1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Zhu Y, Li X, Lei X, Tang L, Wen D, Zeng B, Zhang X, Huang Z, Guo Z. The potential mechanism and clinical application value of remote ischemic conditioning in stroke. Neural Regen Res 2025; 20:1613-1627. [PMID: 38845225 DOI: 10.4103/nrr.nrr-d-23-01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 08/07/2024] Open
Abstract
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Tang X, Zheng N, Lin Q, You Y, Gong Z, Zhuang Y, Wu J, Wang Y, Huang H, Ke J, Chen F. Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis. Neural Regen Res 2025; 20:1103-1123. [PMID: 38845218 PMCID: PMC11438345 DOI: 10.4103/nrr.nrr-d-23-01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00027/figure1/v/2024-07-06T104127Z/r/image-tiff Cardiac arrest can lead to severe neurological impairment as a result of inflammation, mitochondrial dysfunction, and post-cardiopulmonary resuscitation neurological damage. Hypoxic preconditioning has been shown to improve migration and survival of bone marrow-derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest, but the specific mechanisms by which hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown. To this end, we established an in vitro co-culture model of bone marrow-derived mesenchymal stem cells and oxygen-glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis, possibly through inhibition of the MAPK and nuclear factor κB pathways. Subsequently, we transplanted hypoxia-preconditioned bone marrow-derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia. The results showed that hypoxia-preconditioned bone marrow-derived mesenchymal stem cells significantly reduced cardiac arrest-induced neuronal pyroptosis, oxidative stress, and mitochondrial damage, whereas knockdown of the liver isoform of phosphofructokinase in bone marrow-derived mesenchymal stem cells inhibited these effects. To conclude, hypoxia-preconditioned bone marrow-derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest, and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
Collapse
Affiliation(s)
- Xiahong Tang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Nan Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qingming Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yan You
- The Second Department of Intensive Care Unit, Fujian Provincial Hospital South Branch, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yangping Zhuang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jiali Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Hanlin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
Yang Y, Xu L, Yao X, Wang Y, Fang M, Zhou D, Li N, Hou Y. Isoamericanin A ameliorates neuronal damage and alleviates vascular cognitive impairments by inhibiting oxidative stress through activation of the Nrf2 pathway. Int Immunopharmacol 2024; 143:113366. [PMID: 39413643 DOI: 10.1016/j.intimp.2024.113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Oxidative stress is critically involved in the cognitive dysfunction and neuronal progressive degeneration in the vascular cognitive impairment (VCI). The natural lignan molecular isoamericanin A (ISOA) containing multiple hydroxyl groups has great potential for suppressing oxidative stress in VCI. The primary objective of this study was to delve into the pharmacological properties of ISOA against VCI, as well as to elucidate the mechanisms driving this effect from the perspective of antioxidative stress. Transient bilateral common carotid arteries occlusion (tBCCAO) mice model and hydrogen peroxide (H2O2) treated N2a cells were employed in vivo and in vitro, respectively. Behavioral tests showed that ISOA (5, 10 mg/kg) treatment alleviated learning, memorizing, and recognition in tBCCAO model mice. ISOA alleviated the neuronal damages by increasing the number of NeuN-positive cells, decreasing the TUNEL-positive cells density, up-regulating MAP-2 expression, lighting the damage of neuronal nucleus and synapse. Mechanistically, we found that ISOA reduced the oxidative stress in neurons, which manifested by reduction on the expressions of superoxide, H2O2, intercellular reactive oxygen species (ROS) and malondialdehyde (MDA) level, and up-regulations on the expressions of anti-oxidant enzymes superoxide dismutase, heme oxygenase-1, glutathione peroxidase 4, glutathione, and NAD(P)H: quinone oxidoreductase 1. Further investigation showed that ISOA activated nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by downregulating the expression of kelch-like ECH-associated protein 1, upregulating the nuclear translocation and expression of Nrf2, and augmenting antioxidant response elements (ARE) promotor activity. The ISOA-mediated promotion on ARE promotor activity and anti-oxidant enzymes expressions, and suppression on superoxide and ROS expressions and MDA levels were weakened by pharmacological inhibition or genetic knockdown of Nrf2. These effects were enhanced after knockdown Keap1 in H2O2-treated cells. Our study demonstrates that ISOA alleviates the cognitive impairments and neuronal loss in VCI by attenuating oxidative stress through promoting the activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
6
|
Zhang J, Ryu JY, Tirado SR, Dickinson LD, Abosch A, Aziz-Sultan MA, Boulos AS, Barrow DL, Batjer HH, Binyamin TR, Blackburn SL, Chang EF, Chen PR, Colby GP, Cosgrove GR, David CA, Day AL, Folkerth RD, Frerichs KU, Howard BM, Jahromi BR, Niemela M, Ojemann SG, Patel NJ, Richardson RM, Shi X, Valle-Giler EP, Wang AC, Welch BG, Williams Z, Zusman EE, Weiss ST, Du R. A Transcriptomic Comparative Study of Cranial Vasculature. Transl Stroke Res 2024; 15:1108-1122. [PMID: 37612482 DOI: 10.1007/s12975-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
In genetic studies of cerebrovascular diseases, the optimal vessels to use as controls remain unclear. Our goal is to compare the transcriptomic profiles among 3 different types of control vessels: superficial temporal artery (STA), middle cerebral arteries (MCA), and arteries from the circle of Willis obtained from autopsies (AU). We examined the transcriptomic profiles of STA, MCA, and AU using RNAseq. We also investigated the effects of using these control groups on the results of the comparisons between aneurysms and the control arteries. Our study showed that when comparing pathological cerebral arteries to control groups, all control groups presented similar responses in the activation of immunological processes, the regulation of intracellular signaling pathways, and extracellular matrix productions, despite their intrinsic biological differences. When compared to STA, AU exhibited upregulation of stress and apoptosis genes, whereas MCA showed upregulation of genes associated with tRNA/rRNA processing. Moreover, our results suggest that the matched case-control study design, which involves control STA samples collected from the same subjects of matched aneurysm samples in our study, can improve the identification of non-inherited disease-associated genes. Given the challenges associated with obtaining fresh intracranial arteries from healthy individuals, our study suggests that using MCA, AU, or paired STA samples as controls are feasible strategies for future large-scale studies investigating cerebral vasculopathies. However, the intrinsic differences of each type of control should be taken into consideration when interpreting the results. With the limitations of each control type, it may be most optimal to use multiple tissues as controls.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Selena-Rae Tirado
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Ali Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alan S Boulos
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - H Hunt Batjer
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | | | - Spiros L Blackburn
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - P Roc Chen
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Geoffrey P Colby
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Carlos A David
- Department of Neurosurgery, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Arthur L Day
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Rebecca D Folkerth
- Department of Forensic Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kai U Frerichs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Brian M Howard
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Behnam R Jahromi
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemela
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado, Denver, CO, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Xiangen Shi
- Department of Neurosurgery, Affiliated Fuxing Hospital, Capital Medical University, Beijing, China
| | | | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Babu G Welch
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Wu G, Li B, Wei X, Chen Y, Zhao Y, Peng Y, Su J, Hu Z, Zhuo L, Tian Y, Wang Z, Peng X. Design, synthesis and biological evaluation of N-salicyloyl tryptamine derivatives as multifunctional neuroprotectants for the treatment of ischemic stroke. Eur J Med Chem 2024; 278:116795. [PMID: 39216381 DOI: 10.1016/j.ejmech.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke (IS) is a disease of high death and disability worldwide with few medications in clinical treatment. Neuroinflammation and oxidative stress are considered as crucial factors in the progression of IS. In our previous studies, N-salicyloyl tryptamine derivative (NST) L7 exhibited promising anti-inflammatory properties and is considered a potential clinical therapy for IS but had limited antioxidant capacity. Here, we have designed, synthesized, and biologically evaluated 30 novel NSTs for their neuroprotective effects against cerebral ischemia-reperfusion (CI/R) injury. To identify a multifunctional neuroprotectant with enhanced antioxidant and anti-inflammatory capacity, as well as an effective therapeutic agent for CI/R damage. Among them, M11 exhibited synergistic highly anti-oxidant, anti-inflammatory, anti-ferroptosis, and anti-apoptosis effects and surpassed the parent compound L7. Further studies demonstrated that the synergistic and efficient neuroprotective role of M11 was mainly achieved by activating Nrf2 and stimulating its downstream target HO-1/GCLC/NQO1/GPX4. In addition, M11 possessed good blood-brain barrier permeability. Moreover, M11 effectively reduced cerebral infarct volume and improved neurological deficits in MCAO/R mice. Its hydrochloride form, M11·HCl, exhibited better pharmacokinetic properties, high safety, and a significant reduction in infarct volume, which is comparable to Edaravone. In conclusion, our findings suggested that M11 capable of activating Nrf2, could represent a promising candidate agent for IS.
Collapse
Affiliation(s)
- Genping Wu
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bo Li
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiuzhen Wei
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaxin Chen
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuting Zhao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jianhui Su
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Tian
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Xue Peng
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Du B, Deng Z, Chen K, Yang Z, Wei J, Zhou L, Meng J, Cheng Y, Tian X, Tuo QZ, Lei P. Iron promotes both ferroptosis and necroptosis in the early stage of reperfusion in ischemic stroke. Genes Dis 2024; 11:101262. [PMID: 39286656 PMCID: PMC11402992 DOI: 10.1016/j.gendis.2024.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 09/19/2024] Open
Abstract
Programmed cell death contributes to neurological damage in ischemic stroke, especially during the reperfusion stage. Several cell death pathways have been tested preclinically and clinically, including ferroptosis, necroptosis, and apoptosis. However, the sequence and complex interplay between cell death pathways during ischemia/reperfusion remains under investigation. Here, we unbiasedly investigated cell death pathways during ischemia/reperfusion by utilizing RNA sequencing analysis and immunoblot assays and revealed that ferroptosis and necroptosis occurred early post-reperfusion, followed by apoptosis. Ferroptosis inhibitor Liproxstatin-1 effectively inhibited necroptosis during reperfusion, while the necroptosis inhibitor Necrostatin-1 suppressed protein expression consistent with ferroptosis activation. Protein-protein interaction analysis and iron chelation therapy by deferoxamine mesylate indicate that iron is capable of promoting both ferroptosis and necroptosis in middle cerebral artery occlusion/repression modeled mice. Treatment of cells with iron led to a disruption in redox balance with activated necroptosis and increased susceptibility to ferroptosis. Collectively, these data uncovered a complex interplay between ferroptosis and necroptosis during ischemic stroke and indicated that multiple programmed cell death pathways may be targeted co-currently.
