1
|
Pham TNL, Nguyen SH, Tran MT. A comprehensive review of transduction methods of lectin-based biosensors in biomedical applications. Heliyon 2024; 10:e38371. [PMID: 39386779 PMCID: PMC11462017 DOI: 10.1016/j.heliyon.2024.e38371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Biosensors have emerged as a pivotal technology in the biomedical field, significantly enhancing the rapidity and precision of biomolecule detection. These advancements are instrumental in refining diagnostic processes, optimizing treatments, and monitoring diseases more effectively. Central to the development of highly sensitive, selective, and stable biosensors are the bioreceptor and transducer components. This review paper discusses the use of lectin as a bioreceptor and explores the prevalent transducer methods employed in lectin-based biosensors, with a particular emphasis on their applications in biomedical research. The paper meticulously examines various transducers, with a spotlight on electrochemical and optical transduction methods, drawing from a wealth of previous studies to offer a comprehensive perspective on the application of these sensors in critical biomedical areas. These areas include early diagnosis, therapeutic interventions, and continuous health monitoring. Moreover, the review addresses the challenges of implementing lectin-based biosensors, such as specificity and stability issues. It also explores future possibilities, examining potential trends to overcome these challenges. In summary, this comprehensive analysis aspires to equip researchers with profound insights into the transformative potential of lectin-based biosensors, underscoring their significant role in the evolution of biomedical research and the broader healthcare landscape.
Collapse
Affiliation(s)
| | - Son Hai Nguyen
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Mai Thi Tran
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Viet Nam
- College of Engineering and Computer Science, VinUniversity, Hanoi, Viet Nam
| |
Collapse
|
2
|
Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. Glycoconj J 2024; 41:301-322. [PMID: 39218819 DOI: 10.1007/s10719-024-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.
Collapse
Affiliation(s)
- Maruti J Gurav
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - J Manasa
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Ashwini S Sanji
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Prasanna H Megalamani
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Vishwanath B Chachadi
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India.
| |
Collapse
|
3
|
Wiggins J, Karim SU, Liu B, Li X, Zhou Y, Bai F, Yu J, Xiang SH. Identification of a Novel Antiviral Lectin against SARS-CoV-2 Omicron Variant from Shiitake-Mushroom-Derived Vesicle-like Nanoparticles. Viruses 2024; 16:1546. [PMID: 39459880 PMCID: PMC11512411 DOI: 10.3390/v16101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Lectins are a class of carbohydrate-binding proteins that may have antiviral activity by binding to the glycans on the virion surface to interfere with viral entry. We have identified a novel lectin (named Shictin) from Shiitake mushroom (Lentinula edodes)-derived vesicle-like nanoparticles (VLNs, or exosomes) that exhibits strong activity against the SARS-CoV-2 Omicron variant with an IC50 value of 87 nM. Shictin contains 298 amino acids and consists of two unique domains (N-terminal and C-terminal domain). The N-terminal domain is the carbohydrate-binding domain (CBD) that is homologous with CBDs of other lectins, suggesting that Shictin inhibits SARS-CoV-2 infection by binding to the glycans on the virion surface to prevent viral entry. This finding demonstrates that exosomes of vegetables are a valuable source for the identification of antiviral lectins. Therefore, it is believed that lectins from vegetable VLNs have potential as antiviral therapeutic agents.
Collapse
Affiliation(s)
- Joshua Wiggins
- Nebraska Center for Virology, University of Nebraska-Lincoln, Morrison Center 143, 4240 Fair Street, Lincoln, NE 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shazeed-Ul Karim
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Xingzhi Li
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - You Zhou
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Morrison Center 143, 4240 Fair Street, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
4
|
Bektas S, Kaptan E. Microbial lectins as a potential therapeutics for the prevention of certain human diseases. Life Sci 2024; 346:122643. [PMID: 38614308 DOI: 10.1016/j.lfs.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.
Collapse
Affiliation(s)
- Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34116, Turkey.
| | - Engin Kaptan
- Istanbul University, Faculty of Science Department of Biology, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
5
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
6
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Singh K, Agrawal L, Gupta R, Singh D, Kathpalia M, Kaur N. Lectins as a promising therapeutic agent for breast cancer: A review. Breast Dis 2024; 43:193-211. [PMID: 38905027 PMCID: PMC11307042 DOI: 10.3233/bd-230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Efficient treatment of cancer has been a subject of research by scientists for many years. Current treatments for cancer, such as radiotherapy, chemotherapy and surgery have been used in traditional combination therapy, but they have major setbacks like non-specificity, non-responsiveness in certain cancer types towards treatment, tumor recurrence, etc. Epidemiological data has shown that breast cancer accounts for 14% of cancer cases occurring in Indian women. In recent years, scientists have started to focus on the use of natural compounds like lectins obtained from various sources to counter the side effects of traditional therapy. Lectins like Sambucus nigra Agglutinin, Maackia amurensis lectin, Okra lectins, Haliclona caerulea lectin, Sclerotium rolfsii lectin, etc., have been discovered to have both diagnostic and therapeutic potential for breast cancer patients. Lectins have been found to have inhibitory effects on various cancer cell activities such as neo-angiogenesis, causing cell cycle arrest at the G1 phase, and inducing apoptosis. The major idea behind the use of lectins in cancer diagnostics and therapeutics is their capability to bind to glycosylated proteins that are expressed on the cell surface. This review focuses on an exploration of the roles of post-translational modification in cancer cells, especially glycosylation, and the potential of lectins in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Keerti Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Lokita Agrawal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rhea Gupta
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Divyam Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meghavi Kathpalia
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Alvarez C, Félix C, Lemos MFL. The Antiviral Potential of Algal Lectins. Mar Drugs 2023; 21:515. [PMID: 37888450 PMCID: PMC10608189 DOI: 10.3390/md21100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered special attention for their unique structures and carbohydrate specificities, distinguishing them from lectins derived from other sources. Here, a comprehensive overview of the latest scientific and technological advancements in the realm of algal lectins with a particular focus on their antiviral properties is provided. These lectins have displayed remarkable effectiveness against a wide range of viruses, thereby holding great promise for various antiviral applications. It is worth noting that several alga species have already been successfully commercialized for their antiviral potential. However, the discovery of a diverse array of lectins with potent antiviral capabilities suggests that the field holds immense untapped potential for further expansion. In conclusion, algae stand as a valuable and versatile resource, and their lectins offer an exciting avenue for developing novel antiviral agents, which may lead to the development of cutting-edge antiviral therapies.
Collapse
Affiliation(s)
| | | | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (C.A.); (C.F.)
| |
Collapse
|
9
|
Li Y, Wang P, Zhang Z, Liu Q. A novel lectin from mushroom Phellodon melaleucus displays hemagglutination activity, and antitumor activity in a B16 melanoma mouse model. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Swamy MJ, Mondal S. Subunit association, and thermal and chemical unfolding of Cucurbitaceae phloem exudate lectins. A review. Int J Biol Macromol 2023; 233:123434. [PMID: 36709810 DOI: 10.1016/j.ijbiomac.2023.123434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Detailed characterization of protein (un)folding intermediates is crucial for understanding the (un)folding pathway, aggregation, stability and their functional properties. In recent years, stress-inducible lectins are being investigated with much interest. In plants phloem proteins PP1 and PP2 are major components of the phloem fluid. While PP1 is a structural protein, PP2 exhibits lectin activity, and was proposed to play key roles in wound sealing, anti-pathogenic activity, and transportation of various molecules including RNA within the plant. Cucurbitaceae fruits contain high concentrations of PP2 lectins, which recognize chitooligosaccharides with high specificity. Although the presence of PP2 lectins in the phloem exudate of Cucurbitaceae species was documented over 40 years ago, so far only a few proteins from this family have been purified and characterized in detail. This review summarizes the results of biophysical studies aimed at investigating the oligomeric status of these lectins, their thermal stability, structural perturbations caused by changes in pH and addition of chaotropic agents and characterization of intermediates observed in the unfolding process. The implications of these results in the functional roles played by PP2 type lectins in their native environment are discussed. Finally, perspectives for future biophysical research on these proteins are given.
