1
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Liu X, Cai H, Peng L, Ma H, Yan Y, Li W, Zhao J. Microglial Nrf2/HO-1 signaling gates remifentanil-induced hyperalgesia via suppressing TRPV4-mediated M1 polarization. Free Radic Biol Med 2024; 214:87-100. [PMID: 38295888 DOI: 10.1016/j.freeradbiomed.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
Remifentanil-induced hyperalgesia (RIH) represents a significant clinical challenge due to the widespread use of opioids in pain management. However, the molecular and cellular mechanisms underlying RIH remain elusive. This study aimed to unravel the role of spinal cord microglia, focusing on the Nrf2/HO-1 signaling pathway and TRPV4 channels in the development of RIH. We used both in vivo and in vitro models to investigate the activation state of spinal cord microglia, the expression of TRPV4 channels, and the modulation of the Nrf2/HO-1 pathway under remifentanil exposure. In addition, we evaluated the potential therapeutic effects of dexmedetomidine, a perioperative α2-adrenergic agonist, on RIH and its related molecular pathways. Our results revealed a prominent role of spinal cord microglia in RIH, demonstrating an apparent microglial M1 polarization and increased TRPV4 channel expression. A notable observation was the downregulation of the Nrf2/HO-1 pathway, which was associated with increased neuroinflammation and mechanical allodynia. By upregulating or overexpressing Nrf2, we confirmed its ability to inhibit TRPV4 and thereby attenuate RIH-associated mechanical allodynia, M1 polarization, and neuroinflammation. Encouragingly, dexmedetomidine demonstrated therapeutic potential by positively modulating the Nrf2-TRPV4 nexus, attenuating mechanical allodynia, and reducing microglial inflammation. Our research highlights the critical role of spinal cord microglia in RIH mediated by the Nrf2-TRPV4 axis. The ability of dexmedetomidine to modulate this axis suggests its potential as an adjunctive therapy to remifentanil in mitigating RIH. Further studies are imperative to explore the broader implications and practical applicability of our findings.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huamei Cai
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Hongli Ma
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yun Yan
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weixia Li
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Zhao L, Tao X, Wang Q, Yu X, Dong D. Diosmetin alleviates neuropathic pain by regulating the Keap1/Nrf2/NF-κB signaling pathway. Biomed Pharmacother 2024; 170:116067. [PMID: 38150877 DOI: 10.1016/j.biopha.2023.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Neuropathic pain, a chronic condition with a high incidence, imposes psychological burdens on both patients and society. It is urgent to improve pain management and develop new analgesic drugs. Traditional Chinese medicine has gained popularity as a method for pain relief. Diosmetin (Dio) is mainly found in Chinese herbal medicines with effective antioxidant, anti-cancer, and anti-inflammatory properties. There are few known mechanisms underlying the effectiveness of Dio in treating neuropathic pain. However, the complete understanding of its therapeutic effect is missing. PURPOSE This study aimed to evaluate Dio's therapeutic effects on neuropathic pain models and determine its possible mechanism of action. We hypothesized that Dio may activate antioxidants and reduce inflammation, inhibit the activation of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor-k-gene binding (NF-κB), promote the metastasis of nuclear factor erythroid 2-related factor 2 (Nrf2) and the expression of heme oxygenase 1 (HO-1), thus alleviating the neuropathic pain caused by spinal nerve ligation. METHODS Chronic nociceptive pain mouse models were established in vivo by L4 spinal nerve ligation (SNL). Different dosages of Dio (10, 50, 100 mg/kg) were intragastrically administered daily from the third day after the establishment of the SNL model. Allodynia, caused by mechanical stimuli, and hyperalgesia, caused by heat, were assessed using the paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL), respectively. Cold allodynia were assessd by acetone test. RT-PCR was used to detect the content of interleukin-(IL)- 1β, IL-6 and tumor necrosis factor (TNF)-a. Immunofluorescence and western blotting were employed to assess the expression levels of Glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), Keap1, Nrf2, HO-1, and NF-κB p-p65 protein. RESULTS Dio administration relieved SNL-induced transient mechanical and thermal allodynia in mice. The protective effect of Dio in the SNL model was associated with its anti-inflammatory and anti-glial responses in the spinal cord. Dio inhibited both inflammatory factors and macrophage activation in the DRG. Furthermore, Dio regulated the Keap1/Nrf2/NF-κB signaling pathway. HO-1 and Nrf2 were upregulated following Dio administration, which also decreased the levels of Keap1 and NF-κB p65 protein. CONCLUSION Mice with SNL-induced neuropathic pain were therapeutically treated with Dio. Dio may protect against pain by inhibiting inflammatory responses and improved Keap1/Nrf2/NF-κB pathway. These results highlight the potential therapeutic effect of Dio for the development of new analgesic drugs.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang 110001, People's Republic of China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, People's Republic of China
| | - Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
4
|
Suárez-Rojas I, Pérez-Fernández M, Bai X, Martínez-Martel I, Intagliata S, Pittalà V, Salerno L, Pol O. The Inhibition of Neuropathic Pain Incited by Nerve Injury and Accompanying Mood Disorders by New Heme Oxygenase-1 Inducers: Mechanisms Implicated. Antioxidants (Basel) 2023; 12:1859. [PMID: 37891937 PMCID: PMC10603856 DOI: 10.3390/antiox12101859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain is a type of pain that persists for a long time and becomes pathological. Additionally, the anxiodepressive disorders derived from neuropathic pain are difficult to palliate with the current treatments and need to be resolved. Then, using male mice with neuropathic pain provoked by chronic constriction of the sciatic nerve (CCI), we analyzed and compared the analgesic actions produced by three new heme oxygenase 1 (HO-1) inducers, 1m, 1b, and 1a, with those performed by dimethyl fumarate (DMF). Their impact on the anxiety- and depressive-like comportments and the expression of the inflammasome NLRP3, Nrf2, and some antioxidant enzymes in the dorsal root ganglia (DRG) and amygdala (AMG) were also investigated. Results revealed that the administration of 1m, 1b, and DMF given orally for four days inhibited the allodynia and hyperalgesia caused by CCI, while 1a merely reduced the mechanical allodynia. However, in the first two days of treatment, the antiallodynic effects produced by 1m were higher than those of 1a and DMF, and its antihyperalgesic actions were greater than those produced by 1b, 1a, and DMF, revealing that 1m was the most effective compound. At four days of treatment, all drugs exerted anxiolytic and antidepressant effects, decreased the NLRP3 levels, and increased/normalized the Nrf2, HO-1, and superoxide dismutase 1 levels in DRG and AMG. Data indicated that the dual modulation of the antioxidant and inflammatory pathways produced by these compounds, especially 1m, is a new promising therapeutic approach for neuropathic pain and related emotional illnesses.
