Anticancer activity of ruthenium(II) plumbagin complexes with polypyridyl as ancillary ligands via inhibiting energy metabolism and GADD45A-mediated cell cycle arrest. Eur J Med Chem 2022; 236:114312. [PMID: 35421660 DOI: 10.1016/j.ejmech.2022.114312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 12/31/2022]
Abstract
To study the antitumor activity and action mechanism of Ru(II) polypyridyl plumbagin (PLN) complexes, four complexes [Ru(PLN)(DMSO)2]Cl (Ru1), [Ru(bpy)2(PLN)](PF6) (bpy is bipyridine) (Ru2), [Ru(phen)2(PLN)](PF6) (phen is 1,10-phenanthroline) (Ru3), and [Ru(DIP)2(PLN)](PF6) (DIP is 4,7-diphenyl-1,10-phenanthroline) (Ru4) were obtained and fully characterized. Lipophilicity, cellular uptake and cytotoxicity of these Ru(II) complexes are in the order of: Ru1<Ru2<Ru3<Ru4. The ancillary polypyridyl ligands affected the bioactivity and action mechanisms of these Ru(II) complexes. Ru3 and Ru4 inhibited energy metabolism by severely impairing mitochondrial respiration and glycolysis processes. Moreover, Ru3 and Ru4 induced DNA damage and the increased expression of GADD45A, which led to cell cycle arrest in G0/G1 phase in MGC-803 cells, while the inactivation of GADD45A attenuated these effects; however, Ru3 or Ru4-induced GADD45A did not affect cell apoptosis. Further studies revealed that Ru3 and Ru4 induced ROS-dependent and caspase-dependent apoptotic cell death by mitochondrial dysfunction, and Ru4 displayed higher potency than Ru3. The in vivo results in MGC-803 xenograft nude mice model also confirmed that Ru4 obviously inhibited tumor growth. Ru4 is a promising candidate to be developed as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Yu-Lan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiao-Min Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Nan-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shao-Ting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
35
|
The Effectiveness of Isoplumbagin and Plumbagin in Regulating Amplitude, Gating Kinetics, and Voltage-Dependent Hysteresis of erg-mediated K+ Currents. Biomedicines 2022; 10:biomedicines10040780. [PMID: 35453530 PMCID: PMC9029050 DOI: 10.3390/biomedicines10040780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Isoplumbagin (isoPLB, 5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone, has been observed to exercise anti-inflammatory, antimicrobial, and antineoplastic activities. Notably, whether and how isoPLB, plumbagin (PLB), or other related compounds impact transmembrane ionic currents is not entirely clear. In this study, during GH3-cell exposure to isoPLB, the peak and sustained components of an erg (ether-à-go-go related gene)-mediated K+ current (IK(erg)) evoked with long-lasting-step hyperpolarization were concentration-dependently decreased, with a concomitant increase in the decaying time constant of the deactivating current. The presence of isoPLB led to a differential reduction in the peak and sustained components of deactivating IK(erg) with effective IC50 values of 18.3 and 2.4 μM, respectively, while the KD value according to the minimum binding scheme was estimated to be 2.58 μM. Inhibition by isoPLB of IK(erg) was not reversed by diazoxide; however, further addition of isoPLB, during the continued exposure to 4,4′-dithiopyridine, did not suppress IK(erg) further. The recovery of IK(erg) by a two-step voltage pulse with a geometric progression was slowed in the presence of isoPLB, and the decaying rate of IK(erg) activated by the envelope-of-tail method was increased in its presence. The strength of the IK(erg) hysteresis in response to an inverted isosceles-triangular ramp pulse was diminished by adding isoPLB. A mild inhibition of the delayed-rectifier K+ current (IK(DR)) produced by the presence of isoPLB was seen in GH3 cells, while minimal changes in the magnitude of the voltage-gated Na+ current were demonstrated in its presence. Moreover, the IK(erg) identified in MA-10 Leydig tumor cells was blocked by adding isoPLB. Therefore, the effects of isoPLB or PLB on ionic currents (e.g., IK(erg) and IK(DR)) demonstrated herein would be upstream of our previously reported perturbations on mitochondrial morphogenesis or respiration. Taken together, the perturbations of ionic currents by isoPLB or PLB demonstrated herein are likely to contribute to the underlying mechanism through which they, or other structurally similar compounds, result in adjustments in the functional activities of different neoplastic cells (e.g., GH3 and MA-10 cells), presuming that similar in vivo observations occur.