Collapse
Affiliation(s)
- Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
11
|
Barchi JJ, Strain CN. The effect of a methyl group on structure and function: Serine vs. threonine glycosylation and phosphorylation. Front Mol Biosci 2023; 10:1117850. [PMID: 36845552 PMCID: PMC9950641 DOI: 10.3389/fmolb.2023.1117850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
A variety of glycan structures cover the surface of all cells and are involved in myriad biological processes, including but not limited to, cell adhesion and communication, protein quality control, signal transduction and metabolism, while also being intimately involved in innate and adaptive immune functions. Immune surveillance and responses to foreign carbohydrate antigens, such as capsular polysaccharides on bacteria and surface protein glycosylation of viruses, are the basis of microbial clearance, and most antimicrobial vaccines target these structures. In addition, aberrant glycans on tumors called Tumor-Associated Carbohydrate Antigens (TACAs) elicit immune responses to cancer, and TACAs have been used in the design of many antitumor vaccine constructs. A majority of mammalian TACAs are derived from what are referred to as mucin-type O-linked glycans on cell-surface proteins and are linked to the protein backbone through the hydroxyl group of either serine or threonine residues. A small group of structural studies that have compared mono- and oligosaccharides attached to each of these residues have shown that there are distinct differences in conformational preferences assumed by glycans attached to either "unmethylated" serine or ß-methylated threonine. This suggests that the linkage point of antigenic glycans will affect their presentation to the immune system as well as to various carbohydrate binding molecules (e.g., lectins). This short review, followed by our hypothesis, will examine this possibility and extend the concept to the presentation of glycans on surfaces and in assay systems where recognition of glycans by proteins and other binding partners can be defined by different attachment points that allow for a range of conformational presentations.
Collapse
Affiliation(s)
| | - Caitlin N. Strain
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
12
|
Sumya FT, Pokrovskaya ID, D'Souza Z, Lupashin VV. Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. Traffic 2023; 24:52-75. [PMID: 36468177 PMCID: PMC9969905 DOI: 10.1111/tra.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zinia D'Souza
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
13
|
Russell DF, Zhang W, Warnock TC, Neiman LL. Lectin binding and gel secretion within Lorenzinian electroreceptors of Polyodon. PLoS One 2022; 17:e0276854. [PMCID: PMC9671328 DOI: 10.1371/journal.pone.0276854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022] Open
Abstract
We imaged the carbohydrate-selective spatial binding of 8 lectins in the ampullary organs (AOs) of electroreceptors on the rostrum of freshwater paddlefish (Polyodon spathula), by fluorescence imaging and morphometry of frozen sections. A focus was candidate sites of secretion of the glycoprotein gel filling the lumen of AOs. The rostrum of Polyodon is an electrosensory appendage anterior of the head, covered with >50,000 AOs, each homologous with the ampulla of Lorenzini electroreceptors of marine rays and sharks. A large electrosensory neuroepithelium (EN) lines the basal pole of each AO’s lumen in Polyodon; support cells occupy most (97%) of an EN’s apical area, along with electrosensitive receptor cells. (1) Lectins WGA or SBA labeled the AO gel. High concentrations of the N-acetyl-aminocarbohydrate ligands of these lectins were reported in canal gel of ampullae of Lorenzini, supporting homology of Polyodon AOs. In cross sections of EN, WGA or SBA labeled cytoplasmic vesicles and organelles in support cells, especially apically, apparently secretory. Abundant phalloidin+ microvilli on the apical faces of support cells yielded the brightest label by lectins WGA or SBA. In parallel views of the apical EN surface, WGA labeled only support cells. We concluded that EN support cells massively secrete gel from their apical microvilli (and surface?), containing amino carbohydrate ligands of WGA or SBA, into the AO lumen. (2) Lectins RCA120 or ConA also labeled EN support cells, each differently. RCA120-fluorescein brightly labeled extensive Golgi tubules in the apical halves of EN cells. ConA did not label microvilli, but brightly labeled small vesicles throughout support cells, apparently non-secretory. (3) We demonstrated “sockets” surrounding the basolateral exteriors of EN receptor cells, as candidate glycocalyces. (4) We explored whether additional secretions may arise from non-EN epithelial cells of the interior ampulla wall. (5) Model: Gel is secreted mainly by support cells in the large EN covering each AO’s basal pole. Secreted gel is pushed toward the pore, and out. We modeled gel velocity as increasing ~11x, going distally in AOs (toward the narrowed neck and pore), due to geometrical taper of the ampulla wall. Gel renewal and accelerated expulsion may defend against invasion of the AO lumen by microbes or small parasites. (6) We surveyed lectin labeling of accessory structures, including papilla cells in AO necks, striated ectoderm epidermis, and sheaths on afferent axons or on terminal glia.
Collapse
Affiliation(s)
- David F. Russell
- Department of Biological Sciences, Neuroscience Program, Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- * E-mail: ,
| | - Wenjuan Zhang
- Honors Tutorial College, Ohio University, Athens, Ohio, United States of America
| | - Thomas C. Warnock
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
| | - Lilia L. Neiman
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
14
|
Shan F, Hu J, Gu C, Zhou Y, Zhang Z, Chen G. In situ preparation of glyco-micromotors and their bacteria loading/guiding ability. Chem Commun (Camb) 2022; 58:10965-10968. [PMID: 36083284 DOI: 10.1039/d2cc03722j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully synthesized glyco-micromotors in situ directed by multifunctional glycopolymers, which were obtained by copolymerizing 2-methacrylamido glucopyranose (MAG) and 2-(diethylamino)ethyl methacrylate (DEAEMA) monomers. The fabricated glyco-micromotors present abilities in loading and guiding bacteria with different individual and group motions.
Collapse
Affiliation(s)
- Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou 215006, China. .,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Tobola F, Wiltschi B. One, two, many: Strategies to alter the number of carbohydrate binding sites of lectins. Biotechnol Adv 2022; 60:108020. [PMID: 35868512 DOI: 10.1016/j.biotechadv.2022.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
Abstract
Carbohydrates are more than an energy-storage. They are ubiquitously found on cells and most proteins, where they encode biological information. Lectins bind these carbohydrates and are essential for translating the encoded information into biological functions and processes. Hundreds of lectins are known, and they are found in all domains of life. For half a century, researchers have been preparing variants of lectins in which the binding sites are varied. In this way, the traits of the lectins such as the affinity, avidity and specificity towards their ligands as well as their biological efficacy were changed. These efforts helped to unravel the biological importance of lectins and resulted in improved variants for biotechnological exploitation and potential medical applications. This review gives an overview on the methods for the preparation of artificial lectins and complexes thereof and how reducing or increasing the number of binding sites affects their function.