Collapse
Affiliation(s)
- Irene Suárez-Rojas
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montse Pérez-Fernández
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Molecular Medicine, Princess Al Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Pérez-Fernández M, Suárez-Rojas I, Bai X, Martínez-Martel I, Ciaffaglione V, Pittalà V, Salerno L, Pol O. Novel Heme Oxygenase-1 Inducers Palliate Inflammatory Pain and Emotional Disorders by Regulating NLRP3 Inflammasome and Activating the Antioxidant Pathway. Antioxidants (Basel) 2023; 12:1794. [PMID: 37891874 PMCID: PMC10604550 DOI: 10.3390/antiox12101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic pain caused by persistent inflammation is current in multiple diseases and has a strong negative impact on society. It is commonly associated with several mental illnesses, which can exert a negative influence on pain perception, and needs to be eradicated. Nevertheless, actual therapies are not sufficiently safe and effective. Recent reports demonstrate that the induction of heme oxygenase-1 (HO-1) enzyme produces analgesic effects in animals with osteoarthritis pain and reverses the grip strength loss caused by sciatic nerve crush. In this research, we evaluated the potential use of three new HO-1 inducers, 1m, 1a, and 1b, as well as dimethyl fumarate (DMF), for treating persistent inflammatory pain induced by the subplantar injection of complete Freud's adjuvant and the functional deficits and emotional sickness associated. The modulator role of these treatments on the inflammatory and antioxidant pathways were also assessed. Our findings revealed that repeated treatment, for four days, with 1m, 1a, 1b, or DMF inhibited inflammatory pain, reversed grip strength deficits, and reversed the linked anxious- and depressive-like behaviors, with 1m being the most effective. These treatments also suppressed the up-regulation of the inflammasome NLRP3 and activated the expression of the Nrf2 transcription factor and the HO-1 and superoxide dismutase 1 enzymes in the paw and/or amygdala, thus revealing the anti-inflammatory and antioxidant capacity of these compounds during inflammatory pain. Results suggest the use of 1m, 1a, 1b, and DMF, particularly 1m, as promising therapies for inflammatory pain and the accompanying functional disabilities and emotional diseases.
Collapse
Affiliation(s)
- Montse Pérez-Fernández
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Irene Suárez-Rojas
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), 95126 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol 2023; 43:823-834. [PMID: 35762029 DOI: 10.1080/07388551.2022.2071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Ma Y, Wang Z, Wu X, Ma Z, Shi J, He S, Li S, Li X, Li X, Li Y, Yu J. 5-Methoxytryptophan ameliorates endotoxin-induced acute lung injury in vivo and in vitro by inhibiting NLRP3 inflammasome-mediated pyroptosis through the Nrf2/HO-1 signaling pathway. Inflamm Res 2023; 72:1633-1647. [PMID: 37458783 DOI: 10.1007/s00011-023-01769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND AND AIM Endotoxin-induced acute lung injury (ALI) is a complicated and fatal condition with no specific or efficient clinical treatments. 5-Methoxytryptophan (5-MTP), an endogenous metabolite of tryptophan, was revealed to block systemic inflammation. However, the specific mechanism by which 5-MTP affects ALI still needs to be clarified. The purpose of this study was to determine whether 5-MTP protected the lung by inhibiting NLRP3 inflammasome-mediated pyroptosis through the Nrf2/HO-1 signaling pathway. METHODS AND RESULTS We used lipopolysaccharide (LPS)-stimulated C57BL/6 J mice and MH-S alveolar macrophages to create models of ALI, and 5-MTP (100 mg/kg) administration attenuated pathological lung damage in LPS-exposed mice, which was associated with decreased inflammatory cytokines and oxidative stress levels, upregulated protein expression of Nrf2 and HO-1, and suppressed Caspase-1 activation and NLRP3-mediated pyroptosis protein levels. Moreover, Nrf2-deficient mice or MH-S cells were treated with 5-MTP to further confirm the protective effect of the Nrf2/HO-1 pathway on lung damage. We found that Nrf2 deficiency partially eliminated the beneficial effect of 5-MTP on reducing oxidative stress levels and inflammatory responses and abrogating the inhibition of NLRP3-mediated pyroptosis induced by LPS. CONCLUSION These findings suggested that 5-MTP could effectively ameliorate ALI by inhibiting NLRP3-mediated pyroptosis via the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yang Ma
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zhixue Wang
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiaoyang Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Zijian Ma
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Simeng He
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaona Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangkun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 2023; 64:102779. [PMID: 37339558 PMCID: PMC10363452 DOI: 10.1016/j.redox.2023.102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aβ42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aβ42, MDA, 8-isoprostane, IL-1β, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu, 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Meng-Qi Shen
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Wei Li
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Qi-Xin Zhong
- Department of Cardiovascular Medicine, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, China.
| | - Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
9
|
Bai X, Batallé G, Martínez-Martel I, Pol O. Hydrogen Sulfide Interacting with Cannabinoid 2 Receptors during Sciatic Nerve Injury-Induced Neuropathic Pain. Antioxidants (Basel) 2023; 12:1179. [PMID: 37371911 DOI: 10.3390/antiox12061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogen sulfide (H2S) donors make opioids more effective in inhibiting nociception during inflammatory and neuropathic pain. We examined whether the analgesic, anxiolytic and/or antidepressant actions of the cannabinoid 2 receptor (CB2R) agonist, JWH-133, might be improved by pretreatment with H2S donors, DADS and GYY4137 in mice with sciatic nerve injury-provoked neuropathy (CCI). The reversion of the antinociceptive effects of these treatments with the CB2R antagonist, AM630, and the regulatory actions of H2S in the phosphorylation of NF-κB inhibitor alpha (IKBα) and in the brain-derived neurotrophic factor (BDNF), CB2R, Nrf2 and heme oxygenase 1 (HO-1) levels in prefrontal cortex (PFC), ventral hippocampus (vHIP) and periaqueductal gray matter (PAG), were examined. Data showed that the analgesic effects of JWH-133, systemically and locally administered, were improved by the DADS or GYY4137 pretreatment. The co-treatment of GYY4137 with JWH-133 also stopped anxiodepressive-like activities that concur with neuropathy. Our data likewise showed that both H2S donors normalized the inflammatory (p-IKBα), neurotrophic (BDNF) variations caused by CCI, increased the expression of CB2R and activated the Nrf2/HO-1 antioxidant pathway in PFC, v-HIP and/or PAG of animals with neuropathic pain. In addition, the blockade of the analgesia produced by high doses of DADS and GYY4137 with AM630 indicated the contribution of the endocannabinoid system in the effects of H2S during neuropathic pain, thus supporting the positive interaction between H2S and CB2R. Therefore, this study demonstrates the potential use of CB2R agonists combined with H2S donors as a possible treatment for peripheral nerve injury-caused neuropathic pain and the associated emotional disturbances.
Collapse
Affiliation(s)
- Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
10
|
δ-Opioid Receptor Activation Inhibits Ferroptosis by Activating the Nrf2 Pathway in MPTP-Induced Parkinson Disease Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4130937. [PMID: 36818224 PMCID: PMC9937764 DOI: 10.1155/2023/4130937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Introduction Recent studies suggest the involvement of ferroptosis in the pathogenesis of Parkinson disease (PD). δ-Opioid receptors (DORs) have neuroprotective effects in PD. It is not known whether the neuroprotective effects of DORs in PD are attributable to the inhibition of ferroptosis. Therefore, we aimed to investigate the role of DORs in ferroptosis in MPTP-induced PD models. Methods To identify the influence of DORs on ferroptosis in MPTP-induced PD models, we measured the malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels, analyzed the levels of ferroptosis-related proteins (GXP4 and SLC7a11) and Nrf2 expression by using western blotting, and assessed mitochondrial dysfunction by using JC-1 staining and transmission electron microscopy. Results DOR activation reduced the 4-HNE and MDA levels, increased the GXP4 and SLC7a11 levels, and ameliorated mitochondrial dysfunction in MPTP-induced PD models. These neuroprotective effects of DORs could be blocked by Nrf2-siRNA. Thus, the effects of DORs on ferroptosis in PD models were partially controlled by Nrf2, which regulated GXP4 and SLC7a11 synthesis. Conclusion DORs exert neuroprotective effects in PD models by inhibiting ferroptosis partially via activating the Nrf2 pathway.
Collapse
|
11
|
Luan Y, Luo Y, Deng M. New advances in Nrf2-mediated analgesic drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154598. [PMID: 36603339 DOI: 10.1016/j.phymed.2022.154598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oxidative stress is an inevitable process that occurs during life activities, and it can participate in the development of inflammation. Although great progress has been made according to research examining analgesic drugs and therapies, there remains a need to develop new analgesic drugs to fill certain gaps in both the experimental and clinical space. PURPOSE This review reports the research and preclinical progress of this class of analgesics by summarizing known nuclear factor E-2-related factor-2 (Nrf2) pathway-modulating substances. STUDY DESIGN We searched and reported experiments that intervene in the Nrf2 pathway and its various upstream and downstream molecules for analgesic therapy. METHODS The medical literature database (PubMed) was searched for experimental studies examining the reduction of pain in animals through the Nrf2 pathway, the research methods were analyzed, and the pathways were classified and reported according to the pathway of these experimental interventions. RESULTS Humans have identified a variety of substances that can fight pain by regulating the expression of Nrf2 and its upstream and downstream pathways. CONCLUSION The Nrf2 pathway exerts anti-inflammatory activity by regulating oxidative stress, thereby playing a role in the fight against pain.
Collapse
Affiliation(s)
- Yifan Luan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yaping Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
12
|
Bella A, Diego AM, Finn DP, Roche M. Stress-induced changes in nociceptive responding post-surgery in preclinical rodent models. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1106143. [PMID: 36703943 PMCID: PMC9871907 DOI: 10.3389/fpain.2022.1106143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Chronic post-surgical pain affects up to 85% of individuals depending on the type of surgery, the extent of inflammation, tissue and/or nerve damage. Pre-surgical stress is associated with greater pain intensity, prolonged recovery and is one of the main risk factors for the development of chronic post-surgical pain. Clinically valid animal models provide an important means of examining the mechanisms underlying the effects of stress on post-surgical pain and identifying potential novel therapeutic targets. This review discusses the current data from preclinical animal studies examining the effect of stress on post-surgical pain, the potential underlying mechanisms and gaps in the knowledge that require further investigation.
