1
|
Haupenthal J, Rafehi M, Kany AM, Lespine A, Stefan K, Hirsch AKH, Stefan SM. Target repurposing unravels avermectins and derivatives as novel antibiotics inhibiting energy-coupling factor transporters (ECFTs). Arch Pharm (Weinheim) 2024; 357:e2400267. [PMID: 38896404 DOI: 10.1002/ardp.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Energy-coupling factor transporters (ECFTs) are membrane-bound ATP-binding cassette (ABC) transporters in prokaryotes that are found in pathogens against which novel antibiotics are urgently needed. To date, just 54 inhibitors of three molecular-structural classes with mostly weak inhibitory activity are known. Target repurposing is a strategy that transfers knowledge gained from a well-studied protein family to under-studied targets of phylogenetic relation. Forty-eight human ABC transporters are known that may harbor structural motifs similar to ECFTs to which particularly multitarget compounds may bind. We assessed 31 multitarget compounds which together target the entire druggable human ABC transporter proteome against ECFTs, of which nine showed inhibitory activity (hit rate 29.0%) and four demonstrated moderate to strong inhibition of an ECFT (IC50 values between 4.28 and 50.2 µM) as well as antibacterial activity against ECFT-expressing Streptococcus pneumoniae. Here, ivermectin was the most potent candidate (MIC95: 22.8 µM), and analysis of five ivermectin derivatives revealed moxidectin as one of the most potent ECFT-targeting antibacterial agents (IC50: 2.23 µM; MIC95: 2.91 µM). Distinct molecular-structural features of avermectins and derivatives as well as the differential biological response of the hit compounds in general provided first indications with respect to the structure-activity relationships and mode of action, respectively.
Collapse
Affiliation(s)
- Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical Education Augsburg, Augsburg University Medicine, Augsburg, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Katja Stefan
- Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sven Marcel Stefan
- Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
3
|
Kadasah SF, Alqahtani AMS, Alkhammash A, Radwan MO. Beyond Psychotropic: Potential Repurposing of Fluoxetine toward Cancer Therapy. Int J Mol Sci 2024; 25:6314. [PMID: 38928021 PMCID: PMC11203592 DOI: 10.3390/ijms25126314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Drug repurposing, rebranding an existing drug for a new therapeutic indication, is deemed a beneficial approach for a quick and cost-effective drug discovery process by skipping preclinical, Phase 1 trials and pharmacokinetic studies. Several psychotropic drugs, including selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs), were studied for their potential application in different diseases, especially in cancer therapy. Fluoxetine (FLX) is one of the most prescribed psychotropic agents from the SSRIs class for the treatment of several neuropsychiatric disorders with a favorable safety profile. FLX exhibited different oncolytic effects via mechanisms distinct from its main serotonergic activity. Taking advantage of its ability to rapidly penetrate the blood-brain barrier, FLX could be particularly useful in brain tumors. This was proved by different in vitro and in vivo experiments using FLX as a monotherapy or combination with temozolomide (TMZ) or radiotherapy. In this review of the literature, we summarize the potential pleiotropic oncolytic roles of FLX against different cancers, highlighting the multifaceted activities of FLX and its ability to interrupt cancer proliferation via several molecular mechanisms and even surmount multidrug resistance (MDR). We elaborated on the successful synergistic combinations such as FXR/temozolomide and FXR/raloxifene for the treatment of glioblastoma and breast cancer, respectively. We showcased beneficial pharmaceutical trials to load FLX onto carriers to enhance its safety and efficacy on cancer cells. This is the first review article extensively summarizing all previous FLX repurposing studies for the management of cancer.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Abdulaziz M. S. Alqahtani
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Yi W, Tran-Nguyen VK, Boumendjel A. One-step synthesis of diaryloxadiazoles as potent inhibitors of BCRP. Future Med Chem 2024; 16:723-735. [PMID: 38573062 PMCID: PMC11157995 DOI: 10.4155/fmc-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Aim: BCRP plays a major role in the efflux of cytotoxic molecules, limiting their antiproliferative activity. We aimed to design and synthesize new BCRP inhibitors to render cancerous tumors more sensitive toward anticancer agents. Materials & methods: Based on our previous work, we conceived potential BCRP inhibitors derived from 1,3,4-oxadiazoles bearing two substituted phenyl rings. Results: Evaluating 19 derivatives, we found that 2,5-diaryl-1,3,4-oxadiazoles possessing methoxy groups were the most active. The highest activity was recorded with derivatives bearing three methoxy groups. The most active compound (3j) was selective in inhibiting BCRP and nontoxic as evidenced by cellular tests. Conclusion: 3j is a promising BCRP inhibitor thanks to its synthetic accessibility and biological profile.
Collapse
Affiliation(s)
- Wei Yi
- Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, Paris, 75013, France
| | | |
Collapse
|
5
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
6
|
Bin Kanner Y, Teng QX, Ganoth A, Peer D, Wang JQ, Chen ZS, Tsfadia Y. Cytotoxicity and reversal effect of sertraline, fluoxetine, and citalopram on MRP1- and MRP7-mediated MDR. Front Pharmacol 2023; 14:1290255. [PMID: 38026953 PMCID: PMC10651738 DOI: 10.3389/fphar.2023.1290255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the development of resistance to chemotherapy drugs is a major challenge in treating malignancies. In recent years, researchers have focused on understanding the mechanisms of multidrug resistance (MDR) in cancer cells and have identified the overexpression of ATP-binding cassette (ABC) transporters, including ABCC1/MRP1 and ABCC10/MRP7, as a key factor in the development of MDR. In this study, we aimed to investigate whether three drugs (sertraline, fluoxetine, and citalopram) from the selective serotonin reuptake inhibitor (SSRI) family, commonly used as antidepressants, could be repurposed as inhibitors of MRP1 and MRP7 transporters and reverse MDR in cancer cells. Using a combination of in silico predictions and in vitro validations, we analyzed the interaction of MRP1 and MRP7 with the drugs and evaluated their ability to hinder cell resistance. We used computational tools to identify and analyze the binding site of these three molecules and determine their binding energy. Subsequently, we conducted experimental assays to assess cell viability when treated with various standard chemotherapies, both with and without the presence of SSRI inhibitors. Our results show that all three SSRI drugs exhibited inhibitory/reversal effects in the presence of chemotherapies on both MRP1-overexpressed cells and MRP7-overexpressed cells, suggesting that these medications have the potential to be repurposed to target MDR in cancer cells. These findings may open the door to using FDA-approved medications in combination therapy protocols to treat highly resistant malignancies and improve the efficacy of chemotherapy treatment. Our research highlights the importance of investigating and repurposing existing drugs to overcome MDR in cancer treatment.
Collapse
Affiliation(s)
- Yuval Bin Kanner
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Assaf Ganoth
- Department of Physical Therapy, Sackler Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv, Israel
- Reichman University, Herzliya, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, George S. Wise Faculty of Life Sciences, Shmunis School for Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yossi Tsfadia
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Terkeltaub R. Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review. Drugs 2023; 83:1501-1521. [PMID: 37819612 DOI: 10.1007/s40265-023-01944-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Hyperuricemia with consequent monosodium urate crystal deposition leads to gout, characterized by painful, incapacitating inflammatory arthritis flares that are also associated with increased cardiovascular event and related mortality risk. This narrative review focuses on emerging pharmacologic urate-lowering treatment (ULT) and management strategies in gout. Undertreated, gout can progress to palpable tophi and joint damage. In oral ULT clinical trials, target serum urate of < 6.0 mg/dL can be achieved in ~ 80-90% of subjects, with flare burden reduction by 1-2 years. However, real-world ULT results are far less successful, due to both singular patient nonadherence and prescriber undertreatment, particularly in primary care, where most patients are managed. Multiple dose titrations commonly needed to optimize first-line allopurinol ULT monotherapy, and substantial potential toxicities and other limitations of approved, marketed oral monotherapy ULT drugs, promote hyperuricemia undertreatment. Common gout comorbidities with associated increased mortality (e.g., moderate-severe chronic kidney disease [CKD], type 2 diabetes, hypertension, atherosclerosis, heart failure) heighten ULT treatment complexity and emphasize unmet needs for better and more rapid clinically significant outcomes, including attenuated gout flare burden. The gout drug armamentarium will be expanded by integrating sodium-glucose cotransporter-2 (SGLT2) inhibitors with uricosuric and anti-inflammatory properties as well as clinically indicated antidiabetic, nephroprotective, and/or cardioprotective effects. The broad ULT developmental pipeline is loaded with multiple uricosurics that selectively target uric acid transporter 1 (URAT1). Evolving ULT approaches include administering selected gut anaerobic purine degrading bacteria (PDB), modulating intestinal urate transport, and employing liver-targeted xanthine oxidoreductase mRNA knockdown. Last, emerging measures to decrease the immunogenicity of systemically administered recombinant uricases should simplify treatment regimens and further improve outcomes in managing the most severe gout phenotypes.