Collapse
Affiliation(s)
- Felix Tobola
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
16
|
Samoilova NA, Krayukhina MA, Vyshivannaya OV, Blagodatskikh IV. Investigation of the Binding of Lectins with Polymer Glycoconjugates and the Glycoconjugates Containing Silver Nanoparticles by Means of Optical Spectroscopy and Light Scattering. POLYMER SCIENCE. SERIES A, CHEMISTRY, PHYSICS 2022; 64:277-289. [PMID: 35669311 PMCID: PMC9149672 DOI: 10.1134/s0965545x22700092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
The synthesis of glycoconjugates, lectin-specific polymers containing a carbohydrate ligand (spacered residue of N-acetyl-D-glucosamine, β-N-Gly-GlcNAc) has been carried out. Glyconanoparticles (glycol-NPs) containing a label detectable by means of spectrophotometry, silver nanoparticles, have been prepared on the basis of the glycoconjugates. Copolymers of maleic anhydride with ethylene or N-vinylpyrrolidone have been used as a carrier to introduce the carbohydrate ligand and a stabilizer of silver nanoparticles. Solutions of the glycoconjugates and the silver glyconanoparticles have been characterized by means of light scattering, UV-visible spectroscopy, and TEM. The interaction of the obtained glycoconjugates and silver glyconanoparticles with N-acetyl-D-glucosamine-specific lectins of Solanum tuberosum agglutinin (STA) and wheat germ agglutinin (WGA) has been investigated by means of light scattering and UV-visible spectro-scopy. The data obtained via these physical methods using the carbohydrate-containing derivatives labeled with silver nanoparticles have been in agreement. It has been shown that the glycoconjugates and silver glyconanoparticles based on more hydrophilic copolymer of maleic acid with N-vinylpyrrolidone are more sensitive than the respective systems based on more hydrophobic copolymer of maleic acid with ethylene. It has been also shown that the considered systems are more sensitive to the STA lectin than to the WGA lectin. The silver glyconanoparticles have allowed more accurate and reliable detection of the lectins by means of light scattering, as compared to the glycopolymer.
Collapse
Affiliation(s)
- N. A. Samoilova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - M. A. Krayukhina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O. V. Vyshivannaya
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - I. V. Blagodatskikh
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Bedi N, Srivastava DK, Srivastava A, Mahapatra S, Dkhar DS, Chandra P, Srivastava A. Marine Biological Macromolecules as Matrix Material for Biosensor fabrication. Biotechnol Bioeng 2022; 119:2046-2063. [PMID: 35470439 DOI: 10.1002/bit.28122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/06/2022]
Abstract
The Ocean covers two-third of our planet and has great biological heterogeneity. Marine organisms like algae, vertebrates, invertebrates, and microbes are known to provide many natural products with biological activities as well as potent sources of biomaterials for therapeutic, biomedical, biosensors, and climate stabilization. Over the years, the field of biosensors have gained huge attention due to their extraordinary ability to provide early disease diagnosis, rapid detection of various molecules and substances along with long term monitoring. This review aims to focus on the properties and employment of various biomaterials (Carbohydrate polymers, proteins, polyacids etc) of marine origin such as Alginate, Chitin, Chitosan, Fucoidan, Carrageenan, Chondroitin Sulfate (CS), Hyaluronic acid (HA), Collagen, marine pigments, marine nanoparticles, Hydroxyapatite (HAp), Biosilica, lectins, and marine whole cell in the design and development of biosensors. Further, this review also covers the source of such marine biomaterials and their promising evolution in the fabrication of biosensors that are potent to be employed in the biomedical, environmental science and agricultural sciences domains. The use of such fabricated biosensors harness the system with excellent specificity, selectivity, biocompatibility, thermally stable and minimal cost advantages. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Namita Bedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | | | - Arti Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Ashutosh Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India.,Amity Institute of Marine Science and Technology, Amity University Uttar Pradesh, Sector 125, Noida, India
| |
Collapse
|
18
|
Tobola F, Lepšík M, Zia SR, Leffler H, Nilsson UJ, Blixt O, Imberty A, Wiltschi B. Engineering the ligand specificity of the human galectin-1 by incorporation of tryptophan analogs. Chembiochem 2022; 23:e202100593. [PMID: 34978765 DOI: 10.1002/cbic.202100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/05/2022]
Abstract
Galectin-1 is a β-galactoside-binding lectin with manifold biological functions. A single tryptophan residue (W68) in its carbohydrate binding site plays a major role in ligand binding and is highly conserved among galectins. To fine tune galectin-1 specificity, we introduced several non-canonical tryptophan analogs at this position of human galectin-1 and analyzed the resulting variants using glycan microarrays. Two variants containing 7-azatryptophan and 7-fluorotryptophan showed a reduced affinity for 3'-sulfated oligosaccharides. Their interaction with different ligands was further analyzed by fluorescence polarization competition assay. Using molecular modeling we provide structural clues that the change in affinities comes from modulated interactions and solvation patterns. Thus, we show that the introduction of subtle atomic mutations in the ligand binding site of galectin-1 is an attractive approach for fine-tuning its interactions with different ligands.
Collapse
Affiliation(s)
- Felix Tobola
- Graz University of Technology: Technische Universitat Graz, Institute of Molecular Biotechnology, Petersgasse 14, 8010, Graz, AUSTRIA
| | - Martin Lepšík
- Université Grenoble Alpes: Universite Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, FRANCE
| | | | - Hakon Leffler
- Lund University: Lunds Universitet, Laboratory Medicine Section MIG, Klinikgatan 28, 221 84, Lund, SWEDEN
| | - Ulf J Nilsson
- Lund University: Lunds Universitet, Centre for Analysis and Synthesis, Department of Chemistry, Box 124, 221 00, Lund, SWEDEN
| | - Ola Blixt
- Technical University of Denmark: Danmarks Tekniske Universitet, Biotechnology and Biomedicine, Søltofts Plads, 2800, Kgs. Lyngby, DENMARK
| | - Anne Imberty
- Université Grenoble Alpes: Universite Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, FRANCE
| | - Birgit Wiltschi
- Austrian Centre of Industrial Biotechnology, Synthetic Biology, Petersgasse 14, 8010, Graz, AUSTRIA
| |
Collapse
|
19
|
NAKAGAWA Y, ITO Y. Mannose-binding analysis and biological application of pradimicins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:15-29. [PMID: 35013028 PMCID: PMC8795531 DOI: 10.2183/pjab.98.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Pradimicins (PRMs) are an exceptional family of natural products that specifically bind d-mannose (Man). In the past decade, their scientific significance has increased greatly, with the emergence of biological roles of Man-containing glycans. However, research into the use of PRMs has been severely limited by their inherent tendency to form water-insoluble aggregates. Recently, we have established a derivatization strategy to suppress PRM aggregation, providing an opportunity for practical application of PRMs in glycobiological research. This article first outlines the challenges in studying Man-binding mechanisms and structural modifications of PRMs, and then describes our approach to address them. We also present our recent attempts toward the development of PRM-based research tools.
Collapse
Affiliation(s)
- Yu NAKAGAWA
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yukishige ITO
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
20
|
Huang YH, Kumar R, Liu CH, Lin SS, Wang HC. A novel C-type lectin LvCTL 4.2 has antibacterial activity but facilitates WSSV infection in shrimp (L. vannamei). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104239. [PMID: 34425174 DOI: 10.1016/j.dci.2021.104239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Glycan-binding protein C-type lectin (CTL), one of the pattern recognition receptors (PRRs), binds to carbohydrates on the surface of pathogens and elicits antimicrobial responses in shrimp innate immunity. The objective was to identify and characterize a novel C-type lectin LvCTL 4.2 in Litopenaeus vannamei. The LvCTL 4.2 protein consisted of a signal peptide at the N terminal and a carbohydrate-recognition domain (CRD) with a mutated mannose-binding (Glu-Pro-Ala; EPA) motif at the C terminal, and thereby has a putative secreted mannose-binding C-type lectin architecture. LvCTL 4.2 was highly expressed in nervous tissue and stomach. Infection with white spot syndrome virus (WSSV) induced expression of LvCTL 4.2 in shrimp stomach at 12 h post infection. Conversely, there was no obvious upregulation in expression of LvCTL 4.2 in stomach or hepatopancreas of shrimp with AHPND (acute hepatopancreas necrosis disease). Pathogen binding assays confirmed recombinant LvCTL 4.2 protein (rLvCTL 4.2) had significant binding ability with the WSSV virion, Gram-negative, and Gram-positive bacteria. Moreover, rLvCTL 4.2 had strong growth inhibition of Vibrio parahaemolyticus. Silencing LvCTL 4.2 suppressed WSSV replication, whereas pretreatment of WSSV with rLvCTL 4.2 facilitated viral replication in vivo. In conclusion, LvCTL 4.2 acted as a PRR that inhibited AHPND-causing bacteria, but facilitated WSSV pathogenesis.