Collapse
|
36
|
Sueiro RA, Leiro JM, Blanco-Abad V, Raaijmakers J, de Bruijn I, Dirks RPH, Lamas J. Plant- and Bacteria-Derived Compounds with Anti-Philasterides dicentrarchi Activity. Pathogens 2022; 11:pathogens11020267. [PMID: 35215209 PMCID: PMC8880129 DOI: 10.3390/pathogens11020267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Philasterides dicentrarchi is a scuticociliate that causes high mortalities in farmed fish. Although vaccination is an effective method to prevent scuticociliatosis caused by the homologous serotype, a universal vaccine has not been developed yet. Many compounds have been shown to be toxic to this ciliate species; moreover, most of them are toxic to aquatic life and cannot be used to prevent the disease. We have evaluated the toxicity to P. dicentrarchi of several compounds of natural origin to be used to reduce parasite levels in the seawater. Ciliates were exposed to several compound concentrations, and the mortality was determined at several incubation times. Tomatine, plumbagin and 2′,4′-dihydroxychalcone displayed the highest anticiliate activity, with a dose-dependent response. The effects of these compounds on the EPC cell line were also evaluated, finding that 2′,4′-dihydroxychalcone displayed the lowest toxicity to fish cells. At 7.54 μM, 2′,4′-dihydroxychalcone inhibited 50% parasite growth but only killed about 10% of EPC cells after 24 h incubation. Finally, we evaluated the toxicity of Pseudomonas H6 surfactant (PS) to P. dicentrarchi, finding that PS was toxic to the ciliate but showed lower toxicity to EPC cells. At a concentration of 7.8 μg/mL (LC50 for the ciliate after 3 h incubation), PS killed 14.9% of EPC cells. We conclude that 2′,4′-dihydroxychalcone, and PS could be used to reduce parasite levels in seawater, thus decreasing the risk of scuticociliatosis infection in cultured fish.
Collapse
Affiliation(s)
- Rosa Ana Sueiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (R.A.S.); (J.M.L.)
| | - José Manuel Leiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (R.A.S.); (J.M.L.)
| | - Verónica Blanco-Abad
- Department of Functional Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Jos Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (J.R.); (I.d.B.)
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (J.R.); (I.d.B.)
| | - Ron P. H. Dirks
- Future Genomics Technologies, Leiden BioScience Park, Sylviusweg 74, 2333 BE Leiden, The Netherlands;
| | - Jesús Lamas
- Department of Functional Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.:+34-881-816951
| |
Collapse
|
37
|
Yadav P, Iqbal H, Kumar K, Kumar P, Mishra D, Singh A, Pal A, Mukhopadhyay P, Vamadevan B, Singh D, Negi AS, Chanda D. 2-Benzyllawsone protects against polymicrobial sepsis and vascular hyporeactivity in swiss albino mice. Eur J Pharmacol 2022; 917:174757. [PMID: 35032484 DOI: 10.1016/j.ejphar.2022.174757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Novel naphthoquinone, 2-benzyllawsone (LT-9) was evaluated against vascular hyporeactivity and sepsis in cecal ligation and puncture (CLP) model in mice in view of its preliminary antibacterial and anti-inflammatory properties and to explore whether pretreatment with the molecule could restore vascular tone and contractile response to norepinephrine. METHODS Evaluation of LT-9 against vascular hyporeactivity, hypotension, and sepsis-related inflammation and infection was carried out in the CLP model in Swiss albino mice and aortic smooth muscle cells in vitro. RESULTS LT-9 showed potent reversal of the vascular hyporeactivity in CLP mice aorta. The increased contraction response to norepinephrine in CLP mouse aorta by LT-9 was mediated by opening of L-type voltage-dependent calcium channels (VDCC) verified by ex vivo experiment where LT-9 enhanced contraction response to CaCl2 in the aorta while abolishing the contraction response of known VDCC opener Bay K8644. LT-9 in aortic smooth muscle cells showed Fluo-4 mediated increase in calcium fluorescence. Oral administration of LT-9 at 50 and 100 mg kg-1 day-1 for 15 days significantly enhanced the mean survival time, improved hemodynamic and Electrocardiogram (ECG) profile, and aortic tissue reactivity in CLP mice. Further, LT-9 significantly reversed the perturbation of the expression profile of inflammatory cytokines, reduced the splenic microbial load, and was well tolerated in oral toxicity. CONCLUSIONS LT-9 showed potent biological activity against sepsis and was found to be well tolerated in the toxicity study in Swiss albino mice and showed promise for the benzyllawsone class of molecules against sepsis for the development of novel pharmacophore.