Collapse
Affiliation(s)
- Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Chandratre S, Olsen J, Howley R, Chen B. Targeting ABCG2 transporter to enhance 5-aminolevulinic acid for tumor visualization and photodynamic therapy. Biochem Pharmacol 2023; 217:115851. [PMID: 37858868 PMCID: PMC10842008 DOI: 10.1016/j.bcp.2023.115851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
5-Aminolevulinic acid (ALA) has been approved by the U. S. FDA for fluorescence-guided resection of high-grade glioma and photodynamic therapy (PDT) of superficial skin precancerous and cancerous lesions. As a prodrug, ALA administered orally or topically is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX), the active drug with red fluorescence and photosensitizing property. Preferential accumulation of PpIX in tumors after ALA administration enables the use of ALA for PpIX-mediated tumor fluorescence diagnosis and PDT, functioning as a photo-theranostic agent. Extensive research is currently underway to further enhance ALA-mediated PpIX tumor disposition for better tumor visualization and treatment. Particularly, the discovery of PpIX as a specific substrate of ATP binding cassette subfamily G member 2 (ABCG2) opens the door to therapeutic enhancement with ABCG2 inhibitors. Studies with human tumor cell lines and human tumor samples have demonstrated ABCG2 as an important biological determinant of reduced ALA-PpIX tumor accumulation, inhibition of which greatly enhances ALA-PpIX fluorescence and PDT response. These studies strongly support targeting ABCG2 as an effective therapeutic enhancement approach. In this review, we would like to summarize current research of ABCG2 as a drug efflux transporter in multidrug resistance, highlight previous works on targeting ABCG2 for therapeutic enhancement of ALA, and provide future perspectives on how to translate this ABCG2-targeted therapeutic enhancement strategy from bench to bedside.
Collapse
Affiliation(s)
- Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jordyn Olsen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
10
|
Gao HL, Cui Q, Wang JQ, Ashby CR, Chen Y, Shen ZX, Chen ZS. The AKT inhibitor, MK-2206, attenuates ABCG2-mediated drug resistance in lung and colon cancer cells. Front Pharmacol 2023; 14:1235285. [PMID: 37521473 PMCID: PMC10373739 DOI: 10.3389/fphar.2023.1235285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: The overexpression of ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2, are two of the major mediators of multidrug resistance (MDR) in cancers. Although multiple ABCB1 and ABCG2 inhibitors have been developed and some have undergone evaluation in clinical trials, none have been clinically approved. The compound, MK-2206, an inhibitor of the protein kinases AKT1/2/3, is undergoing evaluation in multiple clinical trials for the treatment of certain types of cancers, including those resistant to erlotinib. In this in vitro study, we conducted in vitro experiments to determine if MK-2206 attenuates multidrug resistance in cancer cells overexpressing the ABCB1 or ABCG2 transporter. Methodology: The efficacy of MK-2206 (0.03-1 μM), in combination with the ABCB1 transporter sub-strates doxorubicin and paclitaxel, and ABCG2 transporter substrates mitoxantrone, SN-38 and topotecan, were determined in the cancer cell lines, KB-C2 and SW620/Ad300, which overexpress the ABCB1 transporter or H460/MX20 and S1-M1-80, which overexpress the ABCG2 transporter, respectively. The expression level and the localization of ABCG2 transporter on the cancer cells membranes were determined using western blot and immunofluorescence assays, respectively, following the incubation of cells with MK-2206. Finally, the interaction between MK-2206 and human ABCG2 transporter was predicted using computer-aided molecular modeling. Results: MK-2206 significantly increased the efficacy of anticancer compounds that were substrates for the ABCG2 but not the ABCB1 transporter. MK-2206 alone (0.03-1 μM) did not significantly alter the viability of H460/MX20 and S1-M1-80 cancer cells, which overexpress the ABCG2 transporter, compared to cells incubated with vehicle. However, MK-2206 (0.3 and 1 μM) significantly increased the anticancer efficacy of mitoxantrone, SN-38 and topotecan, in H460/MX20 and S1-M1-80 cancer cells, as indicated by a significant decrease in their IC50 values, compared to cells incubated with vehicle. MK-2206 significantly increased the basal activity of the ABCG2 ATPase (EC50 = 0.46 μM) but did not significantly alter its expression level and sub-localization in the membrane. The molecular modeling results suggested that MK-2206 binds to the active pocket of the ABCG2 transporter, by a hydrogen bond, hydrophobic interactions and π-π stacking. Conclusion: These in vitro data indicated that MK-2206 surmounts resistance to mitoxantrone, SN-38 and topotecan in cancer cells overexpressing the ABCG2 transporter. If these results can be translated to humans, it is possible that MK-2206 could be used to surmount MDR in cancer cells overexpressing the ABCG2 transporter.
Collapse
Affiliation(s)
- Hai-Ling Gao
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Yanchun Chen
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Zhi-Xin Shen
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
11
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Bo L, Wang Y, Li Y, Wurpel JND, Huang Z, Chen ZS. The Battlefield of Chemotherapy in Pediatric Cancers. Cancers (Basel) 2023; 15:cancers15071963. [PMID: 37046624 PMCID: PMC10093214 DOI: 10.3390/cancers15071963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The survival rate for pediatric cancers has remarkably improved in recent years. Conventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and middle-income countries where access to advanced treatments may be limited. The Food and Drug Administration (FDA) approved chemotherapy drugs that can be used in children have expanded, but patients still face numerous side effects from the treatment. In addition, multidrug resistance (MDR) continues to pose a major challenge in improving the survival rates for a significant number of patients. This review focuses on the severe side effects of pediatric chemotherapy, including doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN). We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce the toxicity of treatment. Additionally, the review focuses on various drug transporters found in common types of pediatric tumors, which could offer different therapeutic options.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Youyou Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
- Institute for Biotechnology, St. John’s University, Queens, NY 11439, USA
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| |
Collapse
|
13
|
Wang L, Ji H, Ni S, Xu J, Zhang Y, Zhao X, Wu X, Tian J, Chen J. Antimalarial activity and sensitization of chrysosplenetin against artemisinin-resistant genotype Plasmodium berghei K173 potentially via dual-mechanism of maintaining host P-glycoprotein homeostasis mediated by NF-κB p52 or PXR/CAR signaling pathways and regulating heme/haemozoin metabolism. Phytother Res 2023. [PMID: 36938853 DOI: 10.1002/ptr.7789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2023]
Abstract
This study investigated antimalarial efficacy and sensitization of chrysosplenetin against artemisinin-resistant Plasmodium berghei K173 and potential molecular mechanism. Our data indicated a risk of artemisinin resistance because a higher parasitaemia% and lower inhibition% under artemisinin treatment against resistant parasites than those in the sensitive groups were observed. Two non-antimalarial components, verapamil and chrysosplentin, being P-gp inhibitors, possessed a strong efficacy against resistant parasites but it was not the case for Bcrp inhibitor novobiocin. Artemisinin-chrysosplenetin combination improved artemisinin susceptibility of resistant P. berghei. Artemisinin activated intestinal P-gp and Abcb1/Abcg2 expressions and suppressed Bcrp whereas chrysosplenetin reversed them. Resistant parasite infection led to a decreased haemozoin in organs or an increased heme in peripheral bloods compared with the sensitives; however, that in Abcb1-deficient knockout (KO)-resistant mice reversely got increased or decreased versus wild type (WT)-resistant animals. Chrysosplenetin as well as rifampin (nuclear receptor agonist) increased the transcription levels of PXR/CAR while showed a versatile regulation on hepatic and enternal PXR/CAR in WT- or KO-sensitive or -resistant parasites. Oppositely, hepatic and enteric NF-κB p52 mRNA decreased conformably in WT but increased in KO-resistant mice. NF-κB pathway potentially involved in the mechanism of chrysosplenetin on inhibiting P-gp expressions while PXR/CAR play a more complicated role in this mechanism.