Collapse
Affiliation(s)
- Bin Du
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijie Deng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kang Chen
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junfen Wei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liuyao Zhou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Cheng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Tian
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Fang H, Fan LL, Ding YL, Wu D, Zheng JY, Cai YF, Huang Y, Qiao LJ, Zhang SJ, Zhan J. Pre-electroacupuncture Ameliorates Cerebral Ischemia-reperfusion Injury by Inhibiting Microglial RhoA/pyrin/GSDMD Signaling Pathway. Neurochem Res 2024; 49:3105-3117. [PMID: 39167346 DOI: 10.1007/s11064-024-04228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Cerebral ischemia reperfusion injury is a severe neurological impairment that occurs after blood flow reconstruction in stroke, and microglia cell pyroptosis is one of its important mechanisms. Electroacupuncture has been shown to be effective in mitigating and alleviating cerebral ischemia reperfusion injury by inhibiting neuroinflammation, reducing cellular pyroptosis, and improving neurological function. In this experiment, we divided the rats into three groups, including the sham operation (Sham) group, the middle cerebral artery occlusion/reperfusion (MCAO/R) group, and the pre-electroacupuncture (EAC) group. Pre-electroacupuncture group was stimulated with electroacupuncture of a certain intensity on the Baihui (GV 20) and Dazhui (GV 14) of the rat once a day from the 7th day to the 1st day before the MCAO/R operation. The extent of cerebral infarction was detected by TTC staining. A modified Zea-Longa five-point scale scoring system was used to determine neurologic function in MCAO rats. The number of neurons and morphological changes were accessed by Nissl staining and HE staining. The cellular damage was detected by TUNEL staining. In addition, the expression levels of RhoA, pyrin, GSDMD, Caspase1, cleaved-Caspase1, Iba-1, CD206, and ROCK2 were examined by western blotting and immunofluorescence. The results found that pre-electroacupuncture significantly attenuated neurological impairment and cerebral infarction compared to the post-MCAO/R rats. In addition, pre-electroacupuncture therapy promoted polarization of microglia to the neuroprotective (M2) phenotype. In addition, pre-electroacupuncture inhibited microglia pyroptosis by inhibiting RhoA/pyrin/GSDMD signaling pathway, thereby reducing neuronal injury and increasing neuronal survival in the MCAO/R rats. Taken together, these results demonstrated that pre-acupuncture could attenuate cerebral ischemia-reperfusion injury by inhibiting microglial pyroptosis. Therefore, pre-electroacupuncture might be a potential preventive strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Ling-Ling Fan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Ye-Ling Ding
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Dan Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Jia-Yi Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China
| | - Yan Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China.
| | - Jie Zhan
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
11
|
Liu L, Wang R, Gao W, Hou X, Jin X, Zhao Y, Zhou X, Zhang Y. Drug pairs of Huangqi and Danggui alleviates pyroptosis by promoting autophagy activity via AMPK/mTOR signaling pathway in middle-cerebral artery occlusion/reperfusion in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024:118982. [PMID: 39454707 DOI: 10.1016/j.jep.2024.118982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia-reperfusion (I/R) injury is a common complication of ischemic stroke, with autophagy and pyroptosis playing key roles. Huangqi and Danggui (HQDG) are a commonly used drug pair of Chinese traditional medicine for clinical treatment of ischemic stroke. AIM OF THE STUDY The study aims to investigate the interaction between autophagy and pyroptosis regulated by HQDG through the AMPK/mTOR signaling pathway during cerebral I/R injury. MATERIALS AND METHODS Model of middle-cerebral artery occlusion/reperfusion (MCAO/R) in SD rats was established using the Longa suture method. The components of traditional Chinese medicine were detected by liquid chromatography coupled to quadrupole orbitrap high resolution mass spectrometry (LC/MS). Neurological deficits were evaluated by neurological function score. Changes of cerebral blood flow were detected by a laser speckle blood flow imaging instrument. The volume of cerebral infarction was observed by 2,3,5-Chlorotriphenyltetrazolium (TTC) staining. The permeability of the blood-brain barrier was measured by Evans blue test. Neurovascular unit and autophagosomes in brain tissue were assessed by transmission electron microscopy. Neuronal pyroptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL)/Caspase-1 staining. The expression of autophagy related proteins, pyroptosis related proteins, and AMPK/mTOR pathway related proteins were detected by Western blot. RESULTS After cerebral I/R injury, autophagy and pyroptosis, were characterized by increased number of autophagosomes and pyroptosis cells, upregulated expression of Beclin 1, LC3-II/LC3-I, NLRP3, cleaved Caspase-1, IL-1beta, IL-18 proteins, and downregulated expression of P62 proteins. HQDG significantly improved neurological function, reduced the volume of cerebral infarction, increased cerebral blood flow, improved blood-brain barrier permeability and the function of neurovascular units. Autophagy was further activated and pyroptosis was significantly inhibited by HQDG, which promoted increased number of autophagosomes, enhanced expression of Beclin 1, LC3-II/LC3-I proteins, reduced expression of P62, NLRP3, cleaved Caspase-1, IL-1beta, and IL-18 proteins, and downregulated the number of pyroptosis cells. On the other hand, after administering 3-Methyladenine (3-MA) to inhibit autophagy, the above effects of HQDG were significantly inhibited. Besides, HQDG promoted AMPK phosphorylation, and weakened mTOR phosphorylation. However, after the administration of AMPK inhibitor Compound C, HQDG caused increase in Beclin 1 and LC3-II/LC3-I, reduced P62 and NLRP3, and cleaved Caspase-1 protein expression, whereas cerebral blood flow decreased. CONCLUSION HQDG alleviated pyroptosis by promoting autophagy via AMPK/mTOR signaling pathway after middle-cerebral artery occlusion/reperfusion in rats, showing its potential for treatment of cerebral I/R injury in humans.
Collapse
Affiliation(s)
- Luyao Liu
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| | - Ruikun Wang
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| | - Weijuan Gao
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| | - Xianming Hou
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| | - Xiaofei Jin
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| | - Yanmeng Zhao
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| | - Xiaohong Zhou
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| | - Yi Zhang
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No. 3 Xingyuan Road, Luquan District, Shijiazhuang 050200, Hebei Province, China.
| |
Collapse
|
12
|
Qi Y, Zhu H, Chen Y, Zhang Y, Jin S, Xu X, Ma X, Chen L, Zhao M, Zhu H, Yan P. 4-Hydroxydictyolactone alleviates cerebral ischemia injury by regulating neuroinflammation and autophagy via AMPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156157. [PMID: 39427520 DOI: 10.1016/j.phymed.2024.156157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Cerebral ischemia (CI), a cerebrovascular disorder, is a major contributor to disability and mortality. Marine-derived compounds are an important source of new neuroprotective drug candidates. Xenicane-type diterpenes from brown algae of the genus Dictyota have exhibited potential neuroprotective effects against CI injury, attributed to their antioxidant properties. However, whether there are other underlying neuroprotective mechanisms of xenicane diterpenes against CI is still ambiguous. PURPOSE This study aims to elucidate the neuroprotective efficacy and mechanism of 4-hydroxydictyolactone (HDTL) in the treatment of CI. METHODS The LPS-induced BV2 cell model was used for anti-neuroinflammatory activity assay. Tandem Mass Tag (TMT)-based quantitative proteomics was employed to identify underlying mechanisms. The OGD/R-induced SH-SY5Y cell model and a MCAO mice model were used to assess the neuroprotective effect of HDTL against CI in vitro and in vivo. RESULTS HDTL reduced inflammation in LPS-stimulated BV2 cells by inhibiting the IKK/IκB/NF-κB pathway and by enhancing AMPK phosphorylation. Additionally, in SH-SY5Y cells treated with OGD/R, HDTL facilitated autophagy and reduced apoptosis. The neuroprotective properties of HDTL were abrogated in AMPK- silenced SH-SY5Y cells. In MCAO mice, HDTL ameliorated CI injury as evidenced by decreases in neurological deficit scores and cerebral infarction. HDTL also promoted autophagy and reduced apoptosis in vivo through both the AMPK/mTOR and IKK/IκB/NF-κB pathways. CONCLUSION HDTL exhibits neuroprotective effects through regulating the AMPK/mTOR and IKK/IκB/NF-κB pathways. These findings suggest that HDTL is a promising therapeutic candidate for CI treatment.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haoyun Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yinqi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yuanlong Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Shengjie Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiao Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiaohong Ma
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Leiqing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haoru Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
13
|
Kasatkina LA, Ma C, Sheng H, Lowerison M, Menozzi L, Baloban M, Tang Y, Xu Y, Humayun L, Vu T, Song P, Yao J, Verkhusha VV. Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619161. [PMID: 39464005 PMCID: PMC11507915 DOI: 10.1101/2024.10.18.619161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo , light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
Collapse
|
14
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
15
|
Li J, Liu X, Wang Z, Xie P, Zhu M, Zhong H, Luo S, Tang J, Mo G. Ozone therapy mitigates parthanatos after ischemic stroke. Biol Res 2024; 57:71. [PMID: 39367424 PMCID: PMC11453019 DOI: 10.1186/s40659-024-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Stroke is a leading cause of death worldwide, with oxidative stress and calcium overload playing significant roles in the pathophysiology of the disease. Ozone, renowned for its potent antioxidant properties, is commonly employed as an adjuvant therapy in clinical settings. Nevertheless, it remains unclear whether ozone therapy on parthanatos in cerebral ischemia-reperfusion injury (CIRI). This study aims to investigate the impact of ozone therapy on reducing parthanatos during CIRI and to elucidate the underlying mechanism. METHODS Hydrogen peroxide (H2O2) was utilized to mimic the generation of reactive oxygen species (ROS) in SH-SY5Y cell reperfusion injury in vitro, and an in vivo ischemic stroke model was established. Ozone saline was introduced for co-culture or intravenously administered to mice. Apoptosis and oxidative stress were assessed using flow cytometry and immunofluorescence. Western blotting was utilized to examine the expression of parthanatos signature proteins. The mechanism by which ozone inhibits parthanatos was elucidated through inhibiting PPARg or Nrf2 activity. RESULTS The findings demonstrated that ozone mitigated H2O2-induced parthanatos by either upregulating nuclear factor erythroid 2-related factor 2 (Nrf2) or activating peroxisome proliferator-activated receptorg (PPARg). Furthermore, through the use of calcium chelators and ROS inhibitors, it was discovered that ROS directly induced parthanatos and facilitated intracellular calcium elevation. Notably, a malignant feedback loop between ROS and calcium was identified, further amplifying the induction of parthanatos. Ozone therapy exhibited its efficacy by increasing PPARg activity or enhancing the Nrf2 translation, thereby inhibiting ROS production induced by H2O2. Concurrently, our study demonstrated that ozone treatment markedly inhibited parthanatos in stroke-afflicted mice. Additionally, ozone therapy demonstrated significant neuroprotective effects on cortical neurons, effectively suppressing parthanatos. CONCLUSIONS These findings contribute valuable insights into the potential of ozone therapy as a therapeutic strategy for reducing parthanatos during CIRI, highlighting its impact on key molecular pathways associated with oxidative stress and calcium regulation.