Collapse
Affiliation(s)
- Pankaj Yadav
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Hina Iqbal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Kapil Kumar
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Parmanand Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Divya Mishra
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Arjun Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Anirban Pal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Beena Vamadevan
- Regulatory Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Dhirendra Singh
- Regulatory Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Debabrata Chanda
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|
38
|
Propylene Glycol Caprylate-Based Nanoemulsion Formulation of Plumbagin: Development and Characterization of Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3549061. [PMID: 35047632 PMCID: PMC8763502 DOI: 10.1155/2022/3549061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Plumbagin, a bioactive naphthoquinone, has demonstrated potent antitumor potential. However, plumbagin is a sparingly water-soluble compound; therefore, clinical translation requires and will be facilitated by the development of a new pharmaceutical formulation. We have generated an oil-in-water nanoemulsion formulation of plumbagin using a low-energy spontaneous emulsification process with propylene glycol caprylate (Capryol 90) as an oil phase and Labrasol/Kolliphor RH40 as surfactant and cosurfactant excipients. Formulation studies using Capryol 90/Labrasol/Kolliphor RH40 components, based on pseudoternary diagram and analysis of particle size distribution and polydispersity determined by dynamic light scattering (DLS), identified an optimized composition of excipients for nanoparticle formulation. The nanoemulsion loaded with plumbagin as an active pharmaceutical ingredient had an average hydrodynamic diameter of 30.9 nm with narrow polydispersity. The nanoemulsion exhibited long-term stability, as well as good retention of particle size in simulated physiological environments. Furthermore, plumbagin-loaded nanoemulsion showed an augmented cytotoxicity against prostate cancer cells PTEN-P2 in comparison to free drug. In conclusion, we generated a formulation of plumbagin with high loading drug capacity, robust stability, and scalable production. Novel Capryol 90-based nanoemulsion formulation of plumbagin demonstrated antiproliferative activity against prostate cancer cells, warranting thus further pharmaceutical development.
Collapse
|
39
|
Ribeiro RCB, Ferreira PG, Borges ADA, Forezi LDSM, da Silva FDC, Ferreira VF. 1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis. Beilstein J Org Chem 2022; 18:53-69. [PMID: 35047082 PMCID: PMC8744465 DOI: 10.3762/bjoc.18.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Several low molecular weight naphthoquinones are very useful in organic synthesis. These compounds have given rise to thousands of other naphthoquinones that have been tested against various microorganisms and pharmacological targets, including being used in the preparation of several drugs that are on the pharmaceutical market. Among these naphthoquinones, the series of compounds prepared from 1,2-naphthoquinone-4-sulfonic acid salts (β-NQS) stands out. In addition to being used in organic synthesis, they are excellent analytical derivatization reagents to spectrophotometrically determine drugs containing primary and secondary amino groups. This review summarizes the literature involving β-NQS.