Collapse
Affiliation(s)
- Lirong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hongyan Ji
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shanhong Ni
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Jinjing Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuanyuan Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xuesong Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiuli Wu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jingxuan Tian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zonoses, Yangzhou, China
| |
Collapse
|
14
|
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future.
Collapse
Affiliation(s)
- Jianing Gong
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zerong Pei
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
16
|
da Costa KM, Valente RDC, da Fonseca LM, Freire-de-Lima L, Previato JO, Mendonça-Previato L. The History of the ABC Proteins in Human Trypanosomiasis Pathogens. Pathogens 2022; 11:pathogens11090988. [PMID: 36145420 PMCID: PMC9505544 DOI: 10.3390/pathogens11090988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Human trypanosomiasis affects nearly eight million people worldwide, causing great economic and social impact, mainly in endemic areas. T. cruzi and T. brucei are protozoan parasites that present efficient mechanisms of immune system evasion, leading to disease chronification. Currently, there is no vaccine, and chemotherapy is effective only in the absence of severe clinical manifestations. Nevertheless, resistant phenotypes to chemotherapy have been described in protozoan parasites, associated with cross-resistance to other chemically unrelated drugs. Multidrug resistance is multifactorial, involving: (i) drug entry, (ii) activation, (iii) metabolism and (iv) efflux pathways. In this context, ABC transporters, initially discovered in resistant tumor cells, have drawn attention in protozoan parasites, owing to their ability to decrease drug accumulation, thus mitigating their toxic effects. The discovery of these transporters in the Trypanosomatidae family started in the 1990s; however, few members were described and functionally characterized. This review contains a brief history of the main ABC transporters involved in resistance that propelled their investigation in Trypanosoma species, the main efflux modulators, as well as ABC genes described in T. cruzi and T. brucei according to the nomenclature HUGO. We hope to convey the importance that ABC transporters play in parasite physiology and chemotherapy resistance.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| | - Raphael do Carmo Valente
- Núcleo de Pesquisa Multidisciplinar em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25250-470, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| |
Collapse
|
17
|
Yang L, Wang B, Ma L, Fu P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. Front Pharmacol 2022; 13:971032. [PMID: 36016570 PMCID: PMC9395578 DOI: 10.3389/fphar.2022.971032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Hyperuricemia is a common biochemical disorder, which resulted from both excessive uric acid (UA) production and/or absolute or relative impairment of urinary UA excretion. Growing evidence has indicated that hyperuricemia is an independent risk factor for the development and progression of chronic kidney disease (CKD), causing hyperuricemia-induced CKD (hyperuricemic nephropathy, HN). The therapeutic strategy of HN is managing hyperuricemia and protecting kidney function. Adverse effects of commercial drugs make persistent treatment of HN challenging. Traditional Chinese medicine (TCM) has exact efficacy in lowering serum UA without serious adverse effects. In addition, TCM is widely applied for the treatment of CKD. This review aimed to provide an overview of efficacy and mechanisms of traditional Chinese herbs and natural products in hyperuricemia-induced CKD.
Collapse
Affiliation(s)
| | | | - Liang Ma
- *Correspondence: Liang Ma, ; Ping Fu,
| | - Ping Fu
- *Correspondence: Liang Ma, ; Ping Fu,
| |
Collapse
|
18
|
Interaction of crown ethers with the ABCG2 transporter and their implication for multidrug resistance reversal. Histochem Cell Biol 2022; 158:261-277. [PMID: 35648291 DOI: 10.1007/s00418-022-02106-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 02/03/2023]
Abstract
Overexpression of ABC transporters, such as ABCB1 and ABCG2, plays an important role in mediating multidrug resistance (MDR) in cancer. This feature is also attributed to a subpopulation of cancer stem cells (CSCs), having enhanced tumourigenic potential. ABCG2 is specifically associated with the CSC phenotype, making it a valuable target for eliminating aggressive and resistant cells. Several natural and synthetic ionophores have been discovered as CSC-selective drugs that may also have MDR-reversing ability, whereas their interaction with ABCG2 has not yet been explored. We previously reported the biological activities, including ABCB1 inhibition, of a group of adamantane-substituted diaza-18-crown-6 (DAC) compounds that possess ionophore capabilities. In this study, we investigated the mechanism of ABCG2-inhibitory activity of DAC compounds and the natural ionophores salinomycin, monensin and nigericin. We used a series of functional assays, including real-time microscopic analysis of ABCG2-mediated fluorescent substrate transport in cells, and docking studies to provide comparative aspects for the transporter-compound interactions and their role in restoring chemosensitivity. We found that natural ionophores did not inhibit ABCG2, suggesting that their CSC selectivity is likely mediated by other mechanisms. In contrast, DACs with amide linkage in the side arms demonstrated noteworthy ABCG2-inhibitory activity, with DAC-3Amide proving to be the most potent. This compound induced conformational changes of the transporter and likely binds to both Cavity 1 and the NBD-TMD interface. DAC-3Amide reversed ABCG2-mediated MDR in model cells, without affecting ABCG2 expression or localization. These results pave the way for the development of new crown ether compounds with improved ABCG2-inhibitory properties.
Collapse
|
19
|
Dobiasová S, Szemerédi N, Kučerová D, Koucká K, Václavíková R, Gbelcová H, Ruml T, Domínguez-Álvarez E, Spengler G, Viktorová J. Ketone-selenoesters as potential anticancer and multidrug resistance modulation agents in 2D and 3D ovarian and breast cancer in vitro models. Sci Rep 2022; 12:6548. [PMID: 35449387 PMCID: PMC9023544 DOI: 10.1038/s41598-022-10311-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Long-term treatment of cancer with chemotherapeutics leads to the development of resistant forms that reduce treatment options. The main associated mechanism is the overexpression of transport proteins, particularly P-glycoprotein (P-gp, ABCB1). In this study, we have tested the anticancer and multidrug resistance (MDR) modulation activity of 15 selenocompounds. Out of the tested compounds, K3, K4, and K7 achieved the highest sensitization rate in ovarian carcinoma cells (HOC/ADR) that are resistant to the action of the Adriamycin. These compounds induced oxidation stress, inhibited P-gp transport activity and altered ABC gene expression. To verify the effect of compounds, 3D cell models were used to better mimic in vivo conditions. K4 and K7 triggered the most significant ROS release. All selected selenoesters inhibited P-gp efflux in a dose-dependent manner while simultaneously altering the expression of the ABC genes, especially P-gp in paclitaxel-resistant breast carcinoma cells (MCF-7/PAX). K4, and K7 demonstrated sensitization potential in resistant ovarian spheroids. Additionally, all selected selenoesters achieved a high cytotoxic effect in 3D breast and ovarian models, which was comparable to that in 2D cultures. K7 was the only non-competitive P-gp inhibitor, and therefore appears to have considerable potential for the treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Simona Dobiasová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6725, Hungary
| | - Denisa Kučerová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Kamila Koucká
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, 100 00, Prague, Czechia.,Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00, Pilsen, Czechia
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, 100 00, Prague, Czechia.,Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00, Pilsen, Czechia
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6725, Hungary.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia.
| |
Collapse
|
20
|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem 2022; 237:114346. [DOI: 10.1016/j.ejmech.2022.114346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
21
|
Daniela SV, Gabriela OM, Andrea PM. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr Med Chem 2022; 29:4251-4281. [PMID: 35139777 DOI: 10.2174/0929867329666220209103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades, regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research about the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research of prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.
Collapse
Affiliation(s)
- Santi V Daniela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Ortega María Gabriela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Peralta Mariana Andrea
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| |
Collapse
|
22
|
Namasivayam V, Stefan K, Pahnke J, Stefan SM. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics. Comput Struct Biotechnol J 2021; 19:6490-6504. [PMID: 34976306 PMCID: PMC8666613 DOI: 10.1016/j.csbj.2021.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine-triphosphate-(ATP)-binding cassette (ABC) transporter ABCA7 is a genetic risk factor for Alzheimer's disease (AD). Defective ABCA7 promotes AD development and/or progression. Unfortunately, ABCA7 belongs to the group of 'under-studied' ABC transporters that cannot be addressed by small-molecules. However, such small-molecules would allow for the exploration of ABCA7 as pharmacological target for the development of new AD diagnostics and therapeutics. Pan-ABC transporter modulators inherit the potential to explore under-studied ABC transporters as novel pharmacological targets by potentially binding to the proposed 'multitarget binding site'. Using the recently reported cryogenic-electron microscopy (cryo-EM) structures of ABCA1 and ABCA4, a homology model of ABCA7 has been generated. A set of novel, diverse, and potent pan-ABC transporter inhibitors has been docked to this ABCA7 homology model for the discovery of the multitarget binding site. Subsequently, application of pharmacophore modelling identified the essential pharmacophore features of these compounds that may support the rational drug design of innovative diagnostics and therapeutics against AD.