Collapse
Affiliation(s)
- Jiahui Li
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zengze Wang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pengyun Xie
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Min Zhu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hanhui Zhong
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Sirui Luo
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Guixi Mo
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
16
|
Li M, Miao L, Xu X, Liu Y, Wang Y, Yang F. Hypoxia-Responsive Biomimetic Nanobubbles for Oxygen Delivery Promote Synergistic Ischemic Stroke Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52036-52046. [PMID: 39315539 DOI: 10.1021/acsami.4c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Effective, precise, and controllable oxygen delivery is crucial for regulating the oxygenation balance of brain tissue at the early stages of acute ischemic stroke (AIS) because the absence of oxygen may result in a series of highly interconnected vascular-neural pathological events, including oxidative stress, inflammation, and neuroapoptosis. In this study, platelet membrane-reassembled oxygen nanobubbles (PONBs) were constructed for oxygen delivery to protect AIS. Benefiting from the preserved natural targeting ability of platelet membranes, oxygen can be controlled release into the hypoxia lesion at the preperfusion stage due to vascular injury targeting and oxygen sustained diffusion capability after PONBs administration. Furthermore, synergizing with bioactive components carried by platelet membranes, PONBs can inhibit post-AIS vascular occlusion and maintain blood-brain barrier integrity, thereby facilitating enhanced oxygen delivery of PONBs, establishing a positive feedback loop between oxygen delivery and AIS protection. Additionally, the accumulation of PONBs enhances the ultrasound imaging contrast, enabling precise localization and dynamic monitoring of AIS lesions. Thus, PONBs represent a promising strategy for the diagnosis and treatment of AIS.
Collapse
Affiliation(s)
- Mingxi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lijun Miao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xuan Xu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210009, P. R. China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yakun Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
17
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
18
|
Yang M, Zhu H, Peng L, Yin T, Sun S, Du Y, Li J, Liu J, Wang S. Neuronal HIPK2-HDAC3 axis regulates mitochondrial fragmentation to participate in stroke injury and post-stroke anxiety like behavior. Exp Neurol 2024; 380:114906. [PMID: 39079624 DOI: 10.1016/j.expneurol.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Post-stroke anxiety (PSA) seriously affects the prognosis of patients, which is an urgent clinical problem to be addressed. However, the pathological mechanism of PSA is largely unclear. Here, we found that neuronal HIPK2 expression was upregulated in the ischemic lesion after stroke. The upregulation of HIPK2 promotes Drp1 oligomerization through the HDAC3-dependent pathway, leading to excessive mitochondrial damage. This subsequently triggers the release of cellular cytokines such as IL-18 from neurons under ischemic stress. Microglia are capable of responding to IL-18, which promotes their activation and enhances their phagocytosis, ultimately resulting in the loss of synapses and neurons, thereby exacerbating the pathological progression of PSA. HIPK2 knockdown or inhibition suppresses excessive pruning of neuronal synapses by activated microglia in the contralateral vCA1 region to compromise inactivated anxiolytic pBLA-vCA1Calb1+ circuit, relieving anxiety-like behavior after stroke. Furthermore, we discovered that early remimazolam administration can remodel HIPK2-HDAC3 axis, ameliorating the progression of PSA. In conclusion, our study revealed that the neuronal HIPK2-HDAC3 axis in the ischemic focus regulates mitochondrial fragmentation to balance inflammation stress reservoir to participate in anxiety susceptibility after stroke.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Wannan Medical College, Wuhu 241002, China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Tianyue Yin
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Shuaijie Sun
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Wannan Medical College, Wuhu 241002, China
| | - Yuhao Du
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Jun Li
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinya Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
19
|
Wang J, Lv C, Wei X, Li F. Molecular mechanisms and therapeutic strategies for ferroptosis and cuproptosis in ischemic stroke. Brain Behav Immun Health 2024; 40:100837. [PMID: 39228970 PMCID: PMC11369453 DOI: 10.1016/j.bbih.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Ischemic stroke, as one of the most severe and prevalent neurological disorders, poses a significant threat to the health and quality of life of affected individuals. Stemming from the obstruction of blood flow, ischemic stroke, leads to cerebral tissue hypoxia and ischemia, instigating a cascade of pathophysiological changes that markedly exacerbate neuronal damage and may even culminate in cell death. In recent years, emerging research has increasingly focused on novel cell death mechanisms such as ferroptosis and cuproptosis. Mounting evidence underscores the independent roles of ferroptosis and cuproptosis in ischemic stroke. This review aims to elucidate potential cross-regulatory mechanisms between ferroptosis and cuproptosis, exploring their regulatory roles in ischemic stroke. The objective is to provide targeted therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jing Wang
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
- Bengbu Medical College, Anhui, China
| | - Cunming Lv
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Xinyu Wei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Feng Li
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
| |
Collapse
|
20
|
Li Y, Hu K, Li J, Yang X, Wu X, Liu Q, Chen Y, Ding Y, Liu L, Yang Q, Wang G. Tetrahydroxy Stilbene Glucoside Promotes Mitophagy and Ameliorates Neuronal Injury after Cerebral Ischemia Reperfusion via Promoting USP10-Mediated YBX1 Stability. eNeuro 2024; 11:ENEURO.0269-24.2024. [PMID: 39406480 DOI: 10.1523/eneuro.0269-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024] Open
Abstract
Tetrahydroxy stilbene glucoside (TSG) from Polygonum multiflorum exerts neuroprotective effects after ischemic stroke. We explored whether TSG improved ischemic stroke injury via PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Oxygen glucose deprivation/reoxygenation (OGD/R) in vitro model and middle cerebral artery occlusion (MCAO) rat model were established. Cerebral injury was assessed by neurological score, hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and brain water content. Apoptosis, cell viability, and mitochondrial membrane potential were assessed by flow cytometry, cell counting kit-8, and JC-1 staining, respectively. Colocalization of LC3-labeled autophagosomes with lysosome-associated membrane glycoprotein 2-labeled lysosomes or translocase of outer mitochondrial membrane 20-labeled mitochondria was observed with fluorescence microscopy. The ubiquitination level was determined using ubiquitination assay. The interaction between molecules was validated by coimmunoprecipitation and glutathione S-transferase pull-down. We found that TSG promoted mitophagy and improved cerebral ischemia/reperfusion damage in MCAO rats. In OGD/R-subjected neurons, TSG promoted mitophagy, repressed neuronal apoptosis, upregulated Y-box binding protein-1 (YBX1), and activated PINK1/Parkin signaling. TSG upregulated ubiquitin-specific peptidase 10 (USP10) to elevate YBX1 protein. Furthermore, USP10 inhibited ubiquitination-dependent YBX1 degradation. USP10 overexpression activated PINK1/Parkin signaling and promoted mitophagy, which were reversed by YBX1 knockdown. Moreover, TSG upregulated USP10 to promote mitophagy and inhibited neuronal apoptosis. Collectively, TSG facilitated PINK1/Parkin pathway-mediated mitophagy by upregulating USP10/YBX1 axis to ameliorate ischemic stroke.
Collapse
Affiliation(s)
- Yuxian Li
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Ke Hu
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Jie Li
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Xirong Yang
- Department of Neurology, first affiliated hospital, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Xiuyu Wu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Qian Liu
- Biomedical Research Center, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Yuefu Chen
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Yan Ding
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Lingli Liu
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Qiansheng Yang
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua, Hunan Province 418000, China
| |
Collapse
|
21
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
22
|
d'Avanzo N, Paolino D, Barone A, Ciriolo L, Mancuso A, Christiano MC, Tolomeo AM, Celia C, Deng X, Fresta M. OX26-cojugated gangliosilated liposomes to improve the post-ischemic therapeutic effect of CDP-choline. Drug Deliv Transl Res 2024; 14:2771-2787. [PMID: 38478324 PMCID: PMC11384645 DOI: 10.1007/s13346-024-01556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 09/10/2024]
Abstract
Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.
Collapse
Affiliation(s)
- Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonella Barone
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Luigi Ciriolo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Christiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128, Padua, Italy
- Perdiatric Research Institute "Città della Speranza", Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania.
