1
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Al-Madhagi H, Masoud A. Limitations and Challenges of Antioxidant Therapy. Phytother Res 2024; 38:5549-5566. [PMID: 39260385 DOI: 10.1002/ptr.8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Our bodies are constantly exposed to or producing free radicals nearly on a daily basis. These highly reactive molecules are generated through a variety of internal and external processes and pathways within the body. If these free radicals are not neutralized by antioxidants, they can lead to a state of oxidative stress, which has been linked to a wide range of severe and debilitating disorders affecting various systems in the human body. This involves neurodegenerative diseases, diabetes, atherosclerosis, fatty liver, inflammation, and aging. Thankfully, the human body is armed with a repertoire of powerful antioxidants with different natures and modes of action. The recent decades witnessed the publication of enormous papers proving antioxidant activity of a novel synthesized compound, plant extract, or a purified drug in vitro, in vivo, and even on human beings. However, the efficacy of antioxidant therapies in clinical trials, including selenium, vitamin C, vitamin E, and vitamin A, has been notably inconsistent. This inconsistency can be primarily ascribed to different factors related to the nature of free radical generation, purpose and the specific type of therapy employed, and the intricate oxidative stress connected network, among others. Collectively, these factors will be explored in this review article to decipher the observed shortcomings in the application of antioxidant therapies within clinical settings.
Collapse
Affiliation(s)
| | - Anwar Masoud
- Biochemical Technology Program, Dhamar University, Dhamar, Yemen
| |
Collapse
|
4
|
Wei T, Liu B, Chen Y, Li C. Protective effect of ascorbic acid against renal injury induced by 3-chloropropane-1,2-diol-dipalmitate in rats. Ren Fail 2024; 46:2429694. [PMID: 39584474 PMCID: PMC11590184 DOI: 10.1080/0886022x.2024.2429694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
3-monochloropropane-1,2-diol esters (3-MCPDE) are a group of contaminants which are mainly formed during heat processing of edible oil and fat-based foods. The kidney is the primary target organ for the toxic effects of 3-MCPDE. 3-MCPD-di-palmitate exists in a variety of oils and fats, and is the most common and relatively high proportion of 3-MCPDE. In this study, we investigated the protective effect of ascorbic acid on 3-MCPD-di-palmitate-induced renal injury in rats. Thirty 8-week-old male Sprague-Dawley rats were randomly divided into 5 groups, namely control, 3-MCPD-di-palmitate (240 mg/kg·bw), 3-MCPD-di-palmitate (240 mg/kg·bw) + ascorbic acid (100 mg/kg·bw), 3-MCPD-di-palmitate (240 mg/kg·bw) + ascorbic acid (200 mg/kg·bw) and 3-MCPD-di-palmitate (240 mg/kg·bw) + ascorbic acid (500 mg/kg·bw). These treatments were administered via gavage for a duration of 4 weeks. The effects of ascorbic acid on 3-MCPDE-induced kidney injury in rats were investigated by evaluating the kidney index, renal function (BUN, CRE), renal histopathology, oxidative stress markers (ROS, GSH, MDA, and T-AOC), DNA oxidation marker (8-OHdG), and activities of Caspase 3 and 9. The results showed that the exposure to 3-MCPDE significantly increased the kidney index, BUN and CRE levels, ROS and MDA levels, 8-OHdG levels, and activities of Caspase 3 and 9, while decreasing GSH and T-AOC. The combined treatment with 3-MCPDE and ascorbic acid can effectively restore the aforementioned parameters. The present study concluded that ascorbic acid effectively attenuates the renal apoptosis and oxidative homeostasis induced by 3-MCPDE uptake thereby intervening in renal injury.
Collapse
Affiliation(s)
- Tao Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Bohan Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Zeng M, Zhan C, Li Y, Liao H, Liu W, Chen G, Wang J. Melatonin prevents the transgenerational toxicity of nanoplastics in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176043. [PMID: 39241878 DOI: 10.1016/j.scitotenv.2024.176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
As a novel pollutant, microplastic pollution has become a global environmental concern. Melatonin (MT) has a protective effect on the damage caused by pollutants. However, there is still a lack of research on the transgenerational toxicity of microplastics and the alleviation of microplastics toxicity by MT. In this study, the adult zebrafish was exposed to (0, 0.1 and 1 mg/L) polystyrene nanoplastics (PSNP) with or without (1 μM) MT for 14 days, and embryos (F1) were used for experiments. Our study found that long-term exposure of parents to 1 mg/L PSNP reduced fertilization rate and survival rate of offspring, increased the deformity rate and induced embryos to hatch in advance. The growth inhibition of offspring was related to the gene transcription of the growth hormone/insulin-like growth factor axis. Moreover, PSNP caused oxidative stress in offspring, damaged immune system, reduced antioxidant capacity and induced apoptosis. MT supplementation could effectively alleviate the developmental toxicity and oxidative damage of offspring, but the negative effects brought by PSNP could not be completely eliminated. Our research provided a new reference for the protective effect of MT on transgenerational toxicity induced by PSNP.