Collapse
Key Words
- ABC transporter (ABCA1, ABCA4, ABCA7)
- ABC, ATP-binding cassette
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- ATP, Adenosine-triphosphate
- Alzheimer’s disease (AD)
- BBB, blood-brain barrier
- BODIPY-cholesterol, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-cholesterol
- ECD, extracellular domain
- EH, extracellular helix
- GSH, reduced glutathione
- HTS, high-throughput screening
- IC, intracellular helix
- MOE, Molecular Operating Environment
- MSD, membrane spanning domain
- Multitarget modulation (PANABC)
- NBD, nucleotide binding domain
- NBD-cholesterol, 7-nitro-2-1,3-benzoxadiazol-4-yl-cholesterol
- PDB, protein data bank
- PET tracer (PETABC)
- PET, positron emission tomography
- PLIF, protein ligand interaction
- PSO, particle swarm optimization
- Polypharmacology
- R-domain/region, regulatory domain/region
- RMSD, root mean square distance
- Rational drug design and development
- SNP, single-nucleotide polymorphism
- TM, transmembrane helix
- cryo-EM, cryogenic-electron microscopy
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
23
|
A Phenylfurocoumarin Derivative Reverses ABCG2-Mediated Multidrug Resistance In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222212502. [PMID: 34830383 PMCID: PMC8618058 DOI: 10.3390/ijms222212502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The ATP-binding cassette subfamily G member 2 (ABCG2) transporter is involved in the development of multidrug resistance in cancer patients. Many inhibitors of ABCG2 have been reported to enhance the chemosensitivity of cancer cells. However, none of these inhibitors are being used clinically. The aim of this study was to identify novel ABCG2 inhibitors by high-throughput screening of a chemical library. Among the 5812 compounds in the library, 23 compounds were selected in the first screening, using a fluorescent plate reader-based pheophorbide a (PhA) efflux assay. Thereafter, to validate these compounds, a flow cytometry-based PhA efflux assay was performed and 16 compounds were identified as potential inhibitors. A cytotoxic assay was then performed to assess the effect these 16 compounds had on ABCG2-mediated chemosensitivity. We found that the phenylfurocoumarin derivative (R)-9-(3,4-dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo [3,2-g]chromen-7-one (PFC) significantly decreased the IC50 of SN-38 in HCT-116/BCRP colon cancer cells. In addition, PFC stimulated ABCG2-mediated ATP hydrolysis, suggesting that this compound interacts with the substrate-binding site of ABCG2. Furthermore, PFC reversed the resistance to irinotecan without causing toxicity in the ABCG2-overexpressing HCT-116/BCRP cell xenograft mouse model. In conclusion, PFC is a novel inhibitor of ABCG2 and has promise as a therapeutic to overcome ABCG2-mediated MDR, to improve the efficiency of cancer chemotherapy.
Collapse
|
24
|
Namasivayam V, Silbermann K, Pahnke J, Wiese M, Stefan SM. Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA). Comput Struct Biotechnol J 2021; 19:3269-3283. [PMID: 34141145 PMCID: PMC8193046 DOI: 10.1016/j.csbj.2021.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Computer-aided pattern analysis (C@PA) was recently presented as a powerful tool to predict multitarget ABC transporter inhibitors. The backbone of this computational methodology was the statistical analysis of frequently occurring molecular features amongst a fixed set of reported small-molecules that had been evaluated toward ABCB1, ABCC1, and ABCG2. As a result, negative and positive patterns were elucidated, and secondary positive substructures could be suggested that complemented the multitarget fingerprints. Elevating C@PA to a non-statistical and exploratory level, the concluded secondary positive patterns were extended with potential positive substructures to improve C@PA's prediction capabilities and to explore its robustness. A small-set compound library of known ABCC1 inhibitors with a known hit rate for triple ABCB1, ABCC1, and ABCG2 inhibition was taken to virtually screen for the extended positive patterns. In total, 846 potential broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors resulted, from which 10 have been purchased and biologically evaluated. Our approach revealed 4 novel multitarget ABCB1, ABCC1, and ABCG2 inhibitors with a biological hit rate of 40%, but with a slightly lower inhibitory power than derived from the original C@PA. This is the very first report about discovering novel broad-spectrum inhibitors against the most prominent ABC transporters by improving C@PA.
Collapse
Key Words
- ABC transporter, ATP-binding cassette transporter
- ABCB1 (P-gp)
- ABCC1 (MRP1)
- ABCG2 (BCRP)
- ATP, adenosine-triphosphate
- Alzheimer's disease (AD)
- BCRP, breast cancer resistance protein (ABCG2)
- C@PA, computer-aided pattern analysis
- F1–5, pharmacophore features 1–5
- IC50, half-maximal inhibition concentration
- MDR, multidrug resistance
- MOE, molecular operating environment
- MRP1, multidrug resistance-associated protein 1 (ABCC1)
- Multidrug resistance (MDR)
- Multitarget fingerprints
- P-gp, P-glycoprotein (ABCB1)
- Pan-ABC inhibition / antagonism / blockage (PANABC)
- Pattern analysis (C@PA)
- SEM, standard error of the mean
- SMILES, simplified molecular input line entry specification
- Tc, Tanimotto coefficient
- Triple / multitarget / broad-spectrum / promiscuous inhibitor / antagonist
- Under-studied ABC transporters (e.g., ABCA7)
- Well-studied ABC transporters
- calcein AM, calcein acetoxymethyl
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Builging, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
25
|
Qiu Q, Zou F, Li H, Shi W, Zhou D, Zhang P, Li T, Yin Z, Cai Z, Jiang Y, Huang W, Qian H. Structure-Based Discovery of Pyrimidine Aminobenzene Derivatives as Potent Oral Reversal Agents against P-gp- and BCRP-Mediated Multidrug Resistance. J Med Chem 2021; 64:6179-6197. [PMID: 33938746 DOI: 10.1021/acs.jmedchem.1c00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overexpression of ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), is an important factor leading to multidrug resistance (MDR) in cancer treatments. Three subclasses of dual inhibitors of P-gp and BCRP were designed based on the active moieties of BCRP inhibitors, tyrosine kinase inhibitors, and P-gp inhibitors, of which compound 21 possessed low cytotoxicity, high reversal potency, and good lipid distribution coefficient. 21 also increased the accumulation of Adriamycin (ADM) and Mitoxantrone (MX), blocked Rh123 efflux, and made no change in the protein expression of P-gp and BCRP. Importantly, coadministration of 21 can significantly improve the oral bioavailability of paclitaxel (PTX). It was also demonstrated that 21 significantly inhibited the growth of K562/A02 xenograft tumors by increasing the sensitivity of ADM in vivo. In summary, 21 has the potential to overcome MDR caused by P-gp and BCRP and to improve the oral bioavailability of PTX.
