1
|
Moye AR, Robichaux MA, Agosto MA, Rivolta C, Moulin AP, Wensel TG. Ciliopathy-associated protein, CEP290, is required for ciliary necklace and outer segment membrane formation in retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633784. [PMID: 39896654 PMCID: PMC11785020 DOI: 10.1101/2025.01.20.633784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The most common genetic cause of the childhood blinding disease Leber Congenital Amaurosis is mutation of the ciliopathy gene CEP290 . Though studied extensively, the photoreceptor-specific roles of CEP290 remain unclear. Using advanced microscopy techniques, we investigated the sub-ciliary localization of CEP290 and its role in mouse photoreceptors during development. CEP290 was found throughout the connecting cilium between the microtubules and membrane, with nine-fold symmetry. In the absence of CEP290 ciliogenesis occurs, but the connecting cilium membrane is aberrant, and sub-structures, such as the ciliary necklace and Y-links, are defective or absent throughout the mid to distal connecting cilium. Transition zone proteins AHI1 and NPHP1 were abnormally restricted to the proximal connecting cilium in the absence of CEP290, while others like NPHP8 and CEP89 were unaffected. Although outer segment disc formation is inhibited in CEP290 mutant retina, we observed large numbers of extracellular vesicles. These results suggest roles for CEP290 in ciliary membrane structure, outer segment disc formation and photoreceptor-specific spatial distribution of a subset of transition zone proteins, which collectively lead to failure of outer segment formation and photoreceptor degeneration.
Collapse
|
2
|
Hakeem A, Yang S. Regulation of INPP5E in Ciliogenesis, Development, and Disease. Int J Biol Sci 2025; 21:579-594. [PMID: 39781470 PMCID: PMC11705637 DOI: 10.7150/ijbs.99010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025] Open
Abstract
Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in INPP5E cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics. Moreover, it regulates cellular signaling pathways by dephosphorylating the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate, phosphatidylinositol 4,5-bisphosphate, and phosphatidylinositol 3,5-bisphosphate. Despite recent advances, knowledge gaps persist regarding the function and molecular mechanism of INPP5E in various cells and species. This review integrates recent findings on the role of INPP5E in regulating cellular function, development, and the pathogenesis of various human disorders, emphasizing the molecular mechanism by which INPP5E regulates primary cilia assembly and function and critical signaling pathways. Identifying the importance of INPP5E in healthy and diseased states can advance our understanding of cellular processes and disease pathogenesis and provide a foundation for developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Abdulaziz Hakeem
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA
- Department of Basic and Translation Science, School of Dentistry, Umm Al Qura University, Saudi Arabia
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA
- The Penn Center for Musculoskeletal Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Center for Innovation & Precision Dentistry, Penn Dental Medicine and School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Arai Y, Ito H, Shimizu T, Shimoda Y, Song D, Matsuo-Takasaki M, Hayata T, Hayashi Y. Patient-derived and gene-edited pluripotent stem cells lacking NPHP1 recapitulate juvenile nephronophthisis in abnormalities of primary cilia and renal cyst formation. Front Cell Dev Biol 2024; 12:1370723. [PMID: 38989059 PMCID: PMC11233770 DOI: 10.3389/fcell.2024.1370723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Juvenile nephronophthisis is an inherited renal ciliopathy with cystic kidney disease, renal fibrosis, and end-stage renal failure in children and young adults. Mutations in the NPHP1 gene encoding nephrocystin-1 protein have been identified as the most frequently responsible gene and cause the formation of cysts in the renal medulla. The molecular pathogenesis of juvenile nephronophthisis remains elusive, and no effective medicines to prevent end-stage renal failure exist even today. No human cellular models have been available yet. Here, we report a first disease model of juvenile nephronophthisis using patient-derived and gene-edited human induced pluripotent stem cells (hiPSCs) and kidney organoids derived from these hiPSCs. We established NPHP1-overexpressing hiPSCs from patient-derived hiPSCs and NPHP1-deficient hiPSCs from healthy donor hiPSCs. Comparing these series of hiPSCs, we found abnormalities in primary cilia associated with NPHP1 deficiency in hiPSCs. Kidney organoids generated from the hiPSCs lacking NPHP1 formed renal cysts frequently in suspension culture with constant rotation. This cyst formation in patient-derived kidney organoids was rescued by overexpression of NPHP1. Transcriptome analysis on these kidney organoids revealed that loss of NPHP1 caused lower expression of genes related to primary cilia in epithelial cells and higher expression of genes related to the cell cycle. These findings suggested the relationship between abnormality in primary cilia induced by NPHP1 loss and abnormal proliferative characteristics in the formation of renal cysts. These findings demonstrated that hiPSC-based systematic disease modeling of juvenile nephronophthisis contributed to elucidating the molecular pathogenesis and developing new therapies.