Collapse
Affiliation(s)
- Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunhua Zhan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
6
|
Gao G, Zhang Z, Wang Q, Xie Z, Liu B, Huang H. A peptide alleviated oxidative damages in the L02 cells and mice liver. Biochem Biophys Res Commun 2024; 734:150643. [PMID: 39241619 DOI: 10.1016/j.bbrc.2024.150643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The liver is vitally metabolic for a multitude of biochemical reactions. Consequently, it generates many free radicals and reactive oxygen species, rendering it more susceptible to oxidative stress-induced damage. Oxidative stress represents a pivotal factor in the pathogenesis of liver diseases. We screened some antioxidant peptides previously. Here we investigated whether the peptides could attenuate oxidative damage with APPH in L02 cells. The results showed that one of the peptides, sequence FETLMPLWGNK, could decrease the excessive reactive oxygen species, increase antioxidant enzyme activity and protect mitochondrial function, reduce the ratio of apoptosis and S phase cycle arrest, and improve the survival rate of L02 cells damaged by APPH compared to cells of the control group. Then the peptide was evaluated in mice that CCl4 injured. We found that CCl4-injured mice had significantly increased serum inflammatory factors and liver injury markers, a large number of inflammatory cell infiltration, and local necrosis in the liver. The peptide could reduce inflammation, and improve liver pathological changes. This phenomenon may be associated with the activation of the Nrf2 signaling pathway. Concurrently, the peptide protects the liver by regulating the expression of proteins related to the mitochondrial apoptosis pathway (p53, Bax, Bcl-2, and Caspase3) and mitophagy-related proteins (PINK1, Parkin, and AMPKα). Therefore, the results indicated that the peptide is an active substance with antioxidant activity and anti-inflammatory effects.
Collapse
Affiliation(s)
- Gan Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiyang Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiheng Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhihui Xie
- Xie Zhihui Biomedical Research Institute Guangzhou Co. Ltd., Guangzhou, 510006, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hongliang Huang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Avilés-Gaxiola S, Contreras-Angulo LA, García-Aguiar I, Heredia JB. Moringa oleifera Lam. Leaf Peptides: Antioxidant and Antiproliferative Activity in Human Colon Cancer Caco-2 Cell Line. Antioxidants (Basel) 2024; 13:1367. [PMID: 39594509 PMCID: PMC11590870 DOI: 10.3390/antiox13111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Reactive oxygen species are produced as part of the cellular metabolism. However, lifestyle can promote an excess in their concentration. Free radicals react with DNA, promoting the appearance of cancer cells. Therefore, natural antioxidants have been suggested as an alternative to prevent this disorder. Peptides are protein fragments that have been produced from various plants. In previous work, Moringa oleifera leaf peptides (MOPHs) with antioxidant potential were generated and identified. However, the spectrophotometric methods used to evaluate their antioxidant activity do not fully reflect its potential. In this work, the antioxidant activity of MOPHs was assessed by the ferric reducing antioxidant power assay (FRAP) and cellular antioxidant activity method on the human colon cancer cell line Caco-2. Also, their antiproliferative activity was evaluated. The MOPHs exhibited a FRAP activity of 1435 µmol TE/g, and at 500 µg/mL; the peptides did not show a cytotoxic effect on healthy colon CCD-18Co cells. Moreover, the MOPHs increased Caco-2 antioxidative activity to a greater extent by 73.45% and 83.62% at 250 and 500 µg/mL, respectively. Regarding cellular proliferation, the MOPHs inhibited it by 78.19% and 90.20% at 200 and 500 µg/mL, respectively. These findings highlight the potential of Moringa oleifera leaf peptides as functional ingredients with significant health benefits, demonstrating antioxidant and antiproliferative properties.