Collapse
Affiliation(s)
- Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Huilan Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Daoguang Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ping Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Teng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ziyu Yin
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zilong Cai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxuan Jiang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
26
|
Ni W, Fan H, Zheng X, Xu F, Wu Y, Li X, Wang A, Huang S, Chen W, Wang S, Lu Y. Cryptotanshinone Inhibits ERα-Dependent and -Independent BCRP Oligomer Formation to Reverse Multidrug Resistance in Breast Cancer. Front Oncol 2021; 11:624811. [PMID: 33968724 PMCID: PMC8100513 DOI: 10.3389/fonc.2021.624811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Both long-term anti-estrogen therapy and estrogen receptor-negative breast cancer contribute to drug resistance, causing poor prognosis in breast cancer patients. Breast cancer resistance protein (BCRP) plays an important role in multidrug resistance. Here, we show that cryptotanshinone (CPT), an anti-estrogen compound, inhibited the oligomer formation of BCRP on the cell membrane, thus blocking its efflux function. The inhibitory effect of CPT on BCRP was dependent on the expression level of estrogen receptor α (ERα) in ERα-positive breast cancer cells. Furthermore, ERα-negative breast cancer cells with high expression of BCRP were also sensitive to CPT because CPT was able to bind to BCRP and inhibit its oligomer formation on the cell membrane, suggesting that the high level of BCRP expression is crucial for CPT to reverse drug resistance. The combination of CPT and chemotherapeutic agents displayed enhanced anticancer effects. The results suggest that CPT is a novel BCRP inhibitor via blocking the oligomer formation of BCRP on the cell membrane. CPT is able to inhibit the activity of BCRP in an ERα-dependent and -independent manner, sensitizing breast cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Wenting Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Fan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiuqin Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangming Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Shijun Wang
- Shandong Co-Innovation Center of Traditional Chinese Medicine (TCM) Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
27
|
Lee J, Kang J, Kwon NY, Sivaraman A, Naik R, Jin SY, Oh AR, Shin JH, Na Y, Lee K, Lee HJ. Dual Inhibition of P-gp and BCRP Improves Oral Topotecan Bioavailability in Rodents. Pharmaceutics 2021; 13:559. [PMID: 33921129 PMCID: PMC8071537 DOI: 10.3390/pharmaceutics13040559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
P-glycoprotein (P-gp) inhibition has been studied to overcome multidrug resistance in cancer chemotherapy but failed in clinical trials due to low/toxic effects. Recently, a dual modulation of transporters and natural derivatives have been examined to surmount this limitation. We examined breast cancer resistance protein (BCRP) inhibition in vitro and in vivo by P-gp inhibitors derived from natural compounds in previous studies. P-gp inhibitors increased the accumulation of the anticancer drug, topotecan (TPT)-a substrate of P-gp and BCRP, albeit with higher affinity for BCRP-in BCRP-overexpressing cells, resulting in cell death. These dual inhibitors, when orally co-administered with TPT, enhanced TPT bioavailability with slightly reduced total oral clearance (Clt/F) in rats. In xenograft mice, they strengthened oral TPT-induced tumor reduction with no alterations in body weight. Moreover, we investigated the effects of an oral drug formulation (Cremophor® EL, Tween® 80, and polyethylene glycol 400) on the transporters function. The excipients increased TPT accumulation in P-gp- or BCRP-overexpressing cells. Oral TPT bioavailability was higher with the formulation than with a control, as shown by the increases in the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from zero to infinity (AUCINF) (p< 0.01). Therefore, oral TPT bioavailability was enhanced by P-gp/BCRP dual inhibition, which resulted in a formulation-mediated increase in absorption and decrease in elimination, and a dual inhibitor-mediated decrease in elimination. These results suggest that the combination of dual inhibition by a natural derivative and the drug formulation can be a useful clinical approach.
Collapse
Affiliation(s)
- Jaeok Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (J.L.); (J.K.); (N.-Y.K.); (S.-Y.J.); (A.R.O.)
| | - Jiyeon Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (J.L.); (J.K.); (N.-Y.K.); (S.-Y.J.); (A.R.O.)
| | - Na-Yun Kwon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (J.L.); (J.K.); (N.-Y.K.); (S.-Y.J.); (A.R.O.)
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University, Goyang-si 10326, Korea; (A.S.); (R.N.); (K.L.)
| | - Ravi Naik
- College of Pharmacy, Dongguk University, Goyang-si 10326, Korea; (A.S.); (R.N.); (K.L.)
| | - So-Young Jin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (J.L.); (J.K.); (N.-Y.K.); (S.-Y.J.); (A.R.O.)
| | - A. Reum Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (J.L.); (J.K.); (N.-Y.K.); (S.-Y.J.); (A.R.O.)
| | - Jae-Ho Shin
- College of Pharmacy, CHA University, Pocheon-si 11160, Korea; (J.-H.S.); (Y.N.)
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon-si 11160, Korea; (J.-H.S.); (Y.N.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang-si 10326, Korea; (A.S.); (R.N.); (K.L.)
| | - Hwa-Jeong Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (J.L.); (J.K.); (N.-Y.K.); (S.-Y.J.); (A.R.O.)
| |
Collapse
|
28
|
Shi RZ, He YF, Wen J, Niu YN, Gao Y, Liu LH, Zhang XP, Wang Y, Zhang XL, Zhang HF, Chen M, Hu XL. Epithelial cell adhesion molecule promotes breast cancer resistance protein-mediated multidrug resistance in breast cancer by inducing partial epithelial-mesenchymal transition. Cell Biol Int 2021; 45:1644-1653. [PMID: 33760350 DOI: 10.1002/cbin.11598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
Overexpression of breast cancer resistance protein (BCRP) plays a crucial role in the acquired multidrug resistance (MDR) in breast cancer. The elucidation of molecular events that confer BCRP-mediated MDR is of major therapeutic importance in breast cancer. Epithelial cell adhesion molecule (EpCAM) has been implicated in tumor progression and drug resistance in various types of cancers, including breast cancer. However, the role of EpCAM in BCRP-mediated MDR in breast cancer remains unknown. In the present study, we revealed that EpCAM expression was upregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and EpCAM knockdown using siRNA reduced BCRP expression and increased the sensitivity of MCF-7/MX cells to mitoxantrone (MX). The epithelial-mesenchymal transition (EMT) promoted BCRP-mediated MDR in breast cancer cells, and EpCAM knockdown partially suppressed EMT progression in MCF-7/MX cells. In addition, Wnt/β-catenin signaling was activated in MCF-7/MX cells, and the inhibition of this signaling attenuated EpCAM and BCRP expression and partially reversed EMT. Together, this study illustrates that EpCAM upregulation by Wnt/β-catenin signaling induces partial EMT to promote BCRP-mediated MDR resistance in breast cancer cells. EpCAM may be a potential therapeutic target for overcoming BCRP-mediated resistance in human breast cancer.
Collapse
Affiliation(s)
- Rui-Zan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi-Fan He
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jie Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ya-Nan Niu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu Gao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin-Hong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuan-Ping Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu-Li Zhang
- Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui-Feng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Chen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Ling Hu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
Namasivayam V, Silbermann K, Wiese M, Pahnke J, Stefan SM. C@PA: Computer-Aided Pattern Analysis to Predict Multitarget ABC Transporter Inhibitors. J Med Chem 2021; 64:3350-3366. [PMID: 33724808 PMCID: PMC8041314 DOI: 10.1021/acs.jmedchem.0c02199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on literature reports of the last two decades, a computer-aided pattern analysis (C@PA) was implemented for the discovery of novel multitarget ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) inhibitors. C@PA included basic scaffold identification, substructure search and statistical distribution, as well as novel scaffold extraction to screen a large virtual compound library. Over 45,000 putative and novel broad-spectrum ABC transporter inhibitors were identified, from which 23 were purchased for biological evaluation. Our investigations revealed five novel lead molecules as triple ABCB1, ABCC1, and ABCG2 inhibitors. C@PA is the very first successful computational approach for the discovery of promiscuous ABC transporter inhibitors.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.,LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany.,Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Riga, Latvia.,Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.,Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway.,Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Building, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
30
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
31
|
Wang W, Liang Z, Ma P, Zhao Q, Dai M, Zhu J, Han X, Xu H, Chang Q, Zhen Y. Application of CRISPR/Cas9 System to Reverse ABC-Mediated Multidrug Resistance. Bioconjug Chem 2021; 32:73-81. [PMID: 33393280 DOI: 10.1021/acs.bioconjchem.0c00627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP-binding cassette (ABC) transporters can transport a wide range of antitumor drugs out of cells, which is the most common reason in the development of resistance to drugs. Currently, various therapeutic strategies are used to reverse MDR, among which CRISPR/Cas9 gene editing technique is expected to be an effective way. Here, we reviewed the research progress of reversing ABC-mediated drug resistance by CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Ze Liang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qi Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Mengyuan Dai
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jie Zhu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qingyan Chang
- Pharmacy Department, Dalian Sixth People Hospital of Dalian Medical University, Dalian 116031, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
32
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
33
|
Wu S, Zhang X, Dong M, Yang Z, Zhang M, Chen Q. sATP‑binding cassette subfamily G member 2 enhances the multidrug resistance properties of human nasal natural killer/T cell lymphoma side population cells. Oncol Rep 2020; 44:1467-1478. [PMID: 32945520 PMCID: PMC7448492 DOI: 10.3892/or.2020.7722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
Extranodal natural killer (NK)/T cell lymphoma, nasal type (ENKL) is a rare type of non-Hodgkin's lymphoma that is associated with limited effective treatment options and unfavorable survival rate, which is partly the result of multidrug resistance (MDR). The presence of side population (SP) cells-SNK-6/ADM-SP (SSP) cells has been previously used to explore mechanisms of drug resistance. ATP-binding cassette subfamily G member 2 (ABCG2) is a gene involved in MDR and is closely associated with SPs. However, the function of ABCG2 in SSP cells is unclear. The present study verified the high expression of ABCG2 in SSP cells. The IC50 values of doxorubicin, cytarabine, cisplatin, gemcitabine and l-asparaginase were tested to evaluate drug sensitivity in SSP cells with different levels of ABCG2 expression. ABCG2 was identified as a gene promoting in MDR. ABCG2 upregulated cell proliferation, increased clonogenicity, increased invasive ability and decreased apoptosis, in vivo and in vitro, when cells were treated with gemcitabine. To conclude, ABCG2 enhanced MDR and increased the typical biological characteristics associated with cancer cells in SP cells. With further investigation of the ABCG2 gene could have the potential to reverse MDR in ENKL.