Collapse
Affiliation(s)
- Ariadni Bella
- Physiology, School of Medicine, University of Galway, Galway, Ireland,Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Alba M. Diego
- Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland,Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - David P. Finn
- Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland,Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, University of Galway, Galway, Ireland,Centre for Pain Research, University of Galway, Galway, Ireland,Galway Neuroscience Centre, University of Galway, Galway, Ireland,Correspondence: Michelle Roche
| |
Collapse
|
13
|
Cazuza RA, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Effects of treatment with a carbon monoxide donor and an activator of heme oxygenase 1 on the nociceptive, apoptotic and/or oxidative alterations induced by persistent inflammatory pain in the central nervous system of mice. Brain Res Bull 2022; 188:169-178. [PMID: 35952846 DOI: 10.1016/j.brainresbull.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
14
|
Martínez-Serrat M, Martínez-Martel I, Coral-Pérez S, Bai X, Batallé G, Pol O. Hydrogen-Rich Water as a Novel Therapeutic Strategy for the Affective Disorders Linked with Chronic Neuropathic Pain in Mice. Antioxidants (Basel) 2022; 11:antiox11091826. [PMID: 36139900 PMCID: PMC9495356 DOI: 10.3390/antiox11091826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain manifested with allodynia and hyperalgesia usually becomes a chronic condition accompanied with mood disorders. Clinical therapies for neuropathic pain are still unsatisfactory with notable side effects. Recent studies have reported the protective role of molecular hydrogen (H2) in different diseases including neurological disorders, such as Alzheimer's as well as its antidepressant activities in animals with chronic stress. This study explored the effects of treatment with hydrogen-rich water (HRW) in male mice with neuropathic pain induced by the chronic constriction of the sciatic nerve (CCI) and the accompanying affective deficits. The likely pathways implied in the HRW analgesic activity, as well as the interaction between heme oxygenase 1 (HO-1) enzyme and H2 during neuropathic pain were also studied. The results showed: (i) the inhibitory effects of the repetitive treatment with HRW on the allodynia and hyperalgesia provoked by CCI; (ii) the anxiolytic and antidepressant actions of HRW in animals with neuropathic pain; (iii) the contribution of the antioxidant enzymes (HO-1 and NAD(P)H: quinone oxidoreductase 1) and the ATP sensitive potassium channels in the painkiller activities of HRW during neuropathic pain; (iv) a positive interaction between the HO-1 and H2 systems in inhibiting the CCI-induced neuropathy; and (v) the antioxidant, antinociceptive, anti-inflammatory and/or antiapoptotic features of HRW treatment in the dorsal root ganglia and/or amygdala of sciatic nerve-injured mice. This study demonstrates new protective actions of H2 and suggests that treatment with HRW might be an interesting therapeutic strategy for chronic neuropathic pain and its associated mood disorders.
Collapse
Affiliation(s)
- Maria Martínez-Serrat
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Santiago Coral-Pérez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
15
|
Bai X, Batallé G, Balboni G, Pol O. Hydrogen Sulfide Increases the Analgesic Effects of µ- and δ-Opioid Receptors during Neuropathic Pain: Pathways Implicated. Antioxidants (Basel) 2022; 11:antiox11071321. [PMID: 35883812 PMCID: PMC9311550 DOI: 10.3390/antiox11071321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have revealed that hydrogen sulfide (H2S) increases the analgesic actions of the δ-opioid receptor (DOR) in inflammatory pain. However, the possible improvement of the analgesia of μ-opioid receptor (MOR) and DOR agonists during neuropathic pain, through pretreatment with two slow-releasing H2S donors—DADS (diallyl disulfide) and GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex)—is still unknown. In male C57BL/6J mice with neuropathic pain incited by chronic constriction of the sciatic nerve (CCI), we evaluated: (1) the influence of DADS (3.5 mg/kg) and GYY4137 (0.7 mg/kg) on the inhibition of the allodynia and hyperalgesia produced by the systemic or local administration of morphine (3 mg/kg or 65 µg) and UFP-512 (1 mg/kg or 12.5 µg); (2) the reversion of the antinociceptive actions of high doses of DADS (30 mg/kg) and GYY4137 (24 mg/kg) with MOR and DOR antagonists; and (3) the effects of H2S donors on oxidative stress, apoptotic responses, and MOR and DOR expression in the medial septum (MS) and dorsal root ganglia (DRG). The results revealed that both DADS and GYY4137 improved the antiallodynic effects of morphine and UFP-512, possibly by up-regulating MOR and DOR expression in DRG. The administration of MOR and DOR antagonists blocked the analgesic properties of DADS and GYY4137, revealing the feasible participation of the endogenous opioid system in H2S analgesic effects. Moreover, both H2S donors inhibited oxidative stress and apoptosis generated by CCI in the MS and/or DRG. This study suggests the co-treatment of H2S donors with MOR or DOR agonists as a potential therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
16
|
Batallé G, Bai X, Pol O. The Interaction between Carbon Monoxide and Hydrogen Sulfide during Chronic Joint Pain in Young Female Mice. Antioxidants (Basel) 2022; 11:antiox11071271. [PMID: 35883761 PMCID: PMC9312227 DOI: 10.3390/antiox11071271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
A relationship between carbon monoxide (CO) and hydrogen sulfide (H2S) has been described in different pathological conditions, but their interaction in modulating joint pain has not yet been investigated. In young female mice with monosodium acetate-induced joint degeneration and pain, we assessed: (1) the effects of CORM-2 (tricarbonyldichlororuthenium(II)dimer), a CO-releasing molecule, and CoPP (cobalt protoporphyrin IX), an inducer of heme oxygenase 1 (HO-1), administered alone and combined with low doses of two slow-releasing H2S donors, DADS (diallyl disulfide) and GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex) on the mechanical allodynia and loss of grip strength provoked by joint degeneration; (2) the role of Nrf2, NAD(P)H: quinone oxidoreductase 1 (NQO1) and HO-1 in the antinociceptive actions of H2S donors; (3) the impact of DADS and GYY4137 treatment on the expression of Nrf2 and several antioxidant proteins in dorsal root ganglia (DRG) and periaqueductal gray matter (PAG). Our data showed that treatment with H2S donors inhibited allodynia and functional deficits, while CORM-2 and CoPP only prevented allodynia. The Nrf2 pathway is implicated in the analgesic actions of DADS and GYY4137 during joint degeneration. Moreover, the co-administration of low doses of CORM-2 or CoPP with DADS or GYY4137 produced higher antiallodynic effects and greater recovery of grip strength deficits than those produced by each of these compounds alone. The activation of the antioxidant system caused by H2S donors in DRG and/or PAG might explain the enhancement of antinociceptive effects. These data reveal a positive interaction between H2S and CO in modulating joint pain in female mice.