Collapse
Affiliation(s)
- Sara Avilés-Gaxiola
- Health Sciences Department, Universidad Autónoma de Occidente, Blvd. Lola Beltrán and Blvd. Rolando Arjona, Culiacán 80020, Mexico; (S.A.-G.); (I.G.-A.)
| | - Laura Aracely Contreras-Angulo
- Nutraceuticals and Functional Foods, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán 80110, Mexico;
| | - Israel García-Aguiar
- Health Sciences Department, Universidad Autónoma de Occidente, Blvd. Lola Beltrán and Blvd. Rolando Arjona, Culiacán 80020, Mexico; (S.A.-G.); (I.G.-A.)
| | - J. Basilio Heredia
- Nutraceuticals and Functional Foods, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán 80110, Mexico;
| |
Collapse
|
8
|
Lim S, Song HY, Park HR, Ahn KB. A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells. Microorganisms 2024; 12:2161. [PMID: 39597551 PMCID: PMC11596967 DOI: 10.3390/microorganisms12112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Reactive oxygen species (ROS), byproducts of cellular metabolism and environmental factors, are linked to diseases like cancer and aging. Antioxidant peptides (AOPs) have emerged as effective countermeasures against ROS-induced damage. The Deinococcus genus is well known for its extraordinary resilience to ionizing radiation (IR) and possesses complex antioxidant systems designed to neutralize ROS generated by IR. In this study, we developed four peptides, each containing 9 to 11 amino acids, from the leaderless mRNA (lmRNA) sequences of D. deserti. Lacking a 5' untranslated region, lmRNAs directly initiate protein synthesis, potentially encoding small peptides such as AOPs. Of the four peptides, Ddes-P3 was found to exhibit significant antioxidant capabilities in vitro, effectively scavenging ABTS radicals. Ddes-P3 provided considerable defense against IR-induced oxidative stress in CHO-K1 cells, demonstrating a notable reduction in ROS production and lipid peroxidation. The peptide's potential was highlighted by its ability to enhance cell survival and maintain mitochondrial membrane potential under irradiative stress, suggesting its utility as a nontoxic and effective radioprotector in mitigating radiation-induced cellular damage. This study explores the potential role of lmRNA in synthesizing AOPs within Deinococcus. Identifying lmRNAs that encode AOPs could deepen our understanding of their cellular resistance to oxidative stress and pave the way for creating innovative biotechnological and therapeutic AOPs.
Collapse
Affiliation(s)
- Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.-Y.S.); (K.B.A.)
- Department of Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ha-Yeon Song
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.-Y.S.); (K.B.A.)
| | - Hae Ran Park
- Cyclotron Applied Research Section, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea;
| | - Ki Bum Ahn
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (H.-Y.S.); (K.B.A.)
| |
Collapse
|
9
|
Hosseinzadeh N, Asqardokht-Aliabadi A, Sarabi-Aghdam V, Hashemi N, Dogahi PR, Sarraf-Ov N, Homayouni-Rad A. Antioxidant Properties of Postbiotics: An Overview on the Analysis and Evaluation Methods. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10372-7. [PMID: 39395091 DOI: 10.1007/s12602-024-10372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Antioxidants found naturally in foods have a significant effect on preventing several human diseases. However, the use of synthetic antioxidants in studies has raised concerns about their potential link to liver disease and cancer. The findings show that postbiotics have the potential to act as a suitable alternative to chemical antioxidants in the food and pharmaceutical sectors. Postbiotics are bioactive compounds generated by probiotic bacteria as they ferment prebiotic fibers in the gut. These compounds can also be produced from a variety of substrates, including non-prebiotic carbohydrates such as starches and sugars, as well as proteins and organic acids, all of which probiotics utilize during the fermentation process. These are known for their antioxidant, antibacterial, anti-inflammatory, and anti-cancer properties that help improve human health. Various methodologies have been suggested to assess the antioxidant characteristics of postbiotics. While there are several techniques to evaluate the antioxidant properties of foods and their bioactive compounds, the absence of a convenient and uncomplicated method is remarkable. However, cell-based assays have become increasingly important as an intermediate method that bridges the gap between chemical experiments and in vivo research due to the limitations of in vitro and in vivo assays. This review highlights the necessity of transitioning towards more biologically relevant cell-based assays to effectively evaluate the antioxidant activity of postbiotics. These experiments are crucial for assessing the biological efficacy of dietary antioxidants. This review focuses on the latest applications of the Caco-2 cell line in the assessment of cellular antioxidant activity (CAA) and bioavailability. Understanding the impact of processing processes on the biological properties of postbiotic antioxidants can facilitate the development of new food and pharmaceutical products.