Collapse
Affiliation(s)
- Shaoxuan Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
34
|
Hu J, Zhang H, Liu L, Han B, Zhou G, Su P. TRPS1 Confers Multidrug Resistance of Breast Cancer Cells by Regulating BCRP Expression. Front Oncol 2020; 10:934. [PMID: 32695669 PMCID: PMC7338551 DOI: 10.3389/fonc.2020.00934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) is the major obstruction in the successful treatment of breast cancer (BCa). The elucidation of molecular events that confer chemoresistance of BCa is of major therapeutic importance. Several studies have elucidated the correlation of TRPS1 and BCa. Here we focused on the role of TRPS1 in acquisition of chemoresistance, and reported a unique role of TRPS1 renders BCa cells resistant to chemotherapeutic drugs via the regulation of BCRP expression. Bioinformation analysis based on publicly available BCa data suggested that TRPS1 overexpression linked to chemoresistance. Mechanistically, TRPS1 regulated BCRP expression and efflux transportation. Overexpression of TRPS1 led to upregulation of BCRP while its inhibition resulted in repression of BCRP. The correlation of TRPS1 and BCRP was further confirmed by immunohistochemistry in 180 BCa samples. MTT assay demonstrated that manipulation of TRPS1 expression affects the chemosensitivity of BCa cells. In total, high expression of TRPS1 confers MDR of BCa which is mediated by BCRP. Our data demonstrated a new insight into mechanisms and strategies to overcome chemoresistance in BCa.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Long Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Gengyin Zhou
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
35
|
Chambers CS, Viktorová J, Řehořová K, Biedermann D, Turková L, Macek T, Křen V, Valentová K. Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1763-1779. [PMID: 30907588 DOI: 10.1021/acs.jafc.9b00694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multidrug resistance (MDR) is a major challenge for the 21th century in both cancer chemotherapy and antibiotic treatment of bacterial infections. Efflux pumps and transport proteins play an important role in MDR. Compounds displaying inhibitory activity toward these proteins are prospective for adjuvant treatment of such conditions. Natural low-cost and nontoxic flavonoids, thanks to their vast structural diversity, offer a great pool of lead structures with broad possibility of chemical derivatizations. Various flavonoids were found to reverse both antineoplastic and bacterial multidrug resistance by inhibiting Adenosine triphosphate Binding Cassette (ABC)-transporters (human P-glycoprotein, multidrug resistance-associated protein MRP-1, breast cancer resistance protein, and bacterial ABC transporters), as well as other bacterial drug efflux pumps: major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE), small multidrug resistance (SMR) and resistance-nodulation-cell-division (RND) transporters, and glucose transporters. Flavonoids and particularly flavonolignans are therefore highly prospective compounds for defying multidrug resistance.
Collapse
Affiliation(s)
- Christopher S Chambers
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Lucie Turková
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Tomáš Macek
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| |
Collapse
|
36
|
Strope JD, Peer CJ, Sissung TM, Hall OM, Huang PA, Harris EM, Gustafson KR, Henrich CJ, Sigano DM, Pauly GT, Schneider JP, Bates SE, Figg WD. Botryllamide G is an ABCG2 inhibitor that improves lapatinib delivery in mouse brain. Cancer Biol Ther 2019; 21:223-230. [PMID: 31709896 PMCID: PMC7012088 DOI: 10.1080/15384047.2019.1683324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: Transporters comprising the blood-brain barrier complicate delivery of many therapeutics to the central nervous system. The present study ascertained whether the natural product botryllamide G is viable for in vivo inhibition of ABCG2 using lapatinib as a probe for ABCB1 and ABCG2-mediated efflux from the brain. Methods: Wild-type and Mdr1a/Mdr1b (-/-) mice were treated with botryllamide G and lapatinib ("doublet therapy"), and while a separate cohort of wild-type mice was treated with botryllamide, tariquidar and lapatinib ("triplet therapy"). Results: Botryllamide G demonstrates biphasic elimination with a rapid distribution, decreasing below the in vitro IC50 of 6.9 µM within minutes, yet with a relatively slower terminal half-life (4.6 h). In Mdr1a/Mdr1b (-/-) mice, doublet therapy resulted in a significant increase in brain lapatinib AUC at 8 h (2058 h*ng/mL vs 4007 h*ng/mL; P = .031), but not plasma exposure (P = .15). No significant differences were observed after 24 h. Lapatinib brain exposure was greater through 1 h when wild-type mice were administered triplet therapy (298 h*pg/mg vs 120 h*pg/mg; P < .001), but the triplet decreased brain AUC through 24 h vs. mice administered lapatinib alone (2878 h*pg/mg vs 4461hr*ng/mL; P < .001) and did not alter the brain:plasma ratio. Conclusions: In summary, the ABCG2 inhibitor, botryllamide G, increases brain exposure to lapatinib in mice lacking Abcb1, although the combination of botryllamide G and tariquidar increases brain exposure in wild-type mice only briefly (1 h). Additional research is needed to find analogs of this compound that have better pharmacokinetics and pharmacodynamic effects on ABCG2 inhibition.
Collapse
Affiliation(s)
- Jonathan D. Strope
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
| | - Cody J. Peer
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| | - Tristan M. Sissung
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| | - O. Morgan Hall
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| | - Phoebe A. Huang
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
| | - Emily M. Harris
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
| | - Kirk R. Gustafson
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
| | - Curtis J. Henrich
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dina M. Sigano
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Gary T. Pauly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Susan E. Bates
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY, USA
| | - William D. Figg
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
37
|
Feltrin C, Oliveira Simões CM. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem Biol Interact 2019; 314:108825. [PMID: 31553897 DOI: 10.1016/j.cbi.2019.108825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.
Collapse
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
38
|
Dei S, Braconi L, Romanelli MN, Teodori E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:710-743. [PMID: 35582565 PMCID: PMC8992508 DOI: 10.20517/cdr.2019.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of chemotherapy treatment of cancer. This phenomenon is often associated with the overexpression of the ATP-binding cassette (ABC) transporters P-gp (P-glycoprotein, ABCB1), multidrug resistance-associated protein 1, ABCC1 and breast cancer resistance protein, ABCG2 (BCRP). These transporters are constitutively expressed in many tissues playing relevant protective roles by the regulation of the permeability of biological membranes, but they are also overexpressed in malignant tissues. P-gp is the first efflux transporter discovered to be involved in cancer drug resistance, and over the years, inhibitors of this pump have been disclosed to administer them in combination with chemotherapeutic agents. Three generations of inhibitors of P-gp have been examined in preclinical and clinical studies; however, these trials have largely failed to demonstrate that coadministration of pump inhibitors elicits an improvement in therapeutic efficacy of antitumor agents, although some of the latest compounds show better results. Therefore, new and innovative strategies, such as the fallback to natural products and the discover of dual activity ligands emerged as new perspectives. BCRP is the most recently ABC protein identified to be involved in multidrug resistance. It is overexpressed in several haematological and solid tumours together with P-gp, threatening the therapeutic effectiveness of different chemotherapeutic drugs. The chemistry of recently described BCRP inhibitors and dual P-gp/BCRP inhibitors, as well as their preliminary pharmacological evaluation are discussed, and the most recent advances concerning these kinds of MDR modulators are reviewed.