Collapse
Affiliation(s)
- Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (G.B.); (X.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (G.B.); (X.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (G.B.); (X.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
17
|
Exosomes from Bone Marrow Mesenchymal Stem Cells with Overexpressed Nrf2 Inhibit Cardiac Fibrosis in Rats with Atrial Fibrillation. Cardiovasc Ther 2022; 2022:2687807. [PMID: 35360547 PMCID: PMC8941574 DOI: 10.1155/2022/2687807] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Background Even though nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling has been associated with the pathogenesis of multiple heart conditions, data on roles of Nrf2 within atrial fibrillation (AF) still remain scant. The present investigation had the aim of analyzing Nrf2-overexpressing role/s upon bone mesenchymal stem cell- (BMSC-) derived exosomes in rats with AF. Methods Exosomes were collected from control or Nrf2 lentivirus-transduced BMSCs and then injected into rats with AF through the tail vein. AF duration was observed using electrocardiography. Immunohistochemical staining was then employed for assessing Nrf2, HO-1, α-SMA, collagen I, or TGF-β1 expression profiles within atrial myocardium tissues. Conversely, Masson staining was utilized to evaluate atrial fibrosis whereas apoptosis within myocardia was evaluated through TUNEL assays. In addition, TNF-α, IL-1β, IL-4, or IL-10 serum expression was assessed through ELISA. Results Results of the current study showed significant downregulation of Nrf2/HO-1 within AF rat myocardia. It was found that injection of the control or Lv-Nrf2 exosomes significantly alleviated and lowered AF timespans together with reducing cardiomyocyte apoptosis. Moreover, injection of Lv-Nrf2 exosomes essentially lowered AF-driven atrial fibrosis and also inhibited inflammatory responses in the rats with AF. Conclusion Delivery of BMSC-derived exosomes using overexpressed Nrf2 inhibited AF-induced arrhythmias, myocardial fibrosis, apoptosis, and inflammation via Nrf2/HO-1 pathway triggering.
Collapse
|
18
|
Effects of heme oxygenase 1 in the molecular changes and neuropathy associated with type 2 diabetes in mice. Biochem Pharmacol 2022; 199:114987. [PMID: 35276215 DOI: 10.1016/j.bcp.2022.114987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022]
Abstract
Painful diabetic neuropathy is one of the most common complications of diabetes in humans. The current treatments are not completely effective, and the main mechanisms implicated in the development of diabetic neuropathy are not completely elucidated. Thus, in male db/db mice, a murine model of type 2 diabetes, we investigated the effects of treatment with a heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), on the 1) hyperglycemia and mechanical allodynia associated with type 2 diabetes and 2) molecular changes induced by diabetic neuropathy in the central nervous system (CNS). Thus, we evaluated the effects of CoPP on the protein levels of 4-HNE (oxidative stress), Nrf2, superoxide dismutase 1 (SOD1), NAD(P)H quinone oxidoreductase 1 (NQO1), HO-1, glutathione S-transferase Mu 1 (GSTM1) (antioxidant enzymes), phosphatidylinositol 3-kinase/protein kinase B (nociceptive pathway), CD11b/c (microglial activation), and BAX (apoptosis) in the amygdala and spinal cord of db/db mice. Our results showed the antihyperglycemic and antiallodynic effects of CoPP treatment as well as the potent antioxidant, antinociceptive, anti-inflammatory, and antiapoptotic properties of this HO-1 inducer in the CNS of type 2 diabetic mice. Treatment with CoPP also prevented the downregulation of several antioxidant proteins (Nrf2, SOD-1, and NQO1) and/or enhanced the protein levels of HO-1 and GSTM1 in the spinal cord and/or amygdala of db/db mice. These effects might be implicated in the antiallodynic actions of CoPP. Our findings revealed the modulatory effects of CoPP in the CNS of db/db mice and provide new prospects for novel type 2 diabetes-associated neuropathy therapies.