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy.
| |
Collapse
|
23
|
Zhang Z, Zheng Z, Chen Y, Niu X, Ouyang T, Wang D. Mechanism of USP18-Mediated NCOA4 m6A Modification Via Maintaining FTO Stability In Regulating Ferritinophagy-Mediated Ferroptosis in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024:10.1007/s12035-024-04494-w. [PMID: 39331352 DOI: 10.1007/s12035-024-04494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study aimed to explore whether USP18 regulates cerebral ischemia-reperfusion (I/R) injury via fat mass and obesity-associated proteins (FTO)-mediated NCOA4. Middle cerebral artery occlusion (MCAO) models were established in mice, and PC-12 cells treated with oxygen-glucose deprivation and reperfusion (OGD/R) were used as in vitro models. The USP18 lentiviral vector was transfected into cells in vitro and MCAO mice to observe its effect on ferroptosis. The relationship between USP18 and FTO was assessed using Co-IP and western blot. The effect of FTO on NCOA4 m6A modification was also elucidated. Overexpression of USP18 in MCAO models decreased cerebral infarct size and attenuated pathological conditions in mouse brain tissues. Moreover, USP18 reduced iron content, MDA, ROS, and LDH release, increased GSH levels and cell viability in both MCAO models and OGD/R cells, and promoted LC3 expression and autophagy flux. In vitro experiments on neurons showed that USP18 maintained FTO stability. The presence of FTO-m6A-YTFDH1-NCOA4 was also verified in neurons. Both in vivo and in vitro experiments showed that FTO and NCOA4 abrogated the protective effects of USP18 against ferritinophagy-mediated ferroptosis. Notably, USP18 maintains FTO stability, contributing to the removal of NCOA4 m6A modification and the suppression of NCOA4 translation, which consequently inhibits ferritinophagy-mediated ferroptosis to attenuate cerebral I/R injury.
Collapse
Affiliation(s)
- Zongyong Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Zongqing Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yibiao Chen
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xuegang Niu
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Dengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
24
|
Yu Z, Liu X, Feng X, Zhang X, Gao R. Causal relationship between novel antidiabetic drugs and ischemic stroke: a drug-targeted Mendelian randomization study. Front Cardiovasc Med 2024; 11:1449185. [PMID: 39380626 PMCID: PMC11458414 DOI: 10.3389/fcvm.2024.1449185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Background The escalating global economic burden of ischemic stroke poses a significant public health challenge amid global aging trends. The broad therapeutic efficacy of new antidiabetic drugs may offer new options in the prevention and treatment of ischemic stroke. Consistent conclusions regarding the relationship between novel antidiabetic agents and the risk of ischemic stroke remain elusive, and the causal relationship deserves further investigation. Materials and methods Three novel antidiabetic drug targets were selected, and cis-expression quantitative trait loci (cis-eQTL) were screened as instrumental variables. Genetic association data for ischemic stroke were obtained from the Genome-wide Association Study (GWAS) database. Mendelian randomization (MR) analysis, facilitated by R software, calculated MR estimates for each single nucleotide polymorphism (SNP), and meta-analysis was performed using five methods. To ensure robustness, sensitivity analyses, heterogeneity analyses, horizontal pleiotropy analyses, and co-localization analyses were conducted for significant MR associations. Results Three eQTLs for antidiabetic drug genes served as instrumental variables, utilizing a GWAS dataset comprising 34,217 cases and 406,111 controls for ischemic stroke. Genetic variants in glucagon-like peptide-1 receptor agonists (GLP-1 RA) targets exhibited a positive correlation with ischemic stroke risk (OR 1.06, 95% CI 1.04-1.08, P = 0.000), while genetic variation in dipeptidyl peptidase 4 inhibitors (DPP-4i) targets showed a negative association with ischemic stroke risk (OR 0.93, 95% CI 0.89-0.97, P = 0.003). Sensitivity analyses supported robust conclusions, revealing no heterogeneity or horizontal pleiotropy. Conclusion This study found that GLP-1 RA and DPP-4i were associated with an increased risk of ischemic stroke by MR analysis. Although sensitivity analyses provide support for this result, it contradicts previous knowledge. Therefore, the results of this study still need to treated with caution. Updated and more in-depth GWAS data and high-quality real-world data are expected to validate the results.
Collapse
Affiliation(s)
- Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Liu
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Feng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Ma H, Zhu L. Exploring the role of traditional Chinese medicine rehabilitation in stroke based on microRNA-mediated pyroptosis: A review. Medicine (Baltimore) 2024; 103:e39685. [PMID: 39312329 PMCID: PMC11419531 DOI: 10.1097/md.0000000000039685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Stroke, also known as "cerebrovascular accident," is a disease caused by acute impairment of brain circulation, which has a high rate of disability and mortality. Ischemic stroke (IS) is the most common type of stroke and a major cause of death and disability worldwide. At present, there are still many limitations in the treatment of IS, so it may be urgent to explore more treatments for IS. In recent years, the clinical application of traditional Chinese medicine rehabilitation methods such as traditional Chinese medicine, acupuncture, massage, traditional exercises and modern rehabilitation technology has achieved good results in the treatment of IS. Concurrently, studies have identified microRNA (miRNA), which are intimately associated with traditional Chinese medicine rehabilitation, as regulators of pyroptosis through their influence on microglia activity, inflammatory response, oxidative stress, angiogenesis and other factors, but at present, the mechanism of this direction has not been systematically summarized. Consequently, this article delineates in detail the specific role of miRNA in IS and the related activation pathways of pyroptosis in IS. This article presents a detailed discussion of the role of microRNA-mediated pyroptosis in IS, with a particular focus on the signaling pathways involved. The aim is to provide new insights for the research of traditional Chinese medicine (TCM) rehabilitation in the prevention and treatment of IS. In addition, the article explores the potential of TCM rehabilitation in regulating miRNA-mediated pyroptosis to intervene in IS.
Collapse
Affiliation(s)
- Hanwen Ma
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
26
|
Zhang Y, Fan S, He L, Li L. The ZDHHC13/ZDHHC17 subfamily: From biological functions to therapeutic targets of diseases. Pharmacol Res 2024; 209:107418. [PMID: 39306022 DOI: 10.1016/j.phrs.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
The ZDHHC13/ZDHHC17 subfamily belongs to the zinc finger DHHC-domain containing (ZDHHC) family, including ZDHHC13 and ZDHHC17. Recent studies have shown that the ZDHHC13/ZDHHC17 subfamily is involved in various pathological and physiological processes, including S-palmitoylation, Mg2+ transport, and CALCOCO1-mediated Golgiphagy. Moreover, the ZDHHC13/ZDHHC17 subfamily plays a crucial role in the occurrence and development of many diseases, including Huntington disease (HD), osteoporosis, atopic dermatitis, diabetes, and cancer. In the present review, we describe the distribution, structure, and post-translational modifications (PTMs) of the ZDHHC13/ZDHHC17 subfamily. Moreover, we effectively summarize the biological functions and associated diseases of this subfamily. Given the pleiotropy of the ZDHHC13/ZDHHC17 subfamily, it is imperative to conduct further research on its members to comprehend the pertinent pathophysiological mechanisms and to devise tactics for managing and controlling various diseases.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Sisi Fan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- The First Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
27
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
28
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
29
|
Zhao S, Zhuang H, Ji W, Cheng C, Liu Y. Identification of Disulfidptosis-Related Genes in Ischemic Stroke by Combining Single-Cell Sequencing, Machine Learning Algorithms, and In Vitro Experiments. Neuromolecular Med 2024; 26:39. [PMID: 39278970 PMCID: PMC11402847 DOI: 10.1007/s12017-024-08804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Ischemic stroke (IS) is a severe neurological disorder with a pathogenesis that remains incompletely understood. Recently, a novel form of cell death known as disulfidptosis has garnered significant attention in the field of ischemic stroke research. This study aims to investigate the mechanistic roles of disulfidptosis-related genes (DRGs) in the context of IS and to examine their correlation with immunopathological features. METHODS To enhance our understanding of the mechanistic underpinnings of disulfidptosis in IS, we initially retrieved the expression profile of peripheral blood from human IS patients from the GEO database. We then utilized a suite of machine learning algorithms, including LASSO, random forest, and SVM-RFE, to identify and validate pivotal genes. Furthermore, we developed a predictive nomogram model, integrating multifactorial logistic regression analysis and calibration curves, to evaluate the risk of IS. For the analysis of single-cell sequencing data, we employed a range of analytical tools, such as "Monocle" and "CellChat," to assess the status of immune cell infiltration and to characterize intercellular communication networks. Additionally, we utilized an oxygen-glucose deprivation (OGD) model to investigate the effects of SLC7A11 overexpression on microglial polarization. RESULTS This study successfully identified key genes associated with disulfidptosis and developed a reliable nomogram model using machine learning algorithms to predict the risk of ischemic stroke. Examination of single-cell sequencing data showed a robust correlation between disulfidptosis levels and the infiltration of immune cells. Furthermore, "CellChat" analysis elucidated the intricate characteristics of intercellular communication networks. Notably, the TNF signaling pathway was found to be intimately linked with the disulfidptosis signature in ischemic stroke. In an intriguing finding, the OGD model demonstrated that SLC7A11 expression suppresses M1 polarization while promoting M2 polarization in microglia. CONCLUSION The significance of our findings lies in their potential to shed light on the pathogenesis of ischemic stroke, particularly by underscoring the pivotal role of disulfidptosis-related genes (DRGs). These insights could pave the way for novel therapeutic strategies targeting DRGs to mitigate the impact of ischemic stroke.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Hao Zhuang
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
| | - Yuankun Liu
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
30
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
31
|
Ma R, Sun X, Liu Z, Zhang J, Yang G, Tian J, Wang Y. Ferroptosis in Ischemic Stroke and Related Traditional Chinese Medicines. Molecules 2024; 29:4359. [PMID: 39339354 PMCID: PMC11433924 DOI: 10.3390/molecules29184359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is a severe neurological disorder resulting from the rupture or blockage of blood vessels, leading to significant mortality and disability worldwide. Among the different types of stroke, ischemic stroke (IS) is the most prevalent, accounting for 70-80% of cases. Cell death following IS occurs through various mechanisms, including apoptosis, necrosis, and ferroptosis. Ferroptosis, a recently identified form of regulated cell death characterized by iron overload and lipid peroxidation, was first described by Dixon in 2012. Currently, the only approved pharmacological treatment for IS is recombinant tissue plasminogen activator (rt-PA), which is limited by a narrow therapeutic window and often results in suboptimal outcomes. Recent research has identified several traditional Chinese medicines (TCMs) that can inhibit ferroptosis, thereby mitigating the damage caused by IS. This review provides an overview of stroke, the role of ferroptosis in IS, and the potential of certain TCMs to inhibit ferroptosis and contribute to stroke treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (R.M.); (X.S.); (Z.L.); (J.Z.); (G.Y.); (J.T.)