Collapse
Affiliation(s)
- Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
39
|
|
40
|
Rozanski M, Studzian M, Pulaski L. Direct Measurement of Kinetic Parameters of ABCG2-Dependent Transport of Natural Flavonoids Using a Fluorogenic Substrate. J Pharmacol Exp Ther 2019; 371:309-319. [DOI: 10.1124/jpet.119.261347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
|
41
|
Bhardwaj B, Baidya ATK, Amin SA, Adhikari N, Jha T, Gayen S. Insight into structural features of phenyltetrazole derivatives as ABCG2 inhibitors for the treatment of multidrug resistance in cancer. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:457-475. [PMID: 31157558 DOI: 10.1080/1062936x.2019.1615545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
ABCG2 is the principal ABC transporter involved in the multidrug resistance of breast cancer. Looking at the current demand in the development of ABCG2 inhibitors for the treatment of multidrug-resistant cancer, we have explored structural requirements of phenyltetrazole derivatives for ABCG2 inhibition by combining classical QSAR, Bayesian classification modelling and molecular docking studies. For classical QSAR, structural descriptors were calculated from the free software tool PaDEL-descriptor. Stepwise multiple linear regression (SMLR) was used for model generation. A statistically significant model was generated and validated with different parameters (For training set: r = 0.825; Q2 = 0.570 and for test set: r = 0.894, r2pred = 0.783). The predicted model was found to satisfy the Golbraikh and Trospha criteria for model acceptability. Bayesian classification modelling was also performed (ROC scores were 0.722 and 0.767 for the training and test sets, respectively). Finally, the binding interactions of phenyltetrazole type inhibitor with the ABCG2 receptor were mapped with the help of molecular docking study. The result of the docking analysis is aligned with the classical QSAR and Bayesian classification studies. The combined modelling study will guide the medicinal chemists to act faster in the drug discovery of ABCG2 inhibitors for the management of resistant breast cancer.
Collapse
Affiliation(s)
- B Bhardwaj
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr. Harisingh Gour University , Madhya Pradesh , India
| | - A T K Baidya
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr. Harisingh Gour University , Madhya Pradesh , India
| | - S A Amin
- b Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry , Jadavpur University , Kolkata , India
| | - N Adhikari
- b Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry , Jadavpur University , Kolkata , India
| | - T Jha
- b Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry , Jadavpur University , Kolkata , India
| | - S Gayen
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr. Harisingh Gour University , Madhya Pradesh , India
| |
Collapse
|
42
|
Silbermann K, Stefan SM, Elshawadfy R, Namasivayam V, Wiese M. Identification of Thienopyrimidine Scaffold as an Inhibitor of the ABC Transport Protein ABCC1 (MRP1) and Related Transporters Using a Combined Virtual Screening Approach. J Med Chem 2019; 62:4383-4400. [PMID: 30925062 DOI: 10.1021/acs.jmedchem.8b01821] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A virtual screening protocol with combination of similarity search and pharmacophore modeling was applied to virtually screen a large compound library to gain new scaffolds regarding ABCC1 inhibition. Biological investigation of promising candidates revealed four compounds as ABCC1 inhibitors, three of them with scaffolds not associated with ABCC1 inhibition until now. The best hit molecule-a thienopyrimidine-was a moderately potent, competitive inhibitor of the ABCC1-mediated transport of calcein AM which also sensitized ABCC1-overexpressing cells toward daunorubicin. Further evaluation showed that it was a moderately potent, competitive inhibitor of the ABCB1-mediated transport of calcein AM, and noncompetitive inhibitor of the ABCG2-mediated pheophorbide A transport. In addition, the thienopyrimidine could also sensitize ABCB1- as well as ABCG2-overexpressing cells toward daunorubicin and SN-38, respectively, in concentration ranges that qualified it as one of the ten best triple ABCC1/ABCB1/ABCG2 inhibitors in the literature. Besides, three more new multitarget inhibitors were identified by this virtual screening approach.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Randa Elshawadfy
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute , Rheinische Friedrich-Wilhelms-University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| |
Collapse
|
43
|
Toyoda Y, Takada T, Suzuki H. Inhibitors of Human ABCG2: From Technical Background to Recent Updates With Clinical Implications. Front Pharmacol 2019; 10:208. [PMID: 30890942 PMCID: PMC6411714 DOI: 10.3389/fphar.2019.00208] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
The ATP-binding cassette transporter G2 (ABCG2; also known as breast cancer resistance protein, BCRP) has been suggested to be involved in clinical multidrug resistance (MDR) in cancer like other ABC transporters such as ABCB1 (P-glycoprotein). As an efflux pump exhibiting a broad substrate specificity localized on cellular plasma membrane, ABCG2 excretes a variety of endogenous and exogenous substrates including chemotherapeutic agents, such as mitoxantrone and several tyrosine kinase inhibitors. Moreover, in the normal tissues, ABCG2 is expressed on the apical membranes and plays a pivotal role in tissue protection against various xenobiotics. For this reason, ABCG2 is recognized to be an important determinant of the pharmacokinetic characteristics of its substrate drugs. Although the clinical relevance of reversing the ABCG2-mediated MDR has been inconclusive, an appropriate modulation of ABCG2 function during chemotherapy should logically enhance the efficacy of anti-cancer agents by overcoming the MDR phenotype and/or improving their pharmacokinetics. To confirm this possibility, considerable efforts have been devoted to developing ABCG2 inhibitors, although there is no clinically available substance for this purpose. As a clue for addressing this issue, this mini-review provides integrated information covering the technical backgrounds necessary to evaluate the ABCG2 inhibitory effects on the target compounds and a current update on the ABCG2 inhibitors. This essentially includes our recent findings, as we serendipitously identified febuxostat, a well-used agent for hyperuricemia as a strong ABCG2 inhibitor, that possesses some promising potentials. We hope that an overview described here will add value to further studies involving in the multidrug transporters.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Silbermann K, Shah CP, Sahu NU, Juvale K, Stefan SM, Kharkar PS, Wiese M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur J Med Chem 2019; 164:193-213. [PMID: 30594677 DOI: 10.1016/j.ejmech.2018.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Abstract
During cancer chemotherapy, certain cancers may become cross-resistant to structurally diverse antineoplastic agents. This so-called multidrug resistance (MDR) is highly associated with the overexpression of ATP-binding cassette (ABC) transport proteins. These membrane-bound efflux pumps export a broad range of structurally diverse endo- and xenobiotics, including chemically unrelated anticancer agents. This translocation of drugs from the inside to the outside of cancer cells is mediated at the expense of ATP. In the last 40 years, three ABC transporters - ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) - have mainly been attributed to the occurrence of MDR in cancer cells. One of the strategies to overcome MDR is to inhibit the efflux transporter function by small-molecule inhibitors. In this work, we investigated new chalcone- and flavone-based compounds for selective as well as broad-spectrum inhibition of the stated transport proteins. These include substituted chalcones with variations at rings A and B, and flavones with acetamido linker at position 3. The synthesized molecules were evaluated for their inhibitory potential against ABCB1, ABCC1, and ABCG2 in calcein AM and pheophorbide A assays. In further investigations with the most promising candidates from each class, we proved that ABCB1- and ABCG2-mediated MDR could be reversed by the compounds. Moreover, their intrinsic toxicity was found to be negligible in most cases. Altogether, our findings contribute to the understanding of ABC transport proteins and reveal new compounds for ongoing evaluation in the field of ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Chetan P Shah
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Niteshkumar U Sahu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
45
|
Tsunekawa R, Katayama K, Hanaya K, Higashibayashi S, Sugimoto Y, Sugai T. Synthesis of 5-Hydroxy-3',4',7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance. Chembiochem 2019; 20:210-220. [PMID: 30187992 DOI: 10.1002/cbic.201800431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Indexed: 12/18/2022]
Abstract
3',4',7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3',4'-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50 ). Of the synthesized compounds, the reversal effect of 5-hydroxy-3',4',7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3',4',7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3',4'-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01-10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.