Collapse
|
19
|
Nrf2 Activation Mediates Antiallodynic Effect of Electroacupuncture on a Rat Model of Complex Regional Pain Syndrome Type-I through Reducing Local Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8035109. [PMID: 35498128 PMCID: PMC9054487 DOI: 10.1155/2022/8035109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Complex regional pain syndrome type-I (CRPS-I) represents a type of neurovascular condition featured by severe pain in affected extremities. Few treatments have proven effective for CRPS-I. Electroacupuncture (EA) is an effective therapy for pain relief. We explored the mechanism through which EA ameliorates pain in a rat CRPS-I model. The chronic postischemic pain (CPIP) model was established using Sprague-Dawley rats to mimic CRPS-I. We found that oxidative stress-related biological process was among the predominant biological processes in affected hindpaw of CPIP rats. Oxidative stress occurred primarily in local hindpaw but not in the spinal cord or serum of model rats. Antioxidant N-acetyl cysteine (NAC) attenuated mechanical allodynia and spinal glia overactivation in CPIP model rats, whereas locally increasing oxidative stress is sufficient to induce chronic pain and spinal glia overactivation in naive rats. EA exerted remarkable antiallodynia on CPIP rats by reducing local oxidative stress via enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Pharmacological blocking Nrf2 abolished antioxidative and antiallodynic effects of EA. EA reduced spinal glia overactivation, attenuated the upregulation of inflammatory cytokines, reduced the enhanced TRPA1 channel activity in dorsal root ganglion neurons innervating the hindpaws, and improved blood flow dysfunction in hindpaws of CPIP rats, all of which were mimicked by NAC treatment. Thus, we identified local oxidative injury as an important contributor to pathogenesis of animal CRPS-I model. EA targets local oxidative injury by enhancing endogenous Nrf2-mediated antioxidative mechanism to relieve pain and inflammation. Our study indicates EA can be an alternative option for CRPS-I management.
Collapse
|
20
|
The Beneficial Effects of Heme Oxygenase 1 and Hydrogen Sulfide Activation in the Management of Neuropathic Pain, Anxiety- and Depressive-like Effects of Paclitaxel in Mice. Antioxidants (Basel) 2022; 11:antiox11010122. [PMID: 35052626 PMCID: PMC8773208 DOI: 10.3390/antiox11010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy constitutes an unresolved clinical problem that severely decreases the quality of the patient’s life. It is characterized by somatosensory alterations, including chronic pain, and a high risk of suffering mental disorders such as depression and anxiety. Unfortunately, an effective treatment for this neuropathology is yet to be found. We investigated the therapeutic potential of cobalt protoporphyrin IX (CoPP), a heme oxygenase 1 inducer, and morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex (GYY4137), a slow hydrogen sulfide (H2S) donor, in a preclinical model of paclitaxel (PTX)-induced peripheral neuropathy (PIPN) in mice. At three weeks after PTX injection, we evaluated the effects of the repetitive administration of 5 mg/kg of CoPP and 35 mg/kg of GYY4137 on PTX-induced nociceptive symptoms (mechanical and cold allodynia) and on the associated emotional disturbances (anxiety- and depressive-like behaviors). We also studied the mechanisms that could mediate their therapeutic properties by evaluating the expression of key proteins implicated in the development of nociception, oxidative stress, microglial activation, and apoptosis in prefrontal cortex (PFC) and dorsal root ganglia (DRG) of mice with PIPN. Results demonstrate that CoPP and GYY4137 treatments inhibited both the nociceptive symptomatology and the derived emotional alterations. These actions were mainly mediated through potentiation of antioxidant responses and inhibiting oxidative stress in the DRG and/or PFC of mice with PIPN. Both treatments normalized some plasticity changes and apoptotic reactions, and GYY4137 blocked microglial activation induced by PTX in PFC. In conclusion, this study proposes CoPP and GYY4137 as good candidates for treating neuropathic pain, anxiety- and depressive-like effects of PTX.
Collapse
|
21
|
Porta A, Rodríguez L, Bai X, Batallé G, Roch G, Pouso-Vázquez E, Balboni G, Pol O. Hydrogen Sulfide Inhibits Inflammatory Pain and Enhances the Analgesic Properties of Delta Opioid Receptors. Antioxidants (Basel) 2021; 10:antiox10121977. [PMID: 34943080 PMCID: PMC8750936 DOI: 10.3390/antiox10121977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic inflammatory pain is present in many pathologies and diminishes the patient's quality of life. Moreover, most current treatments have a low efficacy and significant side effects. Recent studies demonstrate the analgesic properties of slow-releasing hydrogen sulfide (H2S) donors in animals with osteoarthritis or neuropathic pain, but their effects in inflammatory pain and related pathways are not completely understood. Several treatments potentiate the analgesic actions of δ-opioid receptor (DOR) agonists, but the role of H2S in modulating their effects and expression during inflammatory pain remains untested. In C57BL/6J male mice with inflammatory pain provoked by subplantar injection of complete Freund's adjuvant, we evaluated: (1) the antiallodynic and antihyperalgesic effects of different doses of two slow-releasing H2S donors, i.e., diallyl disulfide (DADS) and phenyl isothiocyanate (P-ITC) and their mechanism of action; (2) the pain-relieving effects of DOR agonists co-administered with H2S donors; (3) the effects of DADS and P-ITC on the oxidative stress and molecular changes caused by peripheral inflammation. Results demonstrate that both H2S donors inhibited allodynia and hyperalgesia in a dose-dependent manner, potentiated the analgesic effects and expression of DOR, activated the antioxidant system, and reduced the nociceptive and apoptotic pathways. The data further demonstrate the possible participation of potassium channels and the Nrf2 transcription factor signaling pathway in the pain-relieving activities of DADS and P-ITC. This study suggests that the systemic administration of DADS and P-ITC and local application of DOR agonists in combination with slow-releasing H2S donors are two new strategies for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Aina Porta