Collapse
Affiliation(s)
- Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Patricia G Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| | - Amanda de A Borges
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| |
Collapse
|
40
|
Zuo H, Zhong F. Reactivity Modulation of Labile Quinones and Biomimetic Catalytic Transformations. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Singh AP, Sharma A. Structural Insights and Pharmaceutical Relevance of Plumbagin in Parasitic Disorders: A Comprehensive Review. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:187-198. [PMID: 36065920 DOI: 10.2174/2772434417666220905121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Recently, natural products have been became the center of attraction for the scientific society and exploration of their biologically abilities is proceeding continuously. In search for novel antiparasitic agents with an objective of protecting humans from parasitic infections, the present work was focused on naphthoquinones possessing antiparasitic activity. Among naphthoquinones, plumbagin is one of the secondary metabolites exhibiting diverse biological properties such as antibacterial, antimalarial, antiinflammatory, insecticidal and antiparasitic. Plumbagin is reported to have antischistosomiasis, anti-haemonchosis, anti-fascioliasis, antiotoacariasis, anti-leishmaniasis, antimalaria, antiallergic and anthelmintic activities. Besides, various methods of extraction of plumbagin from different methods, their effectiveness against different parasites, and the structure-activity relationship reported by different researchers. This work highlight on recent advancements in the phytochemistry of plumbagin, studies associated with various biological activities. The structure-activity relationship studies have also been summarized. To conclude, present review could be beneficial for the scientific community to get better insight into medicinal research of plumbagin and may provide a new horizon for the rational design of plumbagin based compounds.
Collapse
Affiliation(s)
| | - Alok Sharma
- ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
42
|
Yadav AM, Bagade MM, Ghumnani S, Raman S, Saha B, Kubatzky KF, Ashma R. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts. Biol Chem 2021; 403:211-229. [PMID: 34882360 DOI: 10.1515/hsz-2021-0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022]
Abstract
Bone metabolism is essential for maintaining bone mineral density and bone strength through a balance between bone formation and bone resorption. Bone formation is associated with osteoblast activity whereas bone resorption is linked to osteoclast differentiation. Osteoblast progenitors give rise to the formation of mature osteoblasts whereas monocytes are the precursors for multi-nucleated osteoclasts. Chronic inflammation, auto-inflammation, hormonal changes or adiposity have the potential to disturb the balance between bone formation and bone loss. Several plant-derived components are described to modulate bone metabolism and alleviate osteoporosis by enhancing bone formation and inhibiting bone resorption. The plant-derived naphthoquinone plumbagin is a bioactive compound that can be isolated from the roots of the Plumbago genus. It has been used as traditional medicine for treating infectious diseases, rheumatoid arthritis and dermatological diseases. Reportedly, plumbagin exerts its biological activities primarily through induction of reactive oxygen species and triggers osteoblast-mediated bone formation. It is plausible that plumbagin's reciprocal actions - inhibiting or inducing death in osteoclasts but promoting survival or growth of osteoblasts - are a function of the synergy with bone-metabolizing hormones calcitonin, Parathormone and vitamin D. Herein, we develop a framework for plausible molecular modus operandi of plumbagin in bone metabolism.