Collapse
Affiliation(s)
- Yutaka Arai
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuzuno Shimoda
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Ning K, Tran M, Kowal TJ, Mesentier-Louro LA, Sendayen BE, Wang Q, Lo CH, Li T, Majumder R, Luo J, Hu Y, Liao YJ, Sun Y. Compartmentalized ciliation changes of oligodendrocytes in aged mouse optic nerve. J Neurosci Res 2024; 102:e25273. [PMID: 38284846 PMCID: PMC10827352 DOI: 10.1002/jnr.25273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | | | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tingting Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rishab Majumder
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jian Luo
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
5
|
Reddy S, Simmers R, Shah A, Couser N. NPHP1-Related ciliopathies: A new case and major review of the ophthalmic manifestations of 147 reported cases. Clin Case Rep 2023; 11:e7818. [PMID: 37663822 PMCID: PMC10468586 DOI: 10.1002/ccr3.7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Our case report and review contribute to the understanding of ocular manifestations in NPHP1 ciliopathies by reinforcing the relationship between pathogenic genetic variants and a wide array of ophthalmic abnormalities.
Collapse
Affiliation(s)
- Shivania Reddy
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Russell Simmers
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Arth Shah
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Natario Couser
- Department of Human and Molecular GeneticsVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of OphthalmologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of PediatricsVirginia Commonwealth University School of Medicine, Children's Hospital of Richmond at VCURichmondVirginiaUSA
| |
Collapse
|
6
|
Tauqeer Z, O'Neil EC, Brucker AJ, Aleman TS. NPHP1 FULL DELETION CAUSES NEPHRONOPHTHISIS AND A CONE-ROD DYSTROPHY. Retin Cases Brief Rep 2023; 17:352-358. [PMID: 36913617 DOI: 10.1097/icb.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe in detail the structural and functional phenotypes of a patient with cone-rod dystrophy associated with a full deletion of the NPHP1 gene. METHODS A 30-year-old man with a history of end-stage renal disease presented with progressive vision loss in early adulthood prompting evaluation for retinal disease. Ophthalmic evaluation was performed including visual fields, electroretinography, spectral domain optical coherence tomography and short-wavelength and near-infrared fundus autofluorescence imaging. RESULTS The visual acuity was 20/60 in each eye. Fundus examination revealed a subtle bull's-eye maculopathy confirmed with fundus autofluorescence. Spectral domain optical coherence tomography demonstrated perifoveal loss of the outer retinal layers with structural preservation further peripherally. Static perimetry confirmed the loss of cone greater than rod sensitivities in a manner that colocalized to structural findings. Electroretinography revealed decreased cone- and rod-mediated responses. Genetic testing confirmed a homozygous whole-gene deletion of the NPHP1 gene. CONCLUSION NPHP1 -associated retinal degeneration may present as a cone-rod dystrophy in addition to the previously reported rod-predominant phenotypes and can notably be associated with systemic abnormalities, including renal disease. Our work further expands on the growing literature describing the retinal disease associated with systemic ciliopathies.
Collapse
Affiliation(s)
| | - Erin C O'Neil
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tomas S Aleman
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Ning K, Bhuckory MB, Lo CH, Sendayen BE, Kowal TJ, Chen M, Bansal R, Chang KC, Vollrath D, Berbari NF, Mahajan VB, Hu Y, Sun Y. Cilia-associated wound repair mediated by IFT88 in retinal pigment epithelium. Sci Rep 2023; 13:8205. [PMID: 37211572 PMCID: PMC10200793 DOI: 10.1038/s41598-023-35099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Brent E Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ming Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kun-Che Chang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Vollrath
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Characterization of Primary Cilia Formation in Human ESC-Derived Retinal Organoids. Stem Cells Int 2023; 2023:6494486. [PMID: 36684387 PMCID: PMC9859708 DOI: 10.1155/2023/6494486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Primary cilia are conserved organelles found in polarized mammalian cells that regulate neuronal growth, migration, and differentiation. Proper cilia formation is essential during eye development. Our previous reports found that both amacrine and retinal ganglion