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Laura Rodríguez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerad Roch
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Enric Pouso-Vázquez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
22
|
Appetecchia F, Consalvi S, Berrino E, Gallorini M, Granese A, Campestre C, Carradori S, Biava M, Poce G. A Novel Class of Dual-Acting DCH-CORMs Counteracts Oxidative Stress-Induced Inflammation in Human Primary Tenocytes. Antioxidants (Basel) 2021; 10:antiox10111828. [PMID: 34829699 PMCID: PMC8614895 DOI: 10.3390/antiox10111828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbon monoxide (CO) can prevent cell and tissue damage by restoring redox homeostasis and counteracting inflammation. CO-releasing molecules (CORMs) can release a controlled amount of CO to cells and are emerging as a safer therapeutic alternative to delivery of CO in vivo. Sustained oxidative stress and inflammation can cause chronic pain and disability in tendon-related diseases, whose therapeutic management is still a challenge. In this light, we developed three small subsets of 1,5-diarylpyrrole and pyrazole dicobalt(0)hexacarbonyl (DCH)-CORMs to assess their potential use in musculoskeletal diseases. A myoglobin-based spectrophotometric assay showed that these CORMs act as slow and efficient CO-releasers. Five selected compounds were then tested on human primary-derived tenocytes before and after hydrogen peroxide stimulation to assess their efficacy in restoring cell redox homeostasis and counteracting inflammation in terms of PGE2 secretion. The obtained results showed an improvement in tendon homeostasis and a cytoprotective effect, reflecting their activity as CO-releasers, and a reduction of PGE2 secretion. As these compounds contain structural fragments of COX-2 selective inhibitors, we hypothesized that such a composite mechanism of action results from the combination of CO-release and COX-2 inhibition and that these compounds might have a potential role as dual-acting therapeutic agents in tendon-derived diseases.
Collapse
Affiliation(s)
- Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Emanuela Berrino
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Arianna Granese
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
| | - Cristina Campestre
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (C.C.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (E.B.); (A.G.)
- Correspondence: (S.C.); (M.B.); (G.P.)
| |
Collapse
|
23
|
Barrett JA, Li Z, Garcia JV, Wein E, Zheng D, Hunt C, Ngo L, Sepunaru L, Iretskii AV, Ford PC. Redox-mediated carbon monoxide release from a manganese carbonyl-implications for physiological CO delivery by CO releasing moieties. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211022. [PMID: 34804570 PMCID: PMC8580448 DOI: 10.1098/rsos.211022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2-, (A, bpCO2 2- = 2,2'-bipyridine-4,4'-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties.
Collapse
Affiliation(s)
- Jacob A. Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John V. Garcia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Emily Wein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Dongyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Camden Hunt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Loc Ngo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Alexei V. Iretskii
- Department of Chemistry and Environmental Sciences, Lake Superior State University, Sault Sainte Marie, MI 49783, USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
24
|
The Recovery of Cognitive and Affective Deficiencies Linked with Chronic Osteoarthritis Pain and Implicated Pathways by Slow-Releasing Hydrogen Sulfide Treatment. Antioxidants (Basel) 2021; 10:antiox10101632. [PMID: 34679766 PMCID: PMC8533578 DOI: 10.3390/antiox10101632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/05/2023] Open
Abstract
Chronic osteoarthritis pain is accompanied by several comorbidities whose treatment has not been completely resolved. The anti-inflammatory, analgesic, and antidepressant effects of slow-releasing hydrogen sulfide (H2S) donors during osteoarthritic pain have been shown, but their actions in the accompanying memory impairment and anxious-like behaviors have not yet been demonstrated. Using female mice with chronic osteoarthritic pain, the effects of natural, diallyl disulfide (DADS) or synthetic, morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex (GYY4137) slow-releasing H2S donors, on associated cognitive and grip strength deficits and anxiodepressive-like behaviors, were assessed. Their effects on specific brain areas implicated in the modulation of pain and emotional responses were also determined. Results demonstrated an improvement in memory and grip strength deficits, as well as in the anxious-like behaviors associated with chronic pain in GYY4137 and/or DADS treated mice. The painkiller and antidepressant properties of both treatments were also established. Treatment with DADS and/or GYY4137 inhibited: oxidative stress in the amygdala; phosphoinositide 3-kinase overexpression in the amygdala, periaqueductal gray matter, and anterior cingulate cortex; protein kinase B activation in the amygdala and infralimbic cortex; up-regulation of inducible nitric oxide synthase in the amygdala, periaqueductal gray matter and infralimbic cortex and apoptotic responses in the amygdala. These results might explain the recovery of memory and grip strength and the inhibition of allodynia and associated anxiodepressive-like behaviors by these treatments. In conclusion, this study revealed new properties of slow-releasing H2S donors in cognitive impairment and affective disorders linked with chronic osteoarthritis pain and their effects on the central nervous system.