Collapse
Affiliation(s)
- Avinash M Yadav
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Manali M Bagade
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Soni Ghumnani
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Sujatha Raman
- Center for Complementary and Integrative Health (CCIH), Interdisciplinary School of Health Sciences (ISHS), Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Bhaskar Saha
- National Center for Cell Science, Pune-411007, Maharashtra, India
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Richa Ashma
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| |
Collapse
|
43
|
Jitapunkul K, Toochinda P, Lawtrakul L. Molecular Dynamic Simulation Analysis on the Inclusion Complexation of Plumbagin with β-Cyclodextrin Derivatives in Aqueous Solution. Molecules 2021; 26:molecules26226784. [PMID: 34833875 PMCID: PMC8622708 DOI: 10.3390/molecules26226784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Stable encapsulation of medically active compounds can lead to longer storage life and facilitate the slow-release mechanism. In this work, the dynamic and molecular interactions between plumbagin molecule with β-cyclodextrin (BCD) and its two derivatives, which are dimethyl-β-cyclodextrin (MBCD), and 2-O-monohydroxypropyl-β-cyclodextrin (HPBCD) were investigated. Molecular dynamics simulations (MD) with GLYCAM-06 and AMBER force fields were used to simulate the inclusion complex systems under storage temperature (4 °C) in an aqueous solution. The simulation results suggested that HPBCD is the best encapsulation agent to produce stable host-guest binding with plumbagin. Moreover, the observation of the plumbagin dynamic inside the binding cavity revealed that it tends to orient the methyl group toward the wider rim of HPBCD. Therefore, HPBCD is a decent candidate for the preservation of plumbagin with a promising longer storage life and presents the opportunity to facilitate the slow-release mechanism.
Collapse
|
44
|
Shi W, Fang Y, Jiang Y, Jiang S, Li Y, Li W, Xu M, Aschner M, Liu G. Plumbagin attenuates traumatic tracheal stenosis in rats and inhibits lung fibroblast proliferation and differentiation via TGF-β1/Smad and Akt/mTOR pathways. Bioengineered 2021; 12:4475-4488. [PMID: 34304701 PMCID: PMC8806467 DOI: 10.1080/21655979.2021.1954580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Traumatic tracheal stenosis (TS) is a serious respiratory disease characterized by hyperplasia of airway granulation. Plumbagin (PLB) is a natural naphthoquinone component with anti-fibrotic properties. This research aimed to explore the roles of PLB in alleviating TS and the underlying mechanisms. For in vitro studies, lung fibroblasts (IMR-90 cells), with/without PLB treatment or TGF-β1 induction, were used. The viability and proliferation of IMR-90 cells were examined by CCK-8 and EdU incorporation assays. The differentiation of IMR-90 cells was assessed by detecting the mRNA and protein expression levels of collagen (COL)-1 and alpha-smooth muscle actin (α-SMA). Besides, immunofluorescence assay was conducted to evaluate the localization of α-SMA in TGF-β1-induced IMR-90 cells. Moreover, the combination of PLB with/without TβRI (SB-431,542), PI3K/Akt (Ly294002) or mTOR (rapamycin) inhibitor was pretreated on IMR-90 cells after TGF-β1 induction. For in vivo studies, a rat model of TS was established. The pathological features and severity of TS were determined by hematoxylin and eosin staining. The protein levels of TGF-β1/Smad and Akt/mTOR pathways were detected for both in vitro and in vivo models. PLB effectively inhibited the proliferation and differentiation of TGF-β1-induced IMR-90 cells, and suppressed TGF-β1/Smad and Akt/mTOR signaling pathways both in vivo and in vitro. Furthermore, PLB reduced the degree of TS in rats. Taken together, our results indicate that PLB regulates lung fibroblast activity and attenuates TS in rats by inhibiting TGF-β1/Smad and Akt/mTOR signaling pathways. In conclusion, this study implies that PLB may serve as a promising therapeutic compound for TS.