Collapse
Affiliation(s)
- Yu-Hsun Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
Murugesan AK, Gunasagaran KS. Purification and characterization of a synergistic bioactive lectin from Pleurotus flabellatus (PFL-L) with potent antibacterial and in-vitro radical scavenging activity. Anal Biochem 2021; 635:114450. [PMID: 34767809 DOI: 10.1016/j.ab.2021.114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Lectin is a carbohydrate-binding protein, which exhibits a plethora of biological properties such as antimicrobial, antifungal, and anticancer activities. In the present study, lectin, with an antibacterial and antioxidant potential, was purified from the oyster mushroom Pleurotus flabellatus. The P. flabellatus Lectin (PFL-L) was purified by using a DEAE - cellulose anion exchange chromatography followed by gel-filtration chromatography. The PFL-L was characterized by CD, HPLC, and MALDI-TOF/MS. The purity of PFL-L increased to 62.40% with the recovery of hemagglutinating activity (HA) by 12.12%. On SDS - PAGE, the PFL-L gave a single band of 18 kDa. PFL-L, consisting of d-galactose, exhibits a strong hemagglutinating activity. It was stable at pH (6.0-7.5) and temperature (10-20 °C) in addition to having extensive hemagglutinating activity. PFL-L enhanced the HA with the use of different metal ions namely Mg2+, Ca2+, and Fe2+. The study of bacterial growth inhibition led to the inference that the PFL-L was more potent against gram-negative bacteria. PFL-L showed the highest radical scavenging activity for the DPPH assay at 100 μg/mL (89.9 ± 2.53%). The highest antioxidant activities with IC50 values (for DPPH assay) of 53.96 μg/mL were determined for PFL-L and the present study shows that lectin from P. flabellatus manifested distinctive character and potentially exploitable activities.
Collapse
Affiliation(s)
- Arul Kumar Murugesan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, Pin Code - 600025, India; Department of Botany, Bharathidasan University, Tiruchrappalli, Pin Code - 620024, India.
| | - Karuna Sagaran Gunasagaran
- Environment Information System (ENVIS-Centre), Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, Pin Code - 600025, India
| |
Collapse
|
22
|
Goumenou A, Delaunay N, Pichon V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front Mol Biosci 2021; 8:746822. [PMID: 34778373 PMCID: PMC8585745 DOI: 10.3389/fmolb.2021.746822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Glycosylation is one of the most significant post-translational modifications occurring to proteins, since it affects some of their basic properties, such as their half-life or biological activity. The developments in analytical methodologies has greatly contributed to a more comprehensive understanding of the quantitative and qualitative characteristics of the glycosylation state of proteins. Despite those advances, the difficulty of a full characterization of glycosylation still remains, mainly due to the complexity of the glycoprotein and/or glycopeptide mixture especially when they are present in complex biological samples. For this reason, various techniques that allow a prior selective enrichment of exclusively glycosylated proteins or glycopeptides have been developed in the past and are coupled either on- or off- line with separation and detection methods. One of the most commonly implemented enrichment methods includes the use of lectin proteins immobilized on various solid supports. Lectins are a group of different, naturally occurring proteins that share a common characteristic, which concerns their affinity for specific sugar moieties of glycoproteins. This review presents the different formats and conditions for the use of lectins in affinity chromatography and in solid phase extraction, including their use in dispersive mode, along with the recent progress made on either commercial or home-made lectin-based affinity sorbents, which can lead to a fast and automated glycosylation analysis.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France.,Sorbonne University, Paris, France
| |
Collapse
|
23
|
Carneiro DC, Fernandez LG, Monteiro-Cunha JP, Benevides RG, Cunha Lima ST. A patent review of the antimicrobial applications of lectins: Perspectives on therapy of infectious diseases. J Appl Microbiol 2021; 132:841-854. [PMID: 34416098 DOI: 10.1111/jam.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Patents of lectins with antiviral, antibacterial and antifungal applications were searched and reviewed. Lectins are proteins that reversibly bind to specific carbohydrates and have the potential for therapy of infectious diseases as biopharmaceuticals, biomedical tools or in drug design. Given the rising concerns over drug resistance and epidemics, our patent review aims to add information, open horizons and indicate our view of the future perspectives about the antimicrobial applications of lectins. Patents with publications until December 2020 were retrieved from Espacenet using defined search terms and Boolean operators. The documents were used to identify the geographical and temporal distribution of the patents, characterize their lectins, and classify and summarize their antiviral, antibiotic and antifungal applications. Lectins are promising antiviral agents against viruses with epidemics and drug resistance concerns. Mannose-binding lectins were the most suggested antiviral agents since glycans with mannose residues are commonly involved in viral entry mechanisms. They were also immobilized onto surfaces to trap viral particles and inhibit their spread and replication. Many patents described the extraction, isolation, amino acid and nucleotide sequences, and expression vectors of lectins with antibiotic and/or antifungal activities in terms of MIC and IC50 for in vitro assays. The inventions also included lectins as biological tools in nanosensors for antibiotics susceptibility tests, drug-delivery systems for the treatment of resistant bacteria, diagnostics of viral diseases and as a vaccine adjuvant. Although research and development of new medicines is highly expensive, antimicrobial lectins may be worth investments given the emergence of epidemics and drug resistance. For this purpose, less invasive routes should be developed as alternatives to the parenteral administration of biologics. While anti-glycan neutralizing antibodies are difficult to develop due to the low immunogenicity of carbohydrates, lectins can be produced more easily and have a broad-spectrum activity. Protein engineering technologies may make the antimicrobial applications of lectins more successful.
Collapse
Affiliation(s)
- Diego C Carneiro
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luzimar G Fernandez
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Joana P Monteiro-Cunha
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Raquel G Benevides
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Brazil
| | | |
Collapse
|
24
|
Dong X, Si J, Zhang G, Shen Z, Zhang L, Sheng K, Wang J, Kong X, Zha X, Wang Y. The role of Jacalin-related lectin gene AOL_s00083g511 in the development and pathogenicity of the nematophagous fungus Arthrobotrys oligospora. J Microbiol 2021; 59:736-745. [PMID: 34219209 DOI: 10.1007/s12275-021-1029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022]
Abstract
Arthrobotrys oligospora is a model species of nematophagous fungi and has great potential for the biological control of nematode diseases. Lectin is a protein that binds to carbohydrates and their complexes with high specificity, which mediates recognition events in various physiological and pathological processes. This study aimed to investigate the role of the Jacalin-related lectin (JRL) gene, AOL_s00083g511, in A. oligospora development. Through a homology recombination approach, we obtained the AOL_s00083g511 knockout mutant strain (Ag511). Next, the biological characteristics of the Ag511 mutant strain, including growth rate, conidia germination rate, adaptation to environmental stresses, and nematocidal activity, were compared with those of the wild-type (WT) strain. The results showed that the JRL gene AOL_s00083g511 did not affect fungal growth, conidia germination, 3D-trap formation, and the ability of A. oligospora to prey on nematodes significantly. We speculate that this phenomenon may be caused by a loss of the key β1-β2 loops in the AOL_ s00083g511-encoded JRL domain and an intrinsic genetic compensation of AOL_s00083g511 in this fungus. The growth rates of both strains on high salt or surfactant media were similar; however, in the strong oxidation medium, the growth rate of the Ag511 mutant was significantly lower than that of the WT strain, indicating that AOL_s00083g511 might play a role in oxidative stress resistance. These findings provide a basis for further analysis of the related functions of the JRL gene in A. oligospora and their potential roles in the biological control of nematodes in the future.