Collapse
|
25
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|
26
|
Yang Y, Sheng Q, Nie Z, Liu L, Zhang W, Chen G, Ye F, Shi L, Lv Z, Xie J, Wang D. Daphnetin inhibits spinal glial activation via Nrf2/HO-1/NF-κB signaling pathway and attenuates CFA-induced inflammatory pain. Int Immunopharmacol 2021; 98:107882. [PMID: 34182245 DOI: 10.1016/j.intimp.2021.107882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Daphnetin (7, 8-dihydroxycoumarin, DAPH), a coumarin derivative isolated from Daphne odora var., recently draws much more attention as a promising drug candidate to treat neuroinflammatory diseases due to its protective effects against neuroinflammation. However, itscontribution to chronic inflammatory pain is largely unknown. In the current work, we investigated the effects of DAPH in a murine model of inflammatory pain induced by complete Freund's adjuvant (CFA) and its possible underlying mechanisms. Our results showed that DAPH treatment significantly attenuated mechanical allodynia provoked by CFA. A profound inhibition of spinal glial activation, followed by attenuated expression levels of spinal pro-inflammatory cytokines, was observed in DAPH-treated inflammatory pain mice. Further study demonstrated that DAPH mediated negative regulation of spinal NF-κB pathway, as well as its preferential activation of Nrf2/HO-1 signaling pathway in inflammatory pain mice. This study, for the first time, indicated that DAPH might preventthe development of mechanical allodynia in mice with inflammatory pain. And more importantly, these data provide evidence for the potential application of DAPH in the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Yifan Yang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Sheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuoming Nie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lili Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjing Xie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
27
|
Zhao M, Zhang X, Tao X, Zhang B, Sun C, Wang P, Song T. Sirt2 in the Spinal Cord Regulates Chronic Neuropathic Pain Through Nrf2-Mediated Oxidative Stress Pathway in Rats. Front Pharmacol 2021; 12:646477. [PMID: 33897435 PMCID: PMC8063033 DOI: 10.3389/fphar.2021.646477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Reduction in Nrf2-mediated antioxidant response in the central nervous system plays an important role in the development and maintenance of neuropathic pain (NP). However, the mechanisms regulating Nrf2 activity in NP remain unclear. A recent in vitro study revealed that Sirt2, a member of the sirtuin family of proteins, affects antioxidant capacity by modulating Nrf2 activity. Here we examined whether central Sirt2 regulates NP through Nrf2-mediated oxidative stress pathway. In a rat model of spared nerve injury (SNI)-induced NP, mechanical allodynia and thermal hyperalgesia were observed on day 1 and up to day 14 post-SNI. The expression of Sirt2, Nrf2 and its target gene NQO1 in the spinal cord in SNI rats, compared with sham rats, was significantly decreased from day 7 and remained lower until the end of the experiment (day 14). The mechanical allodynia and thermal hyperalgesia in SNI rats were ameliorated by intrathecal injection of Nrf2 agonist tBHQ, which normalized expression of Nrf2 and NQO1 and reversed SNI-induced decrease in antioxidant enzyme superoxide dismutase (SOD) and increase in oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the spinal cord. Moreover, intrathecal injection of a recombinant adenovirus expressing Sirt2 (Ad-Sirt2) that upregulated expression of Sirt2, restored expression of Nrf2 and NQO1 and attenuated oxidative stress in the spinal cord, leading to improvement of thermal hyperalgesia and mechanical allodynia in SNI rats. These findings suggest that peripheral nerve injury downregulates Sirt2 expression in the spinal cord, which inhibits Nrf2 activity, leading to increased oxidative stress and the development of chronic NP.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojiao Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xueshu Tao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Cong Sun
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pinying Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Tao Song
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
A brief history of carbon monoxide and its therapeutic origins. Nitric Oxide 2021; 111-112:45-63. [PMID: 33838343 DOI: 10.1016/j.niox.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
It is estimated that 10% of carbon throughout the cosmos is in the form of carbon monoxide (CO). Earth's earliest prebiotic atmosphere included the trinity of gasotransmitters CO, nitric oxide (NO), and hydrogen sulfide (H2S), for which all of life has co-evolved with. The history of CO can be loosely traced to mythological and prehistoric origins with rudimentary understanding emerging in the middle ages. Ancient literature is focused on CO's deadly toxicity which is understandable in the context of our primitive relationship with coal and fire. Scientific inquiry into CO appears to have emerged throughout the 1700s followed by chemical and toxicological profiling throughout the 1800s. Despite CO's ghastly reputation, several of the 18th and 19th century scientists suggested a therapeutic application of CO. Since 2000, the fundamental understanding of CO as a deadly nuisance has undergone a paradigm shift such that CO is now recognized as a neurotransmitter and viable pharmaceutical candidate. This review is intended to provide a brief history on the trace origins pertaining to endogenous formation and therapeutic application of CO.
Collapse
|
29
|
Novel Heme Oxygenase-1 (HO-1) Inducers Based on Dimethyl Fumarate Structure. Int J Mol Sci 2020; 21:ijms21249541. [PMID: 33333908 PMCID: PMC7765375 DOI: 10.3390/ijms21249541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022] Open
Abstract
Novel heme oxygenase-1 (HO-1) inducers based on dimethyl fumarate (DMF) structure are reported in this paper. These compounds are obtained by modification of the DMF backbone. Particularly, maintaining the α, β-unsaturated dicarbonyl function as the central chain crucial for HO-1 induction, different substituted or unsubstituted phenyl rings are introduced by means of an ester or amide linkage. Symmetric and asymmetric derivatives are synthesized. All compounds are tested on a human hepatic stellate cell line LX-2 to assay their capacity for modifying HO-1 expression. Compounds 1b, 1l and 1m stand out for their potency as HO-1 inducers, being 2–3 fold more active than DMF, and for their ability to reverse reactive oxygen species (ROS) production mediated using palmitic acid (PA). These properties, coupled with a low toxicity toward LX-2 cell lines, make these compounds potentially useful for treatment of diseases in which HO-1 overexpression may counteract inflammation, such as hepatic fibrosis. Docking studies show a correlation between predicted binding free energy and experimental HO-1 expression data. These preliminary results may support the development of new approaches in the management of liver fibrosis.
Collapse
|