Collapse
Affiliation(s)
- Ryuji Tsunekawa
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kazuhiro Katayama
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kengo Hanaya
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shuhei Higashibayashi
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
46
|
Hussein N, Ashby CR, Amawi H, Nyinawabera A, Vij A, Khare VM, Karthikeyan C, Tiwari AK. Cariprazine, A Dopamine D₂/D₃ Receptor Partial Agonist, Modulates ABCG2-Mediated Multidrug Resistance in Cancer. Cancers (Basel) 2018; 10:E308. [PMID: 30181510 PMCID: PMC6162716 DOI: 10.3390/cancers10090308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) is a continuing clinical problem that limits the efficacy of chemotherapy in cancer. The over expression of the ATP-binding cassette (ABC) family G2 (ABCG2) transporter is one of the main mechanisms that mediates MDR in cancer. Molecular modeling data indicated that cariprazine, a dopamine D₂/D₃ receptor partial agonist, had a significant binding affinity for ABCG2 transporter with a Glide XP score of -6.515. Therefore, in this in vitro study, we determined the effect of cariprazine on MDR resulting from the overexpression of ABCG2 transporters. Alone, cariprazine, at concentrations up to 20 μM, did not significantly decrease cell viability. Cariprazine, at concentrations ranging from 1 to 10 μM, did not significantly alter the cytotoxicity of mitoxantrone (MX) in the parental non-small cell cancer cell line, H460 and colon cancer cell S1. However, cariprazine (1⁻20 μM) significantly enhanced the efficacy of ABCG2 substrate antineoplastic drug MX in the ABCG2-overexpressing MDR cell line, H460-MX20 and S1M1-80, by reducing the resistance fold from 28 to 1 and from 93 to 1.33, respectively. Cariprazine, in a concentration-dependent (1⁻20 μM), significantly increased the intracellular accumulation of Rhodamine 123 in S1M1-80. Interestingly, 10 or 20 μM of cariprazine significantly decreased the expression levels of the ABCG2 protein in the colon and lung cancer cell lines, suggesting that cariprazine inhibits both the function and expression of ABCG2 transporters at nontoxic concentrations. Overall, our results suggest that cariprazine, via several distinct mechanisms, can resensitize resistant cancer cells to mitoxantrone.
Collapse
Affiliation(s)
- Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11439, USA.
| | - Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Angelique Nyinawabera
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Atul Vij
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Vishwa M Khare
- Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Chandrabose Karthikeyan
- Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP 484887, India.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
47
|
Martinez MN, Court MH, Fink-Gremmels J, Mealey KL. Population variability in animal health: Influence on dose-exposure-response relationships: Part I: Drug metabolism and transporter systems. J Vet Pharmacol Ther 2018; 41:E57-E67. [PMID: 29917248 DOI: 10.1111/jvp.12670] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
There is an increasing effort to understand the many sources of population variability that can influence drug absorption, metabolism, disposition, and clearance in veterinary species. This growing interest reflects the recognition that this diversity can influence dose-exposure-response relationships and can affect the drug residues present in the edible tissues of food-producing animals. To appreciate the pharmacokinetic diversity that may exist across a population of potential drug product recipients, both endogenous and exogenous variables need to be considered. The American Academy of Veterinary Pharmacology and Therapeutics hosted a 1-day session during the 2017 Biennial meeting to explore the sources of population variability recognized to impact veterinary medicine. The following review highlights the information shared during that session. In Part I of this workshop report, we consider sources of population variability associated with drug metabolism and membrane transport. Part II of this report highlights the use of modeling and simulation to support an appreciation of the variability in dose-exposure-response relationships.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland
| | - Michael H Court
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Johanna Fink-Gremmels
- Division of Pharmacology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
48
|
Köhler SC, Vahdati S, Scholz MS, Wiese M. Structure activity relationships, multidrug resistance reversal and selectivity of heteroarylphenyl ABCG2 inhibitors. Eur J Med Chem 2018; 146:483-500. [PMID: 29407974 DOI: 10.1016/j.ejmech.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
An overexpression of the transmembrane ATP-binding cassette transporter G2 (ABCG2, BCRP) in cancer tissues is supposed to play a role in the multidrug resistance (MDR) of tumors resulting in an inefficient chemotherapy. Therefore, co-administration of selective and non-toxic ABCG2 inhibitors is a promising strategy for improving the efficacy of chemotherapy by blocking ABCG2-mediated export of the cytostatic drugs. In the present study, we designed a small library of 38 novel compounds containing a heteroaryl-phenyl scaffold possessing several (bioisosteric) moieties, and twelve new precursors. We investigated the library for ABCG2 inhibition, for the selectivity against MDR-involved efflux pump ABCB1 (P-gp) and for toxicity. Structure activity relationship (SAR) studies revealed that, at least a phenylheteroaryl-phenylamide scaffold is necessary for observing an ABCG2 inhibition. 4-Methoxy-N-(2-(2-(6-methoxypyridin-3-yl)-2H-tetrazol-5-yl)phenyl)benzamide (43) exhibited a high potency (IC50 = 61 nM)), selectivity, low intrinsic toxicity and reversed the ABCG2-mediated drug resistance in presence of only 0.1 μM.
Collapse
Affiliation(s)
- Sebastian C Köhler
- Pharmazeutisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sahel Vahdati
- Pharmazeutisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matthias S Scholz
- Pharmazeutisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Michael Wiese
- Pharmazeutisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
49
|
Doddapaneni R, Patel K, Chowdhury N, Singh M. Reversal of drug-resistance by noscapine chemo-sensitization in docetaxel resistant triple negative breast cancer. Sci Rep 2017; 7:15824. [PMID: 29158480 PMCID: PMC5696458 DOI: 10.1038/s41598-017-15531-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance (MDR) is a major impediment to cancer treatment. Here, for the first time, we investigated the chemo-sensitizing effect of Noscapine (Nos) at low concentrations in conjunction with docetaxel (DTX) to overcome drug resistance of triple negative breast cancer (TNBC). In vitro experiments showed that Nos significantly inhibited proliferation of TNBC wild type (p < 0.01) and drug resistant (p < 0.05) TNBC cells. Nos followed by DTX treatment notably increased the cell viability (~1.3 fold) markedly (p < 0.05) in 3D models compared to conventional 2D systems. In vivo oral administration of Nos (100 mg/kg) followed by intravenous DTX (5 mg/kg) liposome treatment revealed regression of xenograft tumors in both wild type (p < 0.001) and drug-resistant (p < 0.05) xenografts. In wild type xenografts, combination of Nos plus DTX group showed 5.49 and 3.25 fold reduction in tumor volume compared to Nos and DTX alone groups, respectively. In drug-resistant xenografts, tumor volume was decreased 2.33 and 1.41 fold in xenografts treated with Nos plus DTX significantly (p < 0.05) compared to Nos and DTX alone respectively and downregulated the expression of anti-apoptotic factors and multidrug resistance proteins. Collectively, chemo-sensitizing effect of Nos followed by DTX regime provide a promising chemotherapeutic strategy and its significant role for the treatment of drug-resistant TNBC.
Collapse
Affiliation(s)
- Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.,College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
50
|
Zeng JF, Ma XQ, Wang LP, Wang W. MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer. World J Gastroenterol 2017; 23:2337-2345. [PMID: 28428713 PMCID: PMC5385400 DOI: 10.3748/wjg.v23.i13.2337] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To determine the potential roles of CD4 and microRNA (miR)-145 in gastric cancer.
METHODS The levels of CD44 and miR-145 were determined in gastric cancer cells. Quantitative real-time polymerase chain reaction was used to measure to the level of CD44 mRNA. A luciferase reporter assay and western blotting were performed to examine the effect of miR-145 on CD44 expression. Tumor sphere and MTT assays were carried out to evaluate the self-renewal and chemo-resistance properties of gastric cancer cells.
RESULTS The expression of CD44 was greatly increased and miR-145 was decreased in gastric cancer cells that were highly enriched in cancer stem cells (CSCs). The results demonstrated that miR-145 regulated CD44 by targeting directly the CD44 3’-untranslated region (3’-UTR). In gastric cancer cells, overexpression of miR-145 repressed the activity of the CD44 3’-UTR, and disruption of miR-145/CD44 3’-UTR interactions abrogated the silencing effects. In addition, miR-145 inhibition stimulated CD44 3’-UTR activity and disruption of miR-145/CD44 3’-UTR interactions abrogated this stimulatory effect. Enforced CD44 expression greatly increased tumor sphere formation and chemo-resistance in gastric cancer cells. Furthermore, the inhibition of CSCs and the chemo-sensitivity of gastric cancer cells treated with miR-145 were significantly abrogated by overexpression of CD44.
CONCLUSION miR-145 targeting of CD44 plays critical roles in the regulation of tumor growth and chemo-resistance in gastric cancer.
Collapse
|