Collapse
Affiliation(s)
- Negin Hosseinzadeh
- Student Research Committee, Department of Food Science and Technology, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hashemi
- University of Applied Science & Technology, Center of Pardisan Hospitality & Tourism Management, Mashhad, Iran
| | - Parisa Rahimi Dogahi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Narges Sarraf-Ov
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Wang H, Wang Y, Chai Y, Zhang H, Chang Q, Li J, Zhang R, Bao J. Prolonged exposure to a music-enriched environment mitigates acute noise-induced inflammation and apoptosis in the chicken spleen by modulating the Keap-1/Nrf2 and NF-κB pathways. Poult Sci 2024; 103:104100. [PMID: 39094500 PMCID: PMC11345555 DOI: 10.1016/j.psj.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
The rise of operational noise as an environmental pollutant for farm animals is an emerging concern. The mechanisms through which music can alleviate oxidative stress, inflammation, and apoptosis induced by noise exposure remain underexplored. This study aims to investigate the alleviating effects and underlying mechanisms of long-term music exposure on noise-induced damage to the chicken spleen. Male Arbor Acres (AA) broilers were divided into four groups: control (C), acute noise stimulation (NS), noise stimulation with music mitigation (NSM), and music only (M). NS and NSM groups were exposed to noise (simulating sudden intensity noise, 115 to 120dB) for 10 minutes daily for a week, starting at 14-days-old. NSM and M groups then received 28 days of 6-hour daily music (Mozart K.448, 60-65 dB). The results showed that noise stimulation significantly activated the Keap-1/Nrf2 and NF-κB signaling pathways. Long-term music intervention has also been demonstrated to successfully mitigate oxidative stress and abnormal apoptosis induced by acute noise stimulation. Microscopic examination of the spleen revealed that acute noise stimulation resulted in an increase in splenic cells, a decrease in lymphocytes, and blurred boundaries between the red and white pulps in the NS group. However, these pathological changes were alleviated in the NSM group following music intervention. Compared with the control group, the NS group exhibited significantly elevated oxidative stress parameters. In contrast, music intervention in the NSM group notably improved antioxidant capacity and partially alleviated morphological abnormalities in the spleen. Additionally, noise stimulation activated the NF-κB pathway, upregulating the downstream genes of the inflammatory factors IL-1β, IL-6, and TNF-α. Noise-induced mitochondrial damage led to apoptosis, as observed by TUNEL staining, along with increased gene and protein expression of Bcl-2, Bax, Cyt-C, Casp-3, Casp-8, and Casp-9. These findings indicate that acute noise exposure can induce splenic damage via oxidative stress, inflammation, and apoptosis by modulating the Keap-1/Nrf2 and NF-κB pathways. Prolonged music stimulation effectively mitigates noise-induced damage, offering a vital experimental foundation for further research on noise pollution's impact on organisms and music's alleviating role.
Collapse
Affiliation(s)
- Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haoran Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qingqing Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
11
|
Peng H, Li H, Ma B, Sun X, Chen B. DJ-1 regulates mitochondrial function and promotes retinal ganglion cell survival under high glucose-induced oxidative stress. Front Pharmacol 2024; 15:1455439. [PMID: 39323632 PMCID: PMC11422208 DOI: 10.3389/fphar.2024.1455439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose This study aimed to investigate the antioxidative and neuroprotective effects of DJ-1 in mitigating retinal ganglion cell (RGC) damage induced by high glucose (HG). Methods A diabetic mouse model and an HG-induced R28 cell model were employed for loss- and gain-of-function experiments. The expression levels of apoptosis and oxidative stress-related factors, including Bax, Bcl-2, caspase3, Catalase, MnSOD, GCLC, Cyto c, and GPx-1/2, were assessed in both animal and cell models using Western blotting. Retinal structure and function were evaluated through HE staining, electroretinogram, and RGC counting. Mitochondrial function and apoptosis were determined using JC-1 and TUNEL staining, and reactive oxygen species (ROS) measurement. Results In the mouse model, hyperglycemia resulted in reduced retinal DJ-1 expression, retinal structural and functional damage, disrupted redox protein profiles, and mitochondrial dysfunction. Elevated glucose levels induced mitochondrial impairment, ROS generation, abnormal protein expression, and apoptosis in R28 cells. Augmenting DJ-1 expression demonstrated a restoration of mitochondrial homeostasis and alleviated diabetes-induced morphological and functional impairments both in vivo and in vitro. Conclusion This study provides novel insights into the regulatory role of DJ-1 in mitochondrial dynamics, suggesting a potential avenue for enhancing RGC survival in diabetic retinopathy.