| |
Collapse
|
32
|
Zhao T, Zeng J, Zhang R, Wang H, Pu L, Yang H, Liang J, Dai X, Fan W, Han L. Identification of Blood Biomarkers in Ischemic Stroke by Integrated Analysis of Metabolomics and Proteomics. J Proteome Res 2024; 23:4082-4094. [PMID: 39167481 DOI: 10.1021/acs.jproteome.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We aimed to uncover the pathological mechanism of ischemic stroke (IS) using a combined analysis of untargeted metabolomics and proteomics. The serum samples from a discovery set of 44 IS patients and 44 matched controls were analyzed using a specific detection method. The same method was then used to validate metabolites and proteins in the two validation sets: one with 30 IS patients and 30 matched controls, and the other with 50 IS patients and 50 matched controls. A total of 105 and 221 differentially expressed metabolites or proteins were identified, and the association between the two omics was determined in the discovery set. Enrichment analysis of the top 25 metabolites and 25 proteins in the two-way orthogonal partial least-squares with discriminant analysis, which was employed to identify highly correlated biomarkers, highlighted 15 pathways relevant to the pathological process. One metabolite and seven proteins exhibited differences between groups in the validation set. The binary logistic regression model, which included metabolite 2-hydroxyhippuric acid and proteins APOM_O95445, MASP2_O00187, and PRTN3_D6CHE9, achieved an area under the curve of 0.985 (95% CI: 0.966-1) in the discovery set. This study elucidated alterations and potential coregulatory influences of metabolites and proteins in the blood of IS patients.
Collapse
Affiliation(s)
- Tian Zhao
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Jingjing Zeng
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Ruijie Zhang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Han Wang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Liyuan Pu
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Huiqun Yang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Jie Liang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| | - Xiaoyu Dai
- Department of Anus & Intestine Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
| | - Weinv Fan
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
| | - Liyuan Han
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
| |
Collapse
|
33
|
Yang XY, Wang SL, Xue WC, Zhang YP, Li LL, Luo ZH, Zhang FJ. Nattokinase's Neuroprotective Mechanisms in Ischemic Stroke: Targeting Inflammation, Oxidative Stress, and Coagulation. Antioxid Redox Signal 2024. [PMID: 39135387 DOI: 10.1089/ars.2023.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Aims: Nattokinase (NK), a potent serine endopeptidase, has exhibited a variety of pharmacological effects, including thrombolysis, anti-inflammation, and antioxidative stress. Building on previous research highlighting NK's promise in nerve regeneration, our study investigated whether NK exerted protective effects in transient middle cerebral artery occlusion (tMCAO)-induced cerebral ischemia-reperfusion injury and the underlying mechanisms. Results: The rats were administered NK (5000, 10000, 20000 FU/kg, i.g., 7 days before surgery, once daily). We showed that NK treatment dose dependently reduced the infarction volume and improved neurological symptoms, decreased the proinflammatory and coagulation cytokines levels, and attenuated reactive oxygen species (ROS) in the infarcted area of tMCAO rats. We also found that NK could exert neuroprotective effects in a variety of vitro models, including the microglia inflammation model and neuronal oxygen-glucose deprivation/reperfusion (OGD/R) model. Notably, NK effectively countered OGD/R-induced neuron death, modulating diverse pathways, including autophagy, apoptosis, PARP-dependent death, and endoplasmic reticulum stress. Furthermore, the neuroprotection of NK was blocked by phenylmethylsulfonyl fluoride (PMSF), a serine endopeptidase inhibitor. We revealed that heat-inactive NK was unable to protect against tMCAO injury and other vitro models, suggesting NK attenuated ischemic injury by its enzymatic activity. We conducted a proteomic analysis and found inflammation and coagulation were involved in the occurrence of tMCAO model and in the therapeutic effect of NK. Innovation and Conclusion: In conclusion, these data demonstrated that NK had multifaceted neuroprotection in ischemic brain injury, and the therapeutic effect of NK was related with serine endopeptidase activity.
Collapse
Affiliation(s)
- Xin-Ying Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Sheng-Lin Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Wen-Chi Xue
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu-Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Liang-Liang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao-Hu Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Feng-Jiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
34
|
Xu Y, Liu W, Ren L. Role of m6A RNA Methylation in Ischemic Stroke. Mol Neurobiol 2024; 61:6997-7008. [PMID: 38363537 DOI: 10.1007/s12035-024-04029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Ischemic stroke is a prominent contributor to global morbidity and mortality rates. The intricate and diverse mechanisms underlying ischemia-reperfusion injury remain poorly comprehended. RNA methylation, an emerging epigenetic modification, plays a crucial role in regulating numerous biological processes, including immunity, DNA damage response, tumorigenesis, metastasis, stem cell renewal, adipocyte differentiation, circadian rhythms, cellular development and differentiation, and cell division. Among the various RNA modifications, N6-methyladenosine (m6A) modification stands as the most prevalent in mammalian mRNA. Recent studies have demonstrated the crucial involvement of m6A modification in the pathophysiological progression of ischemic stroke. This review aims to elucidate the advancements in ischemic stroke-specific investigations pertaining to m6A modification, consolidate the underlying mechanisms implicated in the participation of m6A modification during the onset of ischemic stroke, and deliberate on the potential of m6A modification as a viable therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Wenqiang Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230000, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230000, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| |
Collapse
|
35
|
Yu X, Wang S, Wang X, Li Y, Dai Z. Melatonin improves stroke by inhibiting autophagy-dependent ferroptosis mediated by NCOA4 binding to FTH1. Exp Neurol 2024; 379:114868. [PMID: 38901754 DOI: 10.1016/j.expneurol.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Ischemic stroke is a disease associated with high morbidity and disability rates; however, its pathogenesis remains elusive, and treatment options are limited. Ferroptosis, an iron-dependent form of cell death, represents a novel avenue for investigation. The objective of this study was to explore the role of melatonin in MCAO-induced ferroptosis and elucidate its underlying molecular mechanism. To simulate brain damage and neuronal injury caused by ischemic stroke, we established a mouse model of MCAO and an HT-22 cell model of OGD/R. The therapeutic efficacy of melatonin was assessed through measurements of infarct size, brain edema, and neurological scores. Additionally, qRT-PCR, WB analysis, and Co-IP assays were employed to investigate the impact of melatonin on ferroptosis markers such as NCOA4 and FTH1 expression levels. Confocal microscopy was utilized to confirm the colocalization between ferritin and lysosomes. Furthermore, we constructed a SIRT6 siRNA model to validate the regulatory effect exerted by SIRT6 on NCOA4 as well as their binding interaction. The present study provides initial evidence that melatonin possesses the ability to mitigate neuronal damage induced by MCAO and OGD/R. Assessment of markers for oxidative damage and ferroptosis revealed that melatonin effectively inhibits intracellular Fe2+ levels, thereby suppressing ferroptosis. Additionally, our findings demonstrate that melatonin modulates the interaction between FTH1 and NCOA4 via SIRT6, influencing ferritin autophagy without affecting cellular macroautophagy. These findings provide reliable data support for the promotion and application of melatonin in clinical practice.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Shan Wang
- Department of Echocardiography & Noninvasive Cardiology Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Xu Wang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2 Ward of Hepatobiliary Surgery, Chengdu 610072, Sichuan, China
| | - Yi Li
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| | - Zheng Dai
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| |
Collapse
|
36
|
Druzhkova TA, Zhanina MY, Vladimirova EE, Guekht AB, Gulyaeva NV. Proteomic Spectrum of Serum Exosomes in Ischemic Stroke Patients Is Associated with Cognitive Impairment in the Post-Stroke Period. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1595-1609. [PMID: 39418518 DOI: 10.1134/s0006297924090062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 09/01/2024] [Indexed: 10/19/2024]
Abstract
Ischemic stroke (IS) and subsequent neuropsychiatric disorders are among the leading causes of disability worldwide. Several strategies have been previously proposed to utilize exosomes for assessing the risk of IS-related diseases. The aim of this work was to evaluate serum exosomal proteins in IS patients during the chronic post-stroke period and to search for their associations with the development of post-stroke mild cognitive impairment (MCI). Comparative quantitative proteomic analysis of serum exosomes of patients without post-stroke MCI (19 patients mean age 52.0 ± 8.1 years) and patients with post-stroke MCI (11 patients, mean age 64.8 ± 5.6 years) revealed significant differences in the levels of 62 proteins out of 186 identified. Increased levels of the proteins associated with immune system and decreased levels of the proteins involved in lipid metabolism were observed in the patients with MCI compared to the patients without MCI in the chronic post-stroke period. The obtained data suggest that the higher level of immune system activation in the patients during a relatively long period after IS may be one of the risk factors for the development of post-stroke cognitive disorders and suggest participation of exosomal transport in these processes.
Collapse
Affiliation(s)
- Tatyana A Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, 115419, Russia
| | - Marina Yu Zhanina
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, 115419, Russia
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | | | - Alla B Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, 115419, Russia
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, 119049, Russia
| | - Natalia V Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, 115419, Russia.