Collapse
Affiliation(s)
- Wei Shi
- Pulmonary and Critical Care Medicine of The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Pulmonary and Critical Care Medicine of the Second People's Hospital of Nanning, Nanning, Guangxi, China
| | | | | | - Siyang Jiang
- Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Li
- Pulmonary and Critical Care Medicine of The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wentao Li
- Guangxi Medical University, Nanning, Guangxi, China
| | - Mingpeng Xu
- Pulmonary and Critical Care Medicine of The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | - Guangnan Liu
- Pulmonary and Critical Care Medicine of The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
45
|
Roy A. Plumbagin: A Potential Anti-cancer Compound. Mini Rev Med Chem 2021; 21:731-737. [PMID: 33200707 DOI: 10.2174/1389557520666201116144421] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
Cancer is a deadly disease, which has significantly increased in both developed and developing nations. Treatment of cancer utilizing radiotherapy or chemotherapy actuates a few issues which incorporate spewing, sickness, unpalatable reactions, and so forth. In this specific situation, an alternative drug source, which can effectively treat cancer is of prime importance. Products that are obtained from plant sources are utilized for the treatment of various diseases due to their non-harmful nature. Medicinal plants contain different bioactive compounds, which possess an important role in the prevention of different diseases such as cancer. Plumbagin is a bioactive compound, which is mainly present in Plumbaginaceae family and has been explored for its anticancer activity. Plumbagin basically inactivates the Akt/NF-kB, MMP-9 and VEGF pathways that are essential for cancer cell development. Therefore, it is important to review the role of plumbagin in different cancer cells in order to find an alternative drug to overcome this disease. The present review provides a summary of anticancer activity of plumbagin in various cancers and its mode of action.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| |
Collapse
|
46
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Lei Y, Li Y, Tan Y, Qian Z, Zhou Q, Jia D, Sun Q. Novel Mechanistic Observations and NES-Binding Groove Features Revealed by the CRM1 Inhibitors Plumbagin and Oridonin. JOURNAL OF NATURAL PRODUCTS 2021; 84:1478-1488. [PMID: 33890470 DOI: 10.1021/acs.jnatprod.0c01231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The protein chromosome region maintenance 1 (CRM1) is an important nuclear export factor and drug target in diseases such as cancer and viral infections. Several plant-derived CRM1 inhibitors including plumbagin and oridonin possess potent antitumor activities. However, their modes of CRM1 inhibition remain unclear. Here, a multimutant CRM1 was engineered to enable crystallization of these two small molecules in its NES groove. Plumbagin and oridonin share the same three conjugation sites in CRM1. In solution, these two inhibitors targeted more CRM1 sites and inhibited its activity through promoting its aggregation, in addition to directly targeting the NES groove. While the plumbagin-bound NES groove resembles the NES-bound groove state, the oridonin complex reveals for the first time a more open NES groove. The observed greater NES groove dynamics may improve cargo loading through a "capture-and-tighten" mechanism. This work thus provides new insights on the mechanism of CRM1 inhibition by two natural products and a structural basis for further development of these or other CRM1 inhibitors.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuping Tan
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Zhiyong Qian
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| |
Collapse
|
48
|
Al-Awthan YS, Rauf A, Rashid U, Bawazeer S, Naz S, Bahattab O, Bawazeer S, Muhammad N, Waggas DS, Batiha GES, Shariati MA, Derkho M, Suleria HAR. Sedative-hypnotic effect and in silico study of dinaphthodiospyrols isolated from Diospyros lotus Linn. Biomed Pharmacother 2021; 140:111745. [PMID: 34020246 DOI: 10.1016/j.biopha.2021.111745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Traditionally, Diospyros lotus Linn is used for insomnia and other associated disorders. Insomnia is a worldwide disorder with different etiology which is treated with different synthetic medicine associated with addiction. Natural products are generally devoid of such addition with good efficacy. Current research was conducted to evaluate the sedative and hypnotic effects of dimeric naphthoquinones such as dinaphthodiospyrol A (1), dinaphthodiospyrol B (2), dinaphthodiospyrol C (3), dinaphthodiospyrol D (4), dinaphthodiospyrol E (5) and dinaphthodiospyrol F (6) isolated from the chloroform fractions of D. lotus. The sedative and hypnotic effects at the dose of 5 and 10 mg/kg (each compound) were assessed through open field and phenobarbital induced sleep test, respectively. In the case of open field test the administration of tested compounds significantly hindered the movement of animals, while in case of hypnotic effect the tested samples significantly improved the onset and duration of sleep as compared to control. The overall effects were in a dose dependent manner. The compounds were also assessed for acute toxicity, but no toxicity was observed. In this regard, our research triumphantly announced the strong chemical base for the folkloric values of the plant with their fringe benefits and implemented a platform for further aspects of mechanistic and clinical studies. A possible mechanism of in vivo inhibition was studied by using docking simulations on GABA receptors. Binding orientations and types of interactions revealed that a possible mechanism behind these pharmacological actions might be interaction with GABA receptors.