Collapse
Affiliation(s)
- Hanhan Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Benteng Ma
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Xinyue Sun
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| |
Collapse
|
12
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
13
|
Ye Z, Fu L, Li S, Chen Z, Ouyang J, Shang X, Liu Y, Gao L, Wang Y. Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides. Nat Commun 2024; 15:7319. [PMID: 39183339 PMCID: PMC11345435 DOI: 10.1038/s41467-024-51730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Non-direct antimicrobial cationic peptides (NDACPs) are components of the animal innate immune system. But their functions and association with antimicrobial peptides (AMPs) are incompletely understood. Here, we reveal a synergistic interaction between the AMP AW1 and the NDACP AW2, which are co-expressed in the frog Amolops wuyiensis. AW2 enhances the antibacterial activity of AW1 both in vitro and in vivo, while mitigating the development of bacterial resistance and eradicating biofilms. AW1 and AW2 synergistically damage bacterial membranes, facilitating cellular uptake and interaction of AW2 with the intracellular target bacterial genomic DNA. Simultaneously, they trigger the generation of ROS in bacteria, contributing to cell death upon reaching a threshold level. Moreover, we demonstrate that this synergistic antibacterial effect between AMPs and NDACPs is prevalent across diverse animal species. These findings unveil a robust and previously unknown correlation between AMPs and NDACPs as a widespread antibacterial immune defense strategy in animals.
Collapse
Affiliation(s)
- Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuangyu Li
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinci Shang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yanli Liu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
14
|
Gomaa AAM, Rashwan AA, Tewfik MI, Abou-Kassem DE, Youssef IM, Salah AS, Alfassam HE, Rudayni HA, Allam AA, Taha AE, Moustafa M, Alshaharni MO, Abd El-Hack ME, El-Mekkawy MM. Effects of immersing Japanese quail eggs in various doses of riboflavin on reproductive, growth performance traits, blood indices and economics. Poult Sci 2024; 103:103858. [PMID: 38838591 PMCID: PMC11190717 DOI: 10.1016/j.psj.2024.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
This investigation aimed to evaluate the impact of immersion (IM) riboflavin treatment on the hatchability, production efficiency, and carcass characteristics of Japanese quail eggs. A total of 260 eggs of Japanese quail birds were used for hatching and were randomly divided into 4 treatments with 5 replicates (13 eggs/replicate) in a fully randomized design. Hatching eggs were immersed in riboflavin for 2 min before incubation. The experiment treatments were designed as follows: G1 control group with no treatment, G2 treated with 3 g/L vit. B2 (IM), G3 treated with 4 g/L vit. B2 (IM) and G4 were treated with 5 g/L vit. B2 (IM). After hatching, 128 Japanese quail chicks, aged 7 d, were randomly grouped into 4 treatment groups, with 32 birds in each group. When quails were given vitamin B2 via immersion, they demonstrated significant enhancements in live body weight, body weight gain, feed consumption, and feed conversion ratio at different stages compared to the control group. Compared to control and other groups, the carcass parameters of Japanese quails given a 4 g/L immersion solution showed a significant improvement (P < 0.05). Hatchability and fertility (%) were considerably raised by Vit.B2 treatments of 3, 4, and 5g; the group immersed in 5 g/L had the highest percentages compared to the other groups. Furthermore, treated chickens with all concentrations of vitamin B2 had significantly higher blood indices than the controls. During the exploratory phase (1-6 wk) of age, the highest returns were reported in G4 treated with 5g/L vit. B2 (IM). Treating Japanese quail eggs with different dosages of vitamin B2 by immersion may be recommended to improve their productive and reproductive performance, blood indices, carcass traits, and economic efficiency.
Collapse
Affiliation(s)
- Ahmed A M Gomaa
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Ali A Rashwan
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Mostafa I Tewfik
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Diaa E Abou-Kassem
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, Egypt
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211 Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Apis 21944, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed M El-Mekkawy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
15
|
Luo X, Liu H, Wen J, Hu J, Li Y, Li G, Dai G, Li Y, Li J. Composite hydrogels with antioxidant and robust adhesive properties for the prevention of radiation-induced dermatitis. J Mater Chem B 2024; 12:6927-6939. [PMID: 38904166 DOI: 10.1039/d4tb00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Radiotherapy is a pivotal means of cancer treatment, but it often leads to radiation dermatitis, a skin injury caused by radiation-induced excess reactive oxygen species (ROS). Scavenging free radicals in the course of radiation therapy will be an effective means to prevent radiation dermatitis. This study demonstrates a novel double network hydrogel doped with MoS2 nanosheets for the prevention of radiation-induced dermatitis. The resultant SPM hydrogel constructed from polyacrylamide (PAM) and sodium alginate (SA) nanofiber presented favorable mechanical and adhesion properties. It could conform well to the human body's irregular contours without secondary dressing fixation, making it suitable for skin protection applications. The in vitro and in vivo experiments showed that the antioxidant properties conferred by MoS2 nanosheets enable SPM to effectively mitigate excessive ROS and reduce oxidative stress, thereby preventing radiation dermatitis caused by oxidative damage. Biosafety assessments indicated good biocompatibility of the composite hydrogel, suggesting SPM's practicality and potential as an external dressing for skin radiation protection.