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
37
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
38
|
Yang X, Mu Y, Feng Y, Li M, Hu H, Zhang X, Zuo Z, Wu R, Xu J, Zheng F, He X, Hu X, Zhang L. Physical exercise-induced circAnks1b upregulation promotes protective endoplasmic reticulum stress and suppresses apoptosis via miR-130b-5p/Pak2 signaling in an ischemic stroke model. CNS Neurosci Ther 2024; 30:e70055. [PMID: 39328024 PMCID: PMC11427801 DOI: 10.1111/cns.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
AIMS Physical exercise (PE) can accelerate post-stroke recovery. This study investigated contributions of circRNAs to PE-induced improvements in post-stroke neurological function. METHODS Rats subjected to transient middle cerebral artery occlusion were left sedentary or provided running-wheel access for 4 weeks during recovery. CircRNAs from peri-infarct cortex were identified by high-throughput sequencing, and interactions with miRNAs by immunoprecipitation, fluorescence in suit hybridization, and dual-luciferase reporter assays. In vivo circRNA knockdown was achieved using shRNA-AAVs and in vitro overexpression by plasmid transfection. Transmission electron microscopy, western blotting, and TUNEL assays were conducted to explore circRNA contributions to endoplasmic reticulum (ER) stress and neuronal apoptosis. CircRNA levels were measured in plasma from stroke patients by qRT-PCR and associations with neurological scores assessed by Pearson's correlation analysis. RESULTS PE upregulated circAnks1b, reduced infarct volume, and mitigated neurological dysfunction, while circAnks1b knockdown exacerbated neurological dysfunction and increased infarct size despite PE. CircAnks1b sponged miR-130b-5p, thereby disinhibiting Pak2 expression. Conversely, Pak2 downregulation disrupted PE-mediated protective ER stress, leading to reduced IRE1/XBP1 and heightened apoptosis. Plasma circAnks1b was higher in stroke patients receiving PE than sedentary patients and correlated negatively with neurological scores. CONCLUSIONS CircAnks1b upregulation may be an effective therapeutic strategy for post-stroke recovery.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yating Mu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yifeng Feng
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Mingyue Li
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Haojie Hu
- Department of PsychologyNew York UniversityNew YorkNew YorkUSA
| | - Xiaoya Zhang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Zejie Zuo
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Rui Wu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jinghui Xu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Fang Zheng
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xiaofei He
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xiquan Hu
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Liying Zhang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
39
|
Lyu J, Liu Y, Liu F, Liu G, Gao Y, Wei R, Cai Y, Shen X, Zhao D, Zhao X, Xie Y, Yu H, Chai Y, Zhang J, Zhang Y, Xie Y. Therapeutic effect and mechanisms of traditional Chinese medicine compound (Qilong capsule) in the treatment of ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155781. [PMID: 38870749 DOI: 10.1016/j.phymed.2024.155781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Background Qilong capsule (QLC) is a well-known traditional Chinese medicine compound extensively used in clinical practice. It has been approved by the China's FDA for the treatment of ischemic stroke (IS). In our clinical trial involving QLC (ClinicalTrials.gov identifier: NCT03174535), we observed the potential of QLC to improve neurological function in IS patients at the 24th week, while ensuring their safety. However, the effectiveness of QLC beyond the initial 12-week period remains uncertain, and the precise mechanisms underlying its action in IS have not been fully elucidated. Purpose In order to further explore the clinical efficacy of QLC in treating IS beyond the initial 12-week period and systematically elucidate its underlying mechanisms. Study Design This study employed an interdisciplinary integration strategy that combines post hoc analysis of clinical trials, transcriptome sequencing, integrated bioinformatics analysis, and animal experiments. Methods In this study, we conducted a post-hoc analysis with 2302 participants to evaluate the effectiveness of QLC at the 12th week. The primary outcome was the proportion of patients achieving functional independence at the 12th week, defined as a score of 0-2 on the modified Rankin Scale (mRS), which ranges from 0 (no symptoms) to 6 (death). Subsequently, we employed RNA sequencing (RNA-Seq) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) techniques in the QLC trial to investigate the potential molecular mechanisms underlying the therapeutic effect of QLC in IS. Simultaneously, we utilized integrated bioinformatics analyses driven by external multi-source data and algorithms to further supplement the exploration and validation of QLC's therapeutic mechanism in treating IS. This encompassed network pharmacology analysis and analyses at the mRNA, cellular, and pathway levels focusing on core targets. Additionally, we developed a disease risk prediction model using machine learning. By identifying differentially expressed core genes (DECGs) between the normal and IS groups, we quantitatively predicted IS occurrence. Furthermore, to assess its protective effects and determine the key regulated pathway, we conducted experiments using a middle cerebral artery occlusion and reperfusion (MACO/R) rat model. Results Our findings demonstrated that the combination of QLC and conventional treatment (CT) significantly improved the proportion of patients achieving functional independence (mRS score 0-2) at the 12th week compared to CT alone (n = 2,302, 88.65 % vs 87.33 %, p = 0.3337; n = 600, 91.33 % vs 84.67 %, p = 0.0165). Transcriptome data revealed that the potential underlying mechanism of QLC for IS is related to the regulation of the NF-κB inflammatory pathway. The RT-qPCR results demonstrated that the regulatory trends of key genes, such as MD-2, were consistent with those observed in the RNA-Seq analysis. Integrated bioinformatics analysis elucidated that QLC regulates the NF-κB signaling pathway by identifying core targets, and machine learning was utilized to forecast the risk of IS onset. The MACO/R rat model experiment confirmed that QLC exerts its anti-CIRI effects by inhibiting the MD-2/TLR-4/NF-κB signaling axis. Conclusion: Our interdisciplinary integration study has demonstrated that the combination of QLC with CT exhibits significant superiority over CT alone in improving functional independence in patients at the 12th week. The potential mechanism underlying QLC's therapeutic effect in IS involves the inhibition of the MD-2/TLR4/NF-κB inflammatory signaling pathway, thereby attenuating cerebral ischemia/reperfusion inflammatory injury and facilitating neurofunctional recovery. The novelty and innovative potential of this study primarily lie in the novel finding that QLC significantly enhances the proportion of patients achieving functional independence (mRS score 0-2) at the 12th week. Furthermore, employing a "multilevel-multimethod" integrated research approach, we elucidated the potential mechanism underlying QLC's therapeutic effect in IS.
Collapse
Affiliation(s)
- Jian Lyu
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine & National Clinical Research Center for Chinese Medicine Cardiology, XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing, 100091, PR China.
| | - Yi Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Inner Dongzhimen, Dongcheng District, Beijing, 100700, PR China
| | - Fumei Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Inner Dongzhimen, Dongcheng District, Beijing, 100700, PR China
| | - Guangyu Liu
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine & National Clinical Research Center for Chinese Medicine Cardiology, XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing, 100091, PR China
| | - Yang Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan, Fengtai District, Beijing, 100078, PR China
| | - Ruili Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Inner Dongzhimen, Dongcheng District, Beijing, 100700, PR China
| | - Yefeng Cai
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, PR China
| | - Xiaoming Shen
- The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Jinshui District, Zhengzhou, 450000, Henan, PR China
| | - Dexi Zhao
- Affiliated Hospital of Changchun University of Chinese Medicine, No.1478 Gongnong Road, Chaoyang District, Changchun, 130021, Jilin, PR China
| | - Xingquan Zhao
- Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing,100070, PR China
| | - Yingzhen Xie
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Hai Yun Cang, Dongcheng District, Beijing,100700, PR China
| | - Haiqing Yu
- Taiyuan Chinese Medicine Hospital, No. 2 Baling South Street, Xinghualing District, Taiyuan 030009, Shanxi, PR China
| | - Yan Chai
- Department of Epidemiology, University of California, Los Angeles, 405 Hilgard Avenue, CA90095, USA
| | - Jingxiao Zhang
- Center for Applied Statistics, School of Statistics, Renmin University of China, 100872, Beijing, China
| | - Yunling Zhang
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine & National Clinical Research Center for Chinese Medicine Cardiology, XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing, 100091, PR China.
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Inner Dongzhimen, Dongcheng District, Beijing, 100700, PR China.
| |
Collapse
|
40
|
Chen H, Liu Z, Zhao L, Jia Z. Neuroprotective effects of salvianolic acids combined with Panax notoginseng saponins in cerebral ischemia/reperfusion rats concerning the neurovascular unit and trophic coupling. Brain Behav 2024; 14:e70036. [PMID: 39295106 PMCID: PMC11410882 DOI: 10.1002/brb3.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/16/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The neurovascular unit (NVU) and neurovascular trophic coupling (NVTC) play a key regulatory role in brain injury caused by ischemic stroke. Salvianolic acids (SAL) and Panax notoginseng saponins (PNS) are widely used in China to manage ischemic stroke. Neuroprotective effects of SAL and PNS, either taken alone or in combination, were examined in this research. METHODS Wistar rats were randomly divided into the following groups: Sham group (Sham), cerebral ischemia/reperfusion group (I/R), I/R with SAL group (SAL), I/R with PNS group (PNS), I/R with SAL combined with PNS (SAL + PNS), and I/R with edaravone group (EDA). Treatment was administered once daily for two days after modeling of middle cerebral artery occlusion/reperfusion (MCAO/R). RESULTS Compared with the I/R group, SAL, PNS, or SAL + PNS treatment reduced infarct size, improved neurological deficit score, reduced Evans blue extravasation, increased expression of CD31 and tight junction proteins (TJs), including zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), and junctional adhesion molecule-1 (JAM-1). Furthermore, SAL, PNS, or SAL + PNS suppressed the activations of microglia and astrocyte and led to the amelioration of neuron and pericyte injury. Treatment also inhibited NVU dissociation of GFAP/PDGFRβ and Collagen IV/GFAP while upregulated the expression level of BDNF/TrkB and BDNF/NeuN. CONCLUSIONS SAL and PNS have significantly remedied structural and functional disorders of NVU and NVTC in I/R injury. These effects were more pronounced when SAL and PNS were combined than when used separately.