Collapse
Affiliation(s)
- Xinyuan Dong
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Jiali Si
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Zhen Shen
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Li Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, 230601, P. R. China. .,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, P. R. China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China. .,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
25
|
Pruksaphon K, Intaramat A, Simsiriwong P, Mongkolsuk S, Ratanabanangkoon K, Nosanchuk JD, Kaltsas A, Youngchim S. An inexpensive point-of-care immunochromatographic test for Talaromyces marneffei infection based on the yeast phase specific monoclonal antibody 4D1 and Galanthus nivalis agglutinin. PLoS Negl Trop Dis 2021; 15:e0009058. [PMID: 33945531 PMCID: PMC8096094 DOI: 10.1371/journal.pntd.0009058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungus that causes opportunistic systemic mycoses in patients with AIDS or other immunodeficiency syndromes. The purpose of this study was to develop an immunochromatographic strip test (ICT) based on a solid phase sandwich format immunoassay for the detection of T. marneffei antigens in clinical urine specimens. The T. marneffei yeast phase specific monoclonal antibody 4D1 (MAb4D1) conjugated with colloidal gold nanoparticle was used as a specific signal reporter. Galanthus nivalis Agglutinin (GNA) was adsorbed onto nitrocellulose membrane to serve as the test line. Similarly, a control line was created above the test line by immobilization of rabbit anti-mouse IgG. The immobilized GNA served as capturing molecule and as non-immune mediated anti-terminal mannose of T. marneffei antigenic mannoprotein. The MAb4D1–GNA based ICT showed specific binding activity with yeast phase antigen of T. marneffei, and it did not react with other common pathogenic fungal antigens. The limit of detection of this ICT for T. marneffei antigen spiked in normal urine was approximately 0.6 μg/ml. The diagnostic performance of the ICT was validated using 341 urine samples from patents with culture- confirmed T. marneffei infection and from a control group of healthy individuals and patients with other infections in an endemic area. The ICT exhibited 89.47% sensitivity, 100% specificity, and 97.65% accuracy. Our results demonstrate that the urine-based GNA–MAb4D1 based ICT produces a visual result within 30 minutes and that the test is highly specific for the diagnosis of T. marneffei infection. The findings validate the deployment of the ICT for clinical use. Talaromycosis (Penicilliosis marneffei) is a neglected disease that causes an opportunistic systemic mycoses in AIDS and other immune-deficient patients living in Southeast Asia, China and the Indian subcontinent. Although laboratory culture remains a gold standard diagnostic method, it lacks sensitivity and is time-consuming, which results in delayed patient’s treatment and needed care. In this study, we develop an immunochromatographic strip test (ICT) by utilizing a yeast phase specific monoclonal antibody 4D1 and Galanthus nivalis agglutinin for detection of T. marneffei antigens in clinical urine specimens. Our data showed that the assay exhibited high sensitivity (89.47%) and specificity (100%), with its result available within 30 minutes. In addition, this diagnostic assay is inexpensive, reproducible, and simple to perform. Therefore, the T. marneffei ICT should be considered for clinical application in the context of rapid and affordable point-of-care diagnostic test to reduce the burden of talaromycosis mortality in patients in low resource countries.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Graduate Program in Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Akarin Intaramat
- Translational Research Unit, Laboratory of Immunology and Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Pavinee Simsiriwong
- Translational Research Unit, Laboratory of Immunology and Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Translational Research Unit, Laboratory of Immunology and Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anna Kaltsas
- Department of Medicine, Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, United States of America
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, United States of America
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
26
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
27
|
Nagai-Okatani C, Zou X, Fujita N, Sogabe I, Arakawa K, Nagai M, Angata K, Zhang Y, Aoki-Kinoshita KF, Kuno A. LM-GlycomeAtlas Ver. 2.0: An Integrated Visualization for Lectin Microarray-based Mouse Tissue Glycome Mapping Data with Lectin Histochemistry. J Proteome Res 2021; 20:2069-2075. [PMID: 33657805 DOI: 10.1021/acs.jproteome.0c00907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Laser microdissection-assisted lectin microarray has been used to obtain quantitative and qualitative information on glycans on proteins expressed in microscopic regions of formalin-fixed paraffin-embedded tissue sections. For the effective visualization of this "tissue glycome mapping" data, a novel online tool, LM-GlycomeAtlas (https://glycosmos.org/lm_glycomeatlas/index), was launched in the freely available glycoscience portal, the GlyCosmos Portal (https://glycosmos.org). In LM-GlycomeAtlas Version 1.0, nine tissues from normal mice were used to provide one data set of glycomic profiles. Here we introduce an updated version of LM-GlycomeAtlas, which includes more spatial information. We designed it to deposit multiple data sets of glycomic profiles with high-resolution histological images, which included staining images with multiple lectins on the array. The additionally implemented interfaces allow users to display multiple histological images of interest (e.g., diseased and normal mice), thereby facilitating the evaluation of tissue glycomic profiling and glyco-pathological analysis. Using these updated interfaces, 451 glycomic profiling data and 42 histological images obtained from 14 tissues of normal and diseased mice were successfully visualized. By easy integration with other tools for glycoproteomic data and protein glycosylation machinery, LM-GlycomeAtlas will be one of the most valuable open resources that contribute to both glycoscience and proteomics communities.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Noriaki Fujita
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Isami Sogabe
- Glycan & Life Science Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Kouiti Arakawa
- Glycan & Life Science Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Misugi Nagai
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyohiko Angata
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kiyoko F Aoki-Kinoshita
- Glycan & Life Science Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
28
|
Pereira Júnior LC, Nascimento FG, Oliveira SRBD, Lima GC, Chagas FDS, Sombra VG, Feitosa JPA, Soriano EM, Souza MHLP, Zocolo GJ, Silva LMA, de Paula RCM, Damasceno ROS, Freitas ALP. Protective effect against gastric mucosa injury of a sulfated agaran from Acanthophora spicifera. Carbohydr Polym 2021; 261:117829. [PMID: 33766334 DOI: 10.1016/j.carbpol.2021.117829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, a polysaccharide from marine alga Acanthophora spicifera (PAs) was isolated and structurally characterized. Its protective potential against chemically-induced gastric mucosa injury was evaluated. The gel permeation chromatography experiments and spectroscopy spectrum showed that PAs is a sulfated polysaccharide with a high molecular mass (6.98 × 105g/mol) and degree of sulfation of 1.23, exhibiting structural characteristic typical of an agar-type polysaccharide. Experimental results demonstrated that PAs reduced the hemorrhagic gastric injury, in a dose-dependent manner. Additionally, PAs reduced the intense gastric oxidative stress, measured by glutathione (GSH) and malondialdehyde (MDA) levels. PAs also prevented the reduction of mucus levels adhered to the gastric mucosa, promoted by the aggressive effect of ethanol. In summary, the sulfated polysaccharide from A. spicifera protected the gastric mucosa through the prevention of lipid peroxidation and enhanced the defense mechanisms of the gastric mucosa, suggesting as a promising functional food as gastroprotective agent.