Collapse
Affiliation(s)
- Xue Luo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Huan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jing Wen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jiaxin Hu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Yongzhi Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Guangjun Li
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Guyu Dai
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
16
|
Li X, Su N, Yu H, Li X, Sun SL. Hainanenin-1, an oncolytic peptide, triggers immunogenic cell death via STING activation in triple-negative breast cancer. Cell Commun Signal 2024; 22:352. [PMID: 38970078 PMCID: PMC11225514 DOI: 10.1186/s12964-024-01731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND In triple-negative breast cancer (TNBC) therapy, insufficient tumor infiltration by lymphocytes significantly hinders the efficacy of immune checkpoint inhibitors. We have previously demonstrated that Hainanenin-1 (HN-1), a host defense peptide (HDP) identified from Hainan frog skin, induces breast cancer apoptosis and boots anti-tumor immunity via unknown mechanism. METHODS We used in vitro experiments to observe immunogenic cell death (ICD) indicators in HN-1-treated TNBC cell lines, a mouse tumor model to verify HN-1 promotion of mice anti-tumor immune response, and an in vitro drug sensitivity test of patient-derived breast cancer cells to verify the inhibitory effect of HN-1. RESULTS HN-1 induced ICD in TNBC in a process during which damage-associated molecular patterns (DAMPs) were released that could further increase the anti-tumor immune response. The secretion level of interleukin 2 (IL-2), IL-12, and interferon γ in the co-culture supernatant was increased, and dendritic cells (DCs) were activated via a co-culture with HN-1-pretreated TNBC cells. As a result, HN-1 increased the infiltration of anti-tumor immune cells (DCs and T lymphocytes) in the mouse model bearing both 4T1 and EMT6 tumors. Meanwhile, regulatory T cells and myeloid-derived suppressor cells were suppressed. In addition, HN-1 induced DNA damage, and double-strand DNA release in the cytosol was significantly enhanced, indicating that HN-1 might stimulate ICD via activation of STING pathway. The knockdown of STING inhibited HN-1-induced ICD. Of note, HN-1 exhibited inhibitory effects on patient-derived breast cancer cells under three-dimensional culture conditions. CONCLUSIONS Collectively, our study demonstrated that HN-1 could be utilized as a potential compound that might augment immunotherapy effects in patients with TNBC.
Collapse
Affiliation(s)
- Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China
| | - Nan Su
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China
| | - Haining Yu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China.
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China.
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, P. R. China.
| |
Collapse
|
17
|
Lekmine S, Benslama O, Kadi K, Brik A, Djeffali O, Ounissi M, Slimani M, Ola MS, Eldahshan OA, Martín-García AI, Ali A. Preliminary Investigation of Astragalus arpilobus subsp. hauarensis: LC-MS/MS Chemical Profiling, In Vitro Evaluation of Antioxidant, Anti-Inflammatory Properties, Cytotoxicity, and In Silico Analysis against COX-2. Antioxidants (Basel) 2024; 13:654. [PMID: 38929093 PMCID: PMC11200832 DOI: 10.3390/antiox13060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The search results offer comprehensive insights into the phenolic compounds, antioxidant, anti-inflammatory, cytotoxic effects, LC-MS/MS analysis, molecular docking, and MD simulation of the identified phenolic compounds in the Astragalus arpilobus subsp. hauarensis extract (AAH). The analysis revealed substantial levels of total phenolic content (TPC), with a measured value of 191 ± 0.03 mg GAE/g DM. This high TPC was primarily attributed to two key phenolic compounds: total flavonoid content (TFC) and total tannin content (TTC), quantified at 80.82 ± 0.02 mg QE/g DM and 51.91 ± 0.01 mg CE/g DM, respectively. LC-MS/MS analysis identified 28 phenolic compounds, with gallic acid, protocatechuic acid, catechin, and others. In the DPPH scavenging assay, the IC50 value for the extract was determined to be 19.44 ± 0.04 μg/mL, comparable to standard antioxidants like BHA, BHT, ascorbic acid, and α-tocopherol. Regarding anti-inflammatory activity, the extract demonstrated a notably lower IC50 value compared to both diclofenac and ketoprofen, with values of 35.73 µg/mL, 63.78 µg/mL, and 164.79 µg/mL, respectively. Cytotoxicity analysis revealed significant cytotoxicity of the A. arpilobus extract, with an LC50 value of 28.84 µg/mL, which exceeded that of potassium dichromate (15.73 µg/mL), indicating its potential as a safer alternative for various applications. Molecular docking studies have highlighted chrysin as a promising COX-2 inhibitor, with favorable binding energies and interactions. Molecular dynamic simulations further support chrysin's potential, showing stable interactions with COX-2, comparable to the reference ligand S58. Overall, the study underscores the pharmacological potential of A. arpilobus extract, particularly chrysin, as a source of bioactive compounds with antioxidant and anti-inflammatory properties. Further research is warranted to elucidate the therapeutic mechanisms and clinical implications of these natural compounds.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Kenza Kadi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Abir Brik