Collapse
Affiliation(s)
- Hongyang Chen
- School of Basic Medical SciencesYunnan University of Chinese MedicineKunmingP. R. China
| | - Zhen Liu
- Department of Traditional Chinese MedicineThe Baotou Central HospitalBaotouP. R. China
| | - Lei Zhao
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Zhuangzhuang Jia
- School of Basic Medical SciencesYunnan University of Chinese MedicineKunmingP. R. China
| |
Collapse
|
41
|
Xu Z, Li Y, Pi P, Yi Y, Tang H, Zhang Z, Xiong H, Lei B, Shi Y, Li J, Sun Z. B. glomerulata promotes neuroprotection against ischemic stroke by inhibiting apoptosis through the activation of PI3K/AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155817. [PMID: 39029135 DOI: 10.1016/j.phymed.2024.155817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Brassaiopsis glomerulata (Blum) Regel (B.glomerulata) is recognized as a traditional Chinese medicine (TCM) primarily used for promoting blood circulation and removing stasis. It is frequently utilized in the treatment of injuries resulting from falls and bumps. PURPOSE Despite its effective use in clinical treatment for ischemic stroke (IS), there are currently no reports on its composition and mechanism of action, which affects its promotion. The study investigated the chemical components and molecular mechanisms of B.glomerulata, with the following components: UPLC-Q-TOF-MS, network pharmacology Analysis and experimental verification in vivo and vitro. METHODS The effect of B.glomerulata on interfering with ischemic stroke was assessed on MCAO/R rats and ORD cell model. Then the compositional analysis was conducted using UPLC-Q-TOF-MS. Furthermore, network pharmacology and molecular docking techniques were explored to identify potential targets and pathways. The predicted mechanisms of action were ultimately confirmed by immunohistochemistry and protein blotting. RESULTS B. glomerulata exhibited neuroprotective effects in MCAO/R rats by reductions in hippocampal and cortical neuronal damage, brain infarction, and cerebral edema. Both in vivo and in vitro experiments demonstrated that it decreased ROS and MDA levels, increased SOD and GSH levels, thereby inhibiting oxidative stress. Moreover, the improvements in neuronal morphology and the modulation of Nissl bodies suggested a potential mechanism underlying its neuroprotective action. Additionally, B.glomerulata exhibited concentration-dependent reductions in Bax and Caspase-3 expressions, along with increases in GFAP, Bcl2/Bax ratio, p-PI3K, p-AKT, and p-mTOR levels. CONCLUSION B.glomerulata exhibited neuroprotective effects against cerebral ischemia-reperfusion injury both in vivo and in vitro. It prevented oxidative stress damage and inhibited apoptosis of ischemic stroke through the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zihan Xu
- Institute (College) of Integrated Medicine, Dalian Medical University, China
| | - Yang Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Penglai Pi
- Institute (College) of Integrated Medicine, Dalian Medical University, China
| | - Yujuan Yi
- Institute (College) of Integrated Medicine, Dalian Medical University, China
| | - Hong Tang
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Zhen Zhang
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Huijiang Xiong
- Liuzhi Special District People's Hospital, 553402, Liupanshui, China
| | - Boming Lei
- The Second Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Yusheng Shi
- Institute (College) of Integrated Medicine, Dalian Medical University, China.
| | - Jia Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Zheng Sun
- Institute (College) of Integrated Medicine, Dalian Medical University, China.
| |
Collapse
|
42
|
He Q, Wang M, Zhu H, Xiao Y, Wen R, Liu X, Shi Y, Zhang L, Wang Y, Xu B. Mediation effect of stroke recurrence in the association between post-stroke lactate dehydrogenase and functional disability. Front Aging Neurosci 2024; 16:1450863. [PMID: 39280700 PMCID: PMC11392875 DOI: 10.3389/fnagi.2024.1450863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Background We aimed to use lactate dehydrogenase (LDH) as a marker of inflammation burden and quantify post-stroke inflammation's direct and indirect effect on functional disability. Methods We analyzed 5,129 patients with acute ischemic stroke (AIS) admitted to Shenyang First People's Hospital. Stroke recurrence and functional outcome measured by the modified Rankin Scale (mRS) were assessed at 90 days. Functional disability was defined as mRS score > 2. Receiver operating characteristic curve and restricted cubic spline (RCS) analysis were conducted to illustrate the associations between LDH levels and 90-day functional outcomes in patients with AIS. Mediation analyses were performed to examine the potential causal chain in which stroke recurrence may mediate the relationship between LDH and functional outcome. Positive correlation between LDH and hs-CRP was found and mediation effects of stroke recurrence in the association between LDH or hs-CRP and functional disability were both less than 20%. Sensitivity analyses in different subgroups showed comparable results. Results Among 5,129 included AIS patients, the median (IQR) level of LDH was 186 (161-204.4) U/L. Functional disability was seen in 1200 (23.4%) patients and recurrence was observed in 371(7.2%) patients at 90-day follow-up. Each standard deviation increase in the concentration of LDH was linked to an increased risk of functional disability (adjusted odds ratio[aOR], 1.07; 95%CI,1.04-1.09) and stroke recurrence (aOR,1.02; 95%CI, 1.01-1.04) within 90 days. The highest quartile of LDH (>204.2 U/L) had an elevated risk of suffering functional disability (aOR, 1.21; 95%CI, 1.00-1.47) and recurrence (aOR, 1.21; 95%CI,1.00-1.47) compared with the lowest quartile of LDH (<161 U/L). Stroke recurrence during follow-up explained 12.90% (95%CI, 6.22-21.16%) of the relationship between LDH and functional disability. Positive correlation between LDH and hs-CRP was found and mediation effects of recurrence in the association between LDH or hs-CRP and functional disability were both less than 20%. Sensitivity analyses in different subgroups showed comparable results. Conclusion The relationship between LDH and functional disability at 90 days among AIS patients is partially mediated by stroke recurrence, accounting for less than 20%. LDH deserves equal attention as hs-CRP in predicting recurrence and functional outcome. In addition to traditional secondary prevention measures, innovative anti-inflammatory strategies warrant further investigation.
Collapse
Affiliation(s)
- Qian He
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
- Qionglai Traditional Chinese Medicine Hospital, Chengdu, China
| | | | - Haoyue Zhu
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Ying Xiao
- Shenyang First People's Hospital, Shenyang, China
| | - Rui Wen
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Xiaoqing Liu
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Yangdi Shi
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Linzhi Zhang
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Yu Wang
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Bing Xu
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| |
Collapse
|
43
|
Yu S, Yin P, Li X, Xiao J, Zhang H, Zhou L, Tian Y. Association of high serum β2-microglobulin levels with poor functional outcomes in patients with acute ischemic stroke: A cohort study. Medicine (Baltimore) 2024; 103:e39525. [PMID: 39213200 PMCID: PMC11365628 DOI: 10.1097/md.0000000000039525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
We evaluated the association between serum β2-microglobulin (β2M) levels and prognosis in patients with acute ischemic stroke (AIS) and determined whether the association was affected by any clinical variables. This prospective study included 533 patients with AIS who were admitted to the Hospital of Nanhua Affiliated with the University of South China for treatment from June 1, 2021, to July 31, 2022. Using multiple regression modeling, the association between serum β2M levels and poor functional outcomes-which were classified as being modified Rankin Scale scores of 3 to 6 (composite score of death and major disability), 3 to 5 (major disability), and 6 (death)-were assessed 3 months after stroke onset. At the 3-month follow-up assessment, 209 (47.39%) participants had poor functional outcomes: major disabilities in 150 (34.01%) cases and deaths in 59 (13.38%). After adjusting for important covariates, the group with serum β2M levels in the highest quartile had the highest proportion of individuals with modified Rankin Scale scores of 3 to 6 (odds ratio [OR], 3.54; 95% confidence interval [CI], 1.35-9.33), 3 to 5 (OR, 2.95; 95% CI, 1.21-7.16), or 6 (OR, 1.02; 95% CI, 0.29-3.64) compared with the group having serum β2M levels in the lowest quartiles. The risk prediction for the combined outcome of death and major disability improved after incorporating β2M levels into models that included conventional risk factors. Subgroup analysis revealed a significant impact on the association between serum β2M levels and poor functional outcomes only in patients with AIS whose time from onset to hospitalization was <12 hours (P for interaction < .05). Elevated serum β2M levels were associated with poor functional outcomes in patients with AIS, possibly affected by the time from onset to hospitalization.