Collapse
Affiliation(s)
- Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Islamabad 22060, Pakistan
| | - Sami Bawazeer
- Pharmacognosy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saima Naz
- Department of Biotechnology, Woman University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dania Saad Waggas
- Department of Pharmacology, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, El-Beheira, Egypt
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Marina Derkho
- South-Ural State Agrarian University, Troitsk, Russian Federation
| | | |
Collapse
|
49
|
Norman EO, Tuohey H, Pizzi D, Saidah M, Bell R, Brkljača R, White JM, Gasser RB, Taki AC, Urban S. Phytochemical Profiling and Biological Activity of the Australian Carnivorous Plant, Drosera magna. JOURNAL OF NATURAL PRODUCTS 2021; 84:964-971. [PMID: 33631073 DOI: 10.1021/acs.jnatprod.0c00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytochemical profiling was undertaken on the crude extracts of Drosera magna to determine the nature of the chemical constituents present. In total, three new flavonol diglycosides (1-3), one new flavan-3-ol glycoside (4), and 12 previously reported compounds of the flavonol (5, 9), flavan-3-ol (15), flavanone (8), 1,4-napthoquinone (6, 7, 13, 14), 2,3-dehydroxynapthalene-1,4-dione (10-12), and phenolic acid (16) structure classes were isolated and identified. Compounds 1-9, 13, 17, and 18 were assessed for antimicrobial activity, with compounds 6, 7, 8, and 9 showing significant activity. Compounds 1, 2, and 6 were also evaluated for anthelmintic activity against larval forms of Hemonchus contortus, with compound 6 being active.
Collapse
Affiliation(s)
- Edward Owen Norman
- School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476 Melbourne, Victoria 3001, Australia
| | - Hayden Tuohey
- School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476 Melbourne, Victoria 3001, Australia
| | - David Pizzi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Milane Saidah
- Aix-Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Rachael Bell
- School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476 Melbourne, Victoria 3001, Australia
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3168, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sylvia Urban
- School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476 Melbourne, Victoria 3001, Australia
| |
Collapse
|
50
|
Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. COATINGS 2021. [DOI: 10.3390/coatings11040434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current era, an ever-emerging threat of multidrug-resistant (MDR) pathogens pose serious health challenges to mankind. Researchers are uninterruptedly putting their efforts to design and develop alternative, innovative strategies to tackle the antibiotic resistance displayed by varied pathogens. Among several naturally derived and chemically synthesized compounds, quinones have achieved a distinct position to defeat microbial pathogens. This review unleashes the structural diversity and promising biological activities of naphthoquinones (NQs) and their derivatives documented in the past two decades. Further, realizing their functional potentialities, researchers were encouraged to approach NQs as lead molecules. We have retrieved information that is dedicated on biological applications (antibacterial, antifungal, antiparasitic) of NQs. The multiple roles of NQs offer them a promising armory to combat microbial pathogens including MDR and the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group. In bacteria, NQs may exhibit their function in the following ways (1) plasmid curing, (2) inhibiting efflux pumps (EPs), (3) generating reactive oxygen species (ROS), (4) the inhibition of topoisomerase activity. Sparse but meticulous literature suggests the mechanistic roles of NQs. We have highlighted the possible mechanisms of NQs and how the targeted drug synthesis can be achieved via molecular docking analysis. This bioinformatics-oriented approach will explicitly lead to the development of effective and most potent drugs against targeted pathogens. The mechanistic approaches of emerging molecules like NQs might prove a milestone to defeat the battle against microbial pathogens.
Collapse
|