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Ouidad Djeffali
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Manar Ounissi
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Meriem Slimani
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | | | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| |
Collapse
|
18
|
Stevanović M, Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024; 16:670. [PMID: 38794332 PMCID: PMC11125366 DOI: 10.3390/pharmaceutics16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | | |
Collapse
|
19
|
Zhang Y, Li Y, Quan Z, Xiao P, Duan JA. New Insights into Antioxidant Peptides: An Overview of Efficient Screening, Evaluation Models, Molecular Mechanisms, and Applications. Antioxidants (Basel) 2024; 13:203. [PMID: 38397801 PMCID: PMC10886007 DOI: 10.3390/antiox13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Antioxidant peptides are currently a hotspot in food science, pharmaceuticals, and cosmetics. In different fields, the screening, activity evaluation, mechanisms, and applications of antioxidant peptides are the pivotal areas of research. Among these topics, the efficient screening of antioxidant peptides stands at the forefront of cutting-edge research. To this end, efficient screening with novel technologies has significantly accelerated the research process, gradually replacing the traditional approach. After the novel antioxidant peptides are screened and identified, a time-consuming activity evaluation is another indispensable procedure, especially in in vivo models. Cellular and rodent models have been widely used for activity evaluation, whilst non-rodent models provide an efficient solution, even with the potential for high-throughput screening. Meanwhile, further research of molecular mechanisms can elucidate the essence underlying the activity, which is related to several signaling pathways, including Keap1-Nrf2/ARE, mitochondria-dependent apoptosis, TGF-β/SMAD, AMPK/SIRT1/PGC-1α, PI3K/Akt/mTOR, and NF-κB. Last but not least, antioxidant peptides have broad applications in food manufacture, therapy, and the cosmetics industry, which requires a systematic review. This review introduces novel technologies for the efficient screening of antioxidant peptides, categorized with a new vision. A wide range of activity evaluation assays, encompassing cellular models, as well as rodent and non-rodent models, are provided in a comprehensive manner. In addition, recent advances in molecular mechanisms are analyzed with specific cases. Finally, the applications of antioxidant peptides in food production, therapy, and cosmetics are systematically reviewed.
Collapse
Affiliation(s)
| | | | | | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| |
Collapse
|
20
|
Han J, Dai J, Chen Z, Li W, Li X, Zhang L, Yao A, Zhang B, Han D. Overexpression of a 'Beta' MYB Factor Gene, VhMYB15, Increases Salinity and Drought Tolerance in Arabidopsis thaliana. Int J Mol Sci 2024; 25:1534. [PMID: 38338813 PMCID: PMC10855843 DOI: 10.3390/ijms25031534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
'Beta' is a hybrid of Vitis riparia L. and V. labrusca and has a strong ability to adapt to adverse growth environments and is mainly cultivated and used as a resistant rootstock. At present, the most extensively studied MYB TFs are R2R3-type, which have been found to be involved in plant growth, development, and stress response processes. In the present research, VhMYB15, a key transcription factor for abiotic stress tolerance, was screened by bioinformatics in 'Beta' rootstock, and its function under salinity and drought stresses was investigated. VhMYB15 was highly expressed in roots and mature leave under salinity and drought stresses. Observing the phenotype and calculating the survival rate of plants, it was found that VhMYB15-overexpressing plants exhibited relatively less yellowing and wilting of leaves and a higher survival rate under salinity and drought stresses. Consistent with the above results, through the determination of stress-related physiological indicators and the expression analysis of stress-related genes (AtSOS2, AtSOS3, AtSOS1, AtNHX1, AtSnRK2.6, AtNCED3, AtP5CS1, and AtCAT1), it was found that transgenic Arabidopsis showed better stress tolerance and stronger adaptability under salinity and drought stresses. Based on the above data, it was preliminarily indicated that VhMYB15 may be a key factor in salinity and drought regulation networks, enhancing the adaptability of 'Beta' to adverse environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bingxiu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.H.); (J.D.); (Z.C.); (W.L.); (X.L.); (L.Z.); (A.Y.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.H.); (J.D.); (Z.C.); (W.L.); (X.L.); (L.Z.); (A.Y.)