Collapse
Affiliation(s)
- Shan Yu
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Yin
- Department of Information Statistics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiujuan Li
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jian Xiao
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hao Zhang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liangqi Zhou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Tian
- Department of Clinical Research, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
44
|
Zhou P, Yu S, Wang X, Zhang X, Guo D, Zhao C, Cheng J, Wang J, Sun J. Ferulic Acid Methyl Ester Attenuates Cerebral Ischemia-Reperfusion Injury in Rats by Modulating PI3K/HIF-1α/VEGF Signaling Pathway. J Inflamm Res 2024; 17:5741-5762. [PMID: 39224659 PMCID: PMC11368119 DOI: 10.2147/jir.s473665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cerebral ischaemia-reperfusion injury (CIRI) could worsen the inflammatory response and oxidative stress in brain tissue. According to previous studies, ferulic acid methyl ester (FAME), as the extract with the strongest comprehensive activity in the traditional Chinese medicine Huang Hua oil dot herb, has significant anti-oxidative stress and neuroprotective functions, and can effectively alleviate CIRI, but its mechanism of action is still unclear. Methods Firstly, the pharmacological effects of FAME were investigated by in vitro oxidative stress and inflammatory experiments. Secondly, evaluate the therapeutic effects of FAME in the treatment of CIRI by brain histopathological staining and cerebral infarct area by replicating the in vivo MACO model. Thirdly, RNA-Seq and network pharmacology were utilized to predict the possible targets and mechanisms of FAME for CIRI at the molecular level. Finally, the expression of key target proteins, as well as the key regulatory relationships were verified by molecular docking visualization, Western Blotting and immunohistochemistry. Results The results of in vitro experiments concluded that FAME could significantly reduce the content of TNF-α, IL-1β and ROS, inhibiting COX-2 and iNOS protein expression in cells(p<0.01). FAME was demonstrated to have anti-oxidative stress and anti-inflammatory effects. The results of in vivo experiments showed that after the administration of FAME, the area of cerebral infarction in rats with CIRI was reduced, the content of Bcl-2 and VEGF was increased(p<0.05). Network pharmacology and RNA-Seq showed that the alleviation of CIRI by FAME may be through PI3K-AKT and HIF-1 signaling pathway. Enhanced expression of HIF-1α, VEGF, p-PI3K, p-AKT proteins in the brain tissues of rats in the FAME group was verified by molecular docking and Western Blotting. Conclusion FAME possesses significant anti-inflammatory and anti-oxidative stress activities and alleviates CIRI through the PI3K/HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
- Peijie Zhou
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Shangshang Yu
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Xuan Wang
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Xiaofei Zhang
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Dongyan Guo
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Chongbo Zhao
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Jiangxue Cheng
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Jing Wang
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Jing Sun
- Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi Provincial Engineering Technology Research Center for Traditional Chinese Medicine Decoction Pieces, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| |
Collapse
|
45
|
Zhang QX, Zhang LJ, Zhao N, Yang L. Irisin in ischemic stroke, Alzheimer's disease and depression: a Narrative Review. Brain Res 2024; 1845:149192. [PMID: 39214327 DOI: 10.1016/j.brainres.2024.149192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Irisin is a glycosylated protein formed from the hydrolysis of fibronectin type III domain-containing protein 5 (FNDC5). Irisin is widely involved in the regulation of glucose and lipid metabolism. In addition, recent studies have demonstrated that Irisin can inhibit inflammation, restrain oxidative stress and have neuroprotective effects, which suggests that Irisin may have a good therapeutic effect on central nervous system diseases. Therefore, this review summarizes the role of Irisin in central nervous system diseases, including its signal pathways and possible mechanisms, etc. Irisin may be a potential candidate drug for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Ning Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
46
|
Farzan M, Abedi B, Bhia I, Madanipour A, Farzan M, Bhia M, Aghaei A, Kheirollahi I, Motallebi M, Amini-Khoei H, Ertas YN. Pharmacological Activities and Molecular Mechanisms of Sinapic Acid in Neurological Disorders. ACS Chem Neurosci 2024; 15:2966-2981. [PMID: 39082749 DOI: 10.1021/acschemneuro.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Sinapic acid (SA) is a phenylpropanoid derivative found in various natural sources that exhibits remarkable versatile properties, including antioxidant, anti-inflammatory, and metal-chelating capabilities, establishing itself as a promising candidate for the prevention and treatment of conditions affecting the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other neurological disorders. These effects also include neuroprotection in epilepsy models, as evidenced by a reduction in seizure-like behavior, cell death in specific hippocampal regions, and lowered neuroinflammatory markers. In AD, SA treatment enhances memory, reverses cognitive deficits, and attenuates astrocyte activation. SA also has positive effects on cognition by improving memory and lowering oxidative stress. This is shown by lower levels of oxidative stress markers, higher levels of antioxidant enzyme activity, and better memory retention. Additionally, in ischemic stroke and PD models, SA provides microglial protection and exerts anti-inflammatory effects. This review emphasizes SA's multifaceted neuroprotective properties and its potential role in the prevention and treatment of various brain disorders. Despite the need for further research to fully understand its mechanisms of action and clinical applicability, SA stands out as a valuable bioactive compound in the ongoing quest to combat neurodegenerative diseases and enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Atossa Madanipour
- Student Research Committee, Alborz University of Medical Sciences, Karaj 3146883811, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Mohammad Bhia
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Iman Kheirollahi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, AZ1001 Baku, Azerbaijan
| |
Collapse
|
47
|
Moreira JVME, Bernardi LP, Teixeira FC, Paniago J, Teixeira LV, Bifi F, Souza DO, Rohden F. Spontaneously Hypertensive Rats Present Exacerbated Focal Stroke Behavioral Outcomes. Brain Sci 2024; 14:838. [PMID: 39199529 PMCID: PMC11352869 DOI: 10.3390/brainsci14080838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to analyze the effects of systemic arterial hypertension (SAH) in a model of permanent ischemic stroke (focal ischemia due to thermocoagulation of pial vessels) on sensorimotor function (cylinder test and patch removal test), behavioral tasks (novelty habituation memory open field task) and cerebral infarct size in adult male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) for 42 days after the occurrence of a stroke. We observed that the stroke caused asymmetry in the front paws and delayed adhesive removal. These effects were spontaneously reduced in WKY rats, but not in SHR. Short- and long-term novelty habituation memories were abolished by stroke in WYK and SHR. On the 3rd day after stroke, the size of the focal cerebral infarct was the same in WKY and SHR. However, on the 7th day, the infarct size decreased in WKY rats, but not SHR. These results suggested that SAH impairment of sensorimotor recovery in rats subjected to cerebral ischemia could be related to augmented focal cerebral infarct size. Moreover, the behavioral tasks used in this study were unaffected by Systemic Arterial Hypertension. Our results highlight the need for animal models of comorbidities in stroke research.
Collapse
Affiliation(s)
- João Victor Matos e Moreira
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Luis Pedro Bernardi
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Fernanda Cardoso Teixeira
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre—UFCSPA, Porto Alegre 90050-170, Rio Grande do Sul, Brazil;
| | - Jerônimo Paniago
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Luciele Varaschini Teixeira
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Felippo Bifi
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Diogo Onofre Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Francieli Rohden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| |
Collapse
|
48
|
Liu W, Liu L, Li H, Xie Y, Bai J, Guan J, Qi H, Sun J. Targeted pathophysiological treatment of ischemic stroke using nanoparticle-based drug delivery system. J Nanobiotechnology 2024; 22:499. [PMID: 39164747 PMCID: PMC11337765 DOI: 10.1186/s12951-024-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Ischemic stroke poses significant challenges in terms of mortality and disability rates globally. A key obstacle to the successful treatment of ischemic stroke lies in the limited efficacy of administering therapeutic agents. Leveraging the unique properties of nanoparticles for brain targeting and crossing the blood-brain barrier, researchers have engineered diverse nanoparticle-based drug delivery systems to improve the therapeutic outcomes of ischemic stroke. This review provides a concise overview of the pathophysiological mechanisms implicated in ischemic stroke, encompassing oxidative stress, glutamate excitotoxicity, neuroinflammation, and cell death, to elucidate potential targets for nanoparticle-based drug delivery systems. Furthermore, the review outlines the classification of nanoparticle-based drug delivery systems according to these distinct physiological processes. This categorization aids in identifying the attributes and commonalities of nanoparticles that target specific pathophysiological pathways in ischemic stroke, thereby facilitating the advancement of nanomedicine development. The review discusses the potential benefits and existing challenges associated with employing nanoparticles in the treatment of ischemic stroke, offering new perspectives on designing efficacious nanoparticles to enhance ischemic stroke treatment outcomes.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hong Li
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ju Bai
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jialiang Guan
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
49
|
Yang W, Lei X, Liu F, Sui X, Yang Y, Xiao Z, Cui Z, Sun Y, Yang J, Yang X, Lin X, Bao Z, Li W, Ma Y, Wang Y, Luo Y. Meldonium, as a potential neuroprotective agent, promotes neuronal survival by protecting mitochondria in cerebral ischemia-reperfusion injury. J Transl Med 2024; 22:771. [PMID: 39148053 PMCID: PMC11325598 DOI: 10.1186/s12967-024-05222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3β signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.
Collapse
Affiliation(s)
- Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiuxing Lei
- Lu'An Hospital of Traditional Chinese Medicine, Anhui, China
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenghao Bao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weidong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingkai Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
50
|
Althaus O, ter Jung N, Stahlke S, Theiss C, Herzog-Niescery J, Vogelsang H, Weber T, Gude P, Matschke V. Region-specific protective effects of monomethyl fumarate in cerebellar and hippocampal organotypic slice cultures following oxygen-glucose deprivation. PLoS One 2024; 19:e0308635. [PMID: 39110748 PMCID: PMC11305562 DOI: 10.1371/journal.pone.0308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To date, apart from moderate hypothermia, there are almost no adequate interventions available for neuroprotection in cases of brain damage due to cardiac arrest. Affected persons often have severe limitations in their quality of life. The aim of this study was to investigate protective properties of the active compound of dimethyl fumarate, monomethyl fumarate (MMF), on distinct regions of the central nervous system after ischemic events. Dimethyl fumarate is an already established drug in neurology with known anti-inflammatory and antioxidant properties. In this study, we chose organotypic slice cultures of rat cerebellum and hippocampus as an ex vivo model. To simulate cardiac arrest and return of spontaneous circulation we performed oxygen-glucose-deprivation (OGD) followed by treatments with different concentrations of MMF (1-30 μM in cerebellum and 5-30 μM in hippocampus). Immunofluorescence staining with propidium iodide (PI) and 4',6-diamidine-2-phenylindole (DAPI) was performed to analyze PI/DAPI ratio after imaging with a spinning disc confocal microscope. In the statistical analysis, the relative cell death of the different groups was compared. In both, the cerebellum and hippocampus, the MMF-treated group showed a significantly lower PI/DAPI ratio compared to the non-treated group after OGD. Thus, we showed for the first time that both cerebellar and hippocampal slice cultures treated with MMF after OGD are significantly less affected by cell death.
Collapse
Affiliation(s)
- Oliver Althaus
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Nico ter Jung
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heike Vogelsang
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|