Collapse
Affiliation(s)
- Lindauro C Pereira Júnior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | | | - Samara R B D Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Glauber C Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil; Centro Universitário INTA (UNINTA), 62500-000, Itapipoca, CE, Brazil
| | - Francisco Diego S Chagas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Venicios G Sombra
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Judith P A Feitosa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Eliane M Soriano
- Departamento de Oceanografia e Limnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Marcellus H L P Souza
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | | | - Lorena M A Silva
- Embrapa Agroindústria Tropical, 60511-110, Fortaleza, CE, Brazil
| | - Regina C M de Paula
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Renan O S Damasceno
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, 50670-420, Recife, PE, Brazil.
| | - Ana Lúcia P Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| |
Collapse
|
29
|
Fan R, Han X, Gong Y, He L, Xue Z, Yang Y, Sun L, Fan D, You Y, Meng F, Yan X, Zhang M, Zhang J. Alterations of Fucosyltransferase Genes and Fucosylated Glycans in Gastric Epithelial Cells Infected with Helicobacter pylori. Pathogens 2021; 10:pathogens10020168. [PMID: 33557187 PMCID: PMC7913934 DOI: 10.3390/pathogens10020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori (H. pylori) adhesion to human gastric epithelial cells is closely linked with fucosylated glycans. Therefore, investigation of fucosylation in the interaction of gastric epithelial cells with H. pylori is critical. In this study we used lectin microarrays to detect the expression of fucosylated glycans in gastric epithelial cells (GES-1) infected with H. pylori strains isolated from patients with different diseases including chronic gastritis, duodenal ulcers, and gastric cancer (each containing two strains) at 4 h. In addition, we investigated the time-course expression of fucosyltransferase (FUT) 1–6 genes in GES-1 cells stimulated with H. pylori strains at 0.5–8 h. At 4 h post-infection, Lotus, AAA, BC2LCN, PA-IIL, CNL and ACG lectins had increased signals in H. pylori-infected GES-1 cells compared to uninfected cells. Higher expression of FUT1 and FUT2 was detected in all H. pylori-infected GES-1 cells within 2 h, regardless of the H. pylori strain. In particular, the expression of FUT2 was higher in H. pylori-infected GES-1 cells with a higher fold change in levels of BC2LCN lectin specific to α1-2 linked fucose (Fuc) at 4 h. The results suggest that the high levels of α1, 2-linked Fuc synthesized by FUT1/2, might play a role in the preliminary stage of H. pylori infection. This provides us with pivotal information to understand the adhesion of H. pylori to human gastric epithelial cells.
Collapse
|
30
|
Mi F, Guan M, Hu C, Peng F, Sun S, Wang X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 2021; 146:429-443. [DOI: 10.1039/d0an01459a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
- Xinjiang bingtuan Xingxin Vocational and Technical College
| | - Ming Guan
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Fei Peng
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Shijiao Sun
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| |
Collapse
|
31
|
Sá SR, Silva Junior AG, Lima-Neto RG, Andrade CA, Oliveira MD. Lectin-based impedimetric biosensor for differentiation of pathogenic candida species. Talanta 2020; 220:121375. [DOI: 10.1016/j.talanta.2020.121375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/06/2023]
|
32
|
Yaghoubi M, Rahimi F, Negahdari B, Rezayan AH, Shafiekhani A. A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode. Sci Rep 2020; 10:16017. [PMID: 32994483 PMCID: PMC7525577 DOI: 10.1038/s41598-020-72457-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Accuracy and speed of detection, along with technical and instrumental simplicity, are indispensable for the bacterial detection methods. Porous silicon (PSi) has unique optical and chemical properties which makes it a good candidate for biosensing applications. On the other hand, lectins have specific carbohydrate-binding properties and are inexpensive compared to popular antibodies. We propose a lectin-conjugated PSi-based biosensor for label-free and real-time detection of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by reflectometric interference Fourier transform spectroscopy (RIFTS). We modified meso-PSiO2 (10–40 nm pore diameter) with three lectins of ConA (Concanavalin A), WGA (Wheat Germ Agglutinin), and UEA (Ulex europaeus agglutinin) with various carbohydrate specificities, as bioreceptor. The results showed that ConA and WGA have the highest binding affinity for E. coli and S. aureus respectively and hence can effectively detect them. This was confirmed by 6.8% and 7.8% decrease in peak amplitude of fast Fourier transform (FFT) spectra (at 105 cells mL−1 concentration). A limit of detection (LOD) of about 103 cells mL−1 and a linear response range of 103 to 105 cells mL−1 were observed for both ConA-E. coli and WGA-S. aureus interaction platforms that are comparable to the other reports in the literature. Dissimilar response patterns among lectins can be attributed to the different bacterial cell wall structures. Further assessments were carried out by applying the biosensor for the detection of Klebsiella aerogenes and Bacillus subtilis bacteria. The overall obtained results reinforced the conjecture that the WGA and ConA have a stronger interaction with Gram-positive and Gram-negative bacteria, respectively. Therefore, it seems that specific lectins can be suggested for bacterial Gram-typing or even serotyping. These observations were confirmed by the principal component analysis (PCA) model.
Collapse
Affiliation(s)
- Mona Yaghoubi
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fereshteh Rahimi
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | |
Collapse
|
33
|
Hassan SU, Donia A, Sial U, Zhang X, Bokhari H. Glycoprotein- and Lectin-Based Approaches for Detection of Pathogens. Pathogens 2020; 9:pathogens9090694. [PMID: 32847039 PMCID: PMC7558909 DOI: 10.3390/pathogens9090694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
Infectious diseases alone are estimated to result in approximately 40% of the 50 million total annual deaths globally. The importance of basic research in the control of emerging and re-emerging diseases cannot be overemphasized. However, new nanotechnology-based methodologies exploiting unique surface-located glycoproteins or their patterns can be exploited to detect pathogens at the point of use or on-site with high specificity and sensitivity. These technologies will, therefore, affect our ability in the future to more accurately assess risk. The critical challenge is making these new methodologies cost-effective, as well as simple to use, for the diagnostics industry and public healthcare providers. Miniaturization of biochemical assays in lab-on-a-chip devices has emerged as a promising tool. Miniaturization has the potential to shape modern biotechnology and how point-of-care testing of infectious diseases will be performed by developing smart microdevices that require minute amounts of sample and reagents and are cost-effective, robust, and sensitive and specific. The current review provides a short overview of some of the futuristic approaches using simple molecular interactions between glycoproteins and glycoprotein-binding molecules for the efficient and rapid detection of various pathogens at the point of use, advancing the emerging field of glyconanodiagnostics.
Collapse
Affiliation(s)
- Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Correspondence: (S.H); (H.B.)
| | - Ahmed Donia
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
| | - Usman Sial
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Habib Bokhari
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
- Correspondence: (S.H); (H.B.)
| |
Collapse
|
34
|
El-Araby MM, El-Shatoury EH, Soliman MM, Shaaban HF. Characterization and antimicrobial activity of lectins purified from three Egyptian leguminous seeds. AMB Express 2020; 10:90. [PMID: 32415415 PMCID: PMC7229064 DOI: 10.1186/s13568-020-01024-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Lectins are carbohydrate-binding proteins that play vital roles in many biological processes. In this study, lectins from three Egyptian cultivars (fava bean, lentil, and pea) were isolated by precipitation with different concentrations of ammonium sulfate. The purification process was performed by affinity chromatography using mannose agarose. The highest concentration of purified lectins (1.48 mg/g) was recorded in pea at 90% saturation. SDS-PAGE of the purified lectins revealed bands of low molecular weights (14 to 18 kDa). The complete amino acid sequences of purified lectins were assessed using mass spectrometry (MS), which indicated the presence of the peptides favin, p54, and psl in fava bean, lentil, and pea, respectively. The lectins showed antimicrobial activity. The highest inhibition zone (35 mm) was measured with lectin purified from lentil against Staphylococcus aureus ATCC 6538, followed by pea lectin (33.4 mm) against Pseudomonas aeruginosa ATCC 10145. To the best of our knowledge, the legume lectins in this study are the first lectins to exhibit antifungal activity against Candida albicans, with the maximum inhibition zone (25.1 mm) observed with purified lectins of fava bean. Additionally, the first scanning electron microscope (SEM) images showing agglutination and clumping of microbial cells exposed to tested lectins are provided. These findings proved that Egyptian legume lectins are distinct from other lectins reported in previous studies and demonstrated their potential as antimicrobial agents against human pathogenic microorganisms.