| |
Collapse
|
21
|
Sim WJ, Kim J, Baek KS, Lim W, Lim TG. Porcine Placenta Peptide Inhibits UVB-Induced Skin Wrinkle Formation and Dehydration: Insights into MAPK Signaling Pathways from In Vitro and In Vivo Studies. Int J Mol Sci 2023; 25:83. [PMID: 38203253 PMCID: PMC10778591 DOI: 10.3390/ijms25010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Excessive exposure to ultraviolet (UV) radiation from sunlight accelerates skin aging, leading to various clinical manifestations such as wrinkles, dryness, and loss of elasticity. This study investigated the protective effects of porcine placenta peptide (PPP) against UVB-induced skin photoaging. Female hairless SKH-1 mice were orally administered PPP for 12 weeks, followed by UVB irradiation. PPP significantly reduced wrinkle formation, improved skin moisture levels, and prevented collagen degradation. Mechanistically, PPP inhibited the expression of matrix metalloproteinases (MMPs) and upregulated collagen production. Moreover, PPP elevated hyaluronic acid levels, contributing to enhanced skin hydration. Additionally, PPP demonstrated antioxidant properties by increasing the expression of the antioxidant enzyme GPx-1, thereby reducing UVB-induced inflammation. Further molecular analysis revealed that PPP suppressed the activation of p38 MAP kinase and JNK signaling pathways, crucial mediators of UV-induced skin damage. These findings highlight the potential of porcine placental peptides as a natural and effective intervention against UVB-induced skin photoaging. The study provides valuable insights into the mechanisms underlying the protective effects of PPP, emphasizing its potential applications in skincare and anti-aging formulations.
Collapse
Affiliation(s)
- Woo-Jin Sim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea; (J.K.); (K.-S.B.)
| | - Kwang-Soo Baek
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea; (J.K.); (K.-S.B.)
| | - Wonchul Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
22
|
Khan S, Rehman MU, Khan MZI, Kousar R, Muhammad K, Haq IU, Ijaz Khan M, Almasoud N, Alomar TS, Rauf A. In vitro and in vivo antioxidant therapeutic evaluation of phytochemicals from different parts of Dodonaea viscosa Jacq. Front Chem 2023; 11:1268949. [PMID: 38025066 PMCID: PMC10662045 DOI: 10.3389/fchem.2023.1268949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Natural antioxidants are vital to promote health and treat critical disease conditions in the modern healthcare system. This work adds to the index of natural medicines by exploring the antioxidant potential of Dodonaea viscosa Jacq. (Plant-DV). Material and Methods: The aqueous extract of leaves and flower-containing seeds from plant-DV in freshly prepared phosphate buffer is evaluated for antioxidant potential. In vitro antioxidant potential of the nascent and oxidatively stressed extracts was analyzed through glutathione (GSH) assay, hydrogen peroxide (H2O2) scavenging effect, glutathione-S-transferase (GST) assay, and catalase (CAT) activity. In vivo therapeutic assessment is performed in Wistar Albino rats using vitamin C as a positive control. The livers and kidneys of individual animals are probed for glutathione, glutathione-S-transferase, and catalase activities. Results: flower-containing seeds have GSH contents (59.61 µM) and leaves (32.87 µM) in the fresh aqueous extracts. The hydrogen peroxide scavenging effect of leaves is superior to flower-containing seeds with 17.25% and 14.18% respectively after 30 min incubation. However, oxidatively stressed extracts with Ag(I) and Hg(II) show declining GSH and GST levels. The plant extracts are non-toxic in rats at 5000 mg/Kg body weight. Liver and kidneys homogenate reveal an increase in GSH, GST, and CAT levels after treatment with 150 ± 2 mg/kg and 300 ± 2 mg/kg body weight plant extract compared with normal saline-treated negative and vitamin C treated positive control. Discussion: The crude aqueous extracts of leaves and flower-containing seeds of plant-DV show promising antioxidant potential both in in vitro and in vivo evaluation.
Collapse
Affiliation(s)
- Siraj Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Cadson College of Pharmacy, Kharian, Pakistan
| | - Mujeeb Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Abasyn University Islamabad Campus, Islamabad, Pakistan
| | | | - Rehana Kousar
- Physiology Lab, Crop Sciences Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Khan Muhammad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ijaz Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Najla Almasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|