Collapse
|
35
|
Carneiro-Goetten JOL, Rodrigues BS, Nogoceke RA, do Nascimento TG, Moreno-Amaral AN, Stuelp-Campelo PM, Elifio-Esposito S. Neutrophils activated by BJcuL, a C-type lectin isolated from Bothrops jararacussu venom, decrease the invasion potential of neuroblastoma SK-N-SH cells in vitro. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190073. [PMID: 32425992 PMCID: PMC7216824 DOI: 10.1590/1678-9199-jvatitd-2019-0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/01/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Neuroblastoma is a pediatric tumor with a mortality rate of 40% in the most aggressive cases. Tumor microenvironment components as immune cells contribute to the tumor progression; thereby, the modulation of immune cells to a pro-inflammatory and antitumoral profile could potentialize the immunotherapy, a suggested approach for high-risk patients. Preview studies showed the antitumoral potential of BJcuL, a C- type lectin isolated from Bothrops jararacussu venom. It was able to induce immunomodulatory responses, promoting the rolling and adhesion of leukocytes and the activation of neutrophils. METHODS SK-N-SH cells were incubated with conditioned media (CM) obtained during the treatment of neutrophils with BJcuL and fMLP, a bacteria-derived peptide highly effective for activating neutrophil functions. Then we evaluated the effect of the same stimulation on the co-cultivation of neutrophils and SK-N-SH cells. Tumor cells were tested for viability, migration, and invasion potential. RESULTS In the viability assay, only neutrophils treated with BJcuL (24 h) and cultivated with SK-N-SH were cytotoxic. Migration of tumor cells decreased when incubated directly (p < 0.001) or indirectly (p < 0.005) with untreated neutrophils. When invasion potential was evaluated, neutrophils incubated with BJcuL reduced the total number of colonies of SK-N-SH cells following co-cultivation for 24 h (p < 0.005). Treatment with CM resulted in decreased anchorage-free survival following 24 h of treatment (p < 0.001). CONCLUSION Data demonstrated that SK-N-SH cells maintain their migratory potential in the face of neutrophil modulation by BJcuL, but their invasive capacity was significantly reduced.
Collapse
Affiliation(s)
| | - Bruna Santos Rodrigues
- Escola de Ciências da Vida, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, PR, Brazil
| | - Rodrigo Amauri Nogoceke
- Escola de Ciências da Vida, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, PR, Brazil
| | | | - Andrea Novais Moreno-Amaral
- Programa de Pós-graduação em Ciências da Saúde, Pontifícia
Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | | | - Selene Elifio-Esposito
- Escola de Ciências da Vida, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, PR, Brazil
| |
Collapse
|
36
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
37
|
Cavada BS, Osterne VJS, Oliveira MV, Pinto-Junior VR, Silva MTL, Bari AU, Lima LD, Lossio CF, Nascimento KS. Reviewing Mimosoideae lectins: A group of under explored legume lectins. Int J Biol Macromol 2020; 154:159-165. [PMID: 32184140 DOI: 10.1016/j.ijbiomac.2020.03.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023]
Abstract
Lectins are proteins capable of specific and reversible binding to mono- and/or oligosaccharides, and within this group, Legume lectins are the most studied. However, most of these studies focus on the Papilionoideae subfamily, with Caesalpinioideae and Mimosoideae lectins being significantly less explored in the literature. The Mimosoideae subfamily consists of at least 79 genera and 3275 species, but, to date, only about 14 lectins have been purified, a fact which shows the lack of studies for this group. Based on their purification protocols, as well as physicochemical and structural properties, Mimosoideae lectins are very heterogeneous. Despite the few studies, a wide variety of biological activities have been tested, including, for example, inflammatory, anticancer, antibacterial, and antifungal. In this context, the present review aims to summarize the available data regarding the purification, physicochemical and structural properties, as well as biological activities, of lectins extracted from plants of the Mimosoideae subfamily in order to bring more insight to researchers interested in further exploring the potential of these molecules.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | | | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | - Alfa Umaro Bari
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Lara Dias Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | |
Collapse
|
38
|
Nakagawa Y. Paving the Way for Practical Use of Sugar-Binding Natural Products as Lectin Mimics in Glycobiological Research. Chembiochem 2020; 21:1567-1572. [PMID: 32012428 DOI: 10.1002/cbic.201900781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Pradimicins (PRMs) constitute an exceptional class of natural products that show Ca2+ -dependent recognition of d-mannose (Man). In addition to therapeutic uses as antifungal drugs, the application of PRMs as lectin mimics for glycobiological research has been attracting considerable interest, since the emerging biological roles of Man-containing glycans have been highlighted. However, only a few attempts have been made to use PRMs for glycobiological purposes. The limited use of PRMs is primarily due to the early assumption that the readily modifiable carboxyl group of PRMs is involved in Ca2+ binding, and thus, not available to prepare research tools. Recently, this assumption has been disproved by structural elucidation of the Ca2+ complex of PRMs, which paves the way for designing carboxyl group modified derivatives of PRMs for research use. This article outlines studies related to Ca2+ -mediated Man binding of PRMs and discusses their application for glycobiology.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
39
|
Cervantes-Jiménez R, Sánchez-Segura L, Estrada-Martínez LE, Topete-Camacho A, Mendiola-Olaya E, Rosas-Escareño AN, Saldaña-Gutiérrez C, Figueroa-Cabañas ME, Dena-Beltrán JL, Kuri-García A, Blanco-Labra A, García-Gasca T. Quantum Dot Labelling of Tepary Bean ( Phaseolus acutifolius) Lectins by Microfluidics. Molecules 2020; 25:E1041. [PMID: 32110921 PMCID: PMC7179211 DOI: 10.3390/molecules25051041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
Lectins are bioactive proteins with the ability to recognize cell membrane carbohydrates in a specific way. Diverse plant lectins have shown diagnostic and therapeutic potential against cancer, and their cytotoxicity against transformed cells is mediated through the induction of apoptosis. Previous works have determined the cytotoxic activity of a Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) and its anti-tumorigenic effect on colon cancer. In this work, lectins from the TBLF were additionally purified by ionic-exchange chromatography. Two peaks with agglutination activity were obtained: one of them was named TBL-IE2 and showed a single protein band in two-dimensional electrophoresis; this one was thus selected for coupling to quantum dot (QD) nanoparticles by microfluidics (TBL-IE2-QD). The microfluidic method led to low sample usage, and resulted in homogeneous complexes, whose visualization was achieved using multiphoton and transmission electron microscopy. The average particle size (380 nm) and the average zeta potential (-18.51 mV) were determined. The cytotoxicity of the TBL-IE2 and TBL-IE2-QD was assayed on HT-29 colon cancer cells, showing no differences between them (p ≤ 0.05), where the LC50 values were 1.0 × 10-3 and 1.7 × 10-3 mg/mL, respectively. The microfluidic technique allowed control of the coupling between the QD and the protein, substantially improving the labelling process, providing a rapid and efficient method that enabled the traceability of lectins. Future studies will focus on the potential use of the QD-labelled lectin to recognize tumor tissues.
Collapse
Affiliation(s)
- Ricardo Cervantes-Jiménez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Laura Elena Estrada-Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Antonio Topete-Camacho
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Elizabeth Mendiola-Olaya
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Abraham Noé Rosas-Escareño
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Carlos Saldaña-Gutiérrez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Mónica Eugenia Figueroa-Cabañas
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - José Luis Dena-Beltrán
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Aarón Kuri-García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| |
Collapse
|
40
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
41
|
Hamorsky KT, Kouokam JC, Dent MW, Grooms TN, Husk AS, Hume SD, Rogers KA, Villinger F, Morris MK, Hanson CV, Matoba N. Engineering of a Lectibody Targeting High-Mannose-Type Glycans of the HIV Envelope. Mol Ther 2019; 27:2038-2052. [PMID: 31471224 PMCID: PMC6839005 DOI: 10.1016/j.ymthe.2019.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022] Open
Abstract
High-mannose-type glycans (HMGs) are aberrantly enriched on HIV envelope glycoproteins. However, there is currently no drug selectively targeting HIV-associated HMGs. Here, we describe a novel HMG-targeting "lectibody," a recombinant Fc-fusion protein comprising human IgG1 Fc and a novel actinohivin lectin variant (Avaren) obtained by structure-guided modifications for improved overall surface charge properties (AvFc). AvFc was engineered and produced using a rapid and scalable plant-based transient overexpression system. The lectibody exhibited potent antiviral activity against HIV-1 groups M and O primary viruses, as well as HIV-2 and simian immunodeficiency virus (SIV) strains, without affecting normal human blood cells. Furthermore, the lectibody induced Fc-mediated cell killing activity against HIV-1-infected cells and selectively recognized SIVmac239-infected macaque mesenteric lymph node cells in vitro. AvFc showed an extended serum half-life in rats and rhesus macaques, while no discernible toxicity was observed upon repeated systemic dosing in mice. These results highlight AvFc's potential as a biotherapeutic targeting HIV-associated HMGs of cell-free virions, as well as productively infected cells, providing a foundation for new anti-HIV strategies. Efficient and cost-effective bioproduction in greenhouse facilities may open unique possibilities for further development of AvFc.
Collapse
Affiliation(s)
- Krystal Teasley Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Calvin Kouokam
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew W Dent
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Tiffany N Grooms
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Adam S Husk
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Kenneth A Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | | | - Carl V Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
42
|
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2019; 18:202-215. [PMID: 31622208 PMCID: PMC7327950 DOI: 10.2174/1570159x17666191016092221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.
Collapse
Affiliation(s)
| | - Cauê Barbosa Coelho
- Programa de Pos-Graduacao em Ciencia e Tecnologia Ambiental para o Semiarido (PPGCTAS), State University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | |
Collapse
|
43
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
44
|
Whittaker K, Burgess R, Jones V, Yang Y, Zhou W, Luo S, Wilson J, Huang R. Quantitative proteomic analyses in blood: A window to human health and disease. J Leukoc Biol 2019; 106:759-775. [PMID: 31329329 DOI: 10.1002/jlb.mr1118-440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | | | | | - Shuhong Luo
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
| | | | - Ruo‐Pan Huang
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical University Guangzhou China
- Guangdong Provincial Hospital of Chinese Medicine Guangzhou China
| |
Collapse
|
45
|
Estimating protein quantities from microalgae: protein per biomass percentage, spectroscopic concentration, and lectin content. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00807-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Nakagawa Y, Doi T, Takegoshi K, Sugahara T, Akase D, Aida M, Tsuzuki K, Watanabe Y, Tomura T, Ojika M, Igarashi Y, Hashizume D, Ito Y. Molecular Basis of Mannose Recognition by Pradimicins and their Application to Microbial Cell Surface Imaging. Cell Chem Biol 2019; 26:950-959.e8. [PMID: 31031141 DOI: 10.1016/j.chembiol.2019.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Naturally occurring pradimicins (PRMs) show specific recognition of d-mannose (d-Man) in aqueous media, which has never been achieved by artificial small molecules. Although the Ca2+-mediated dimerization of PRMs is essential for their d-Man binding, the dimeric structure has yet to be elucidated, leaving the question open as to how PRMs recognize d-Man. Thus, we herein report the structural elucidation of the dimer by a combination of X-ray crystallography and solid-state NMR spectroscopy. Coupled with our previous knowledge regarding the d-Man binding geometry of PRMs, elucidation of the dimer allowed reliable estimation of the mode of d-Man binding. Based on the binding model, we further developed an azide-functionalized PRM derivative (PRM-Azide) with d-Man binding specificity. Notably, PRM-Azide stained Candida rugosa cells having mannans on their cell surface through conjugation with the tetramethylrhodamine fluorophore. The present study provides the practical demonstration that PRMs can serve as lectin mimics for use in glycobiological studies.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takashi Doi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - K Takegoshi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Sugahara
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Dai Akase
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kazue Tsuzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasunori Watanabe
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomohiko Tomura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Tobola F, Sylvander E, Gafko C, Wiltschi B. 'Clickable lectins': bioorthogonal reactive handles facilitate the directed conjugation of lectins in a modular fashion. Interface Focus 2019; 9:20180072. [PMID: 30842873 DOI: 10.1098/rsfs.2018.0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Lectins are carbohydrate-binding proteins with specificity for their target ligands. They play diverse roles in cellular recognition and signalling processes, as well as in infections and cancer metastasis. Owing to their specificity, lectins find application in biotechnology and medicine, e.g. for blood group typing, purification of glycoproteins or lipids and as markers that target cancer cells. For some applications, lectins are immobilized on a solid support, or they are conjugated with other molecules. Classical protein conjugation reactions at nucleophilic amino acids such as cysteine or lysine are often non-selective, and the site of conjugation is difficult to pre-define. Random conjugation, however, can interfere with protein function. Therefore, we sought to equip lectins with a unique reactive handle, which can be conjugated with other molecules in a pre-defined manner. We site-specifically introduced non-canonical amino acids carrying bioorthogonal reactive groups into several lectins. As a proof of principle, we conjugated these 'clickable lectins' with small molecules. Furthermore, we conjugated lectins with different ligand specificities with one another to produce superlectins. The 'clickable lectins' might be useful for any process where lectins shall be conjugated with another module in a selective, pre-defined and site-specific manner.
Collapse
Affiliation(s)
- Felix Tobola
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Elise Sylvander
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Claudia Gafko
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Birgit Wiltschi
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
48
|
Lectin-based detection of Escherichia coli and Staphylococcus aureus by flow cytometry. Arch Microbiol 2019; 201:313-324. [DOI: 10.1007/s00203-018-1613-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023]
|
49
|
Hľasová Z, Košík I, Ondrejovič M, Miertuš S, Katrlík J. Methods and Current Trends in Determination of Neuraminidase Activity and Evaluation of Neuraminidase Inhibitors. Crit Rev Anal Chem 2018; 49:350-367. [DOI: 10.1080/10408347.2018.1531692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zuzana Hľasová
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Ivan Košík
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, Maryland, USA
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
- International Centre for Applied Research and Sustainable Technology, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
50
|
PEGylation may reduce allergenicity and improve gelling properties of protein isolate from black kidney bean (Phaseolus vulgaris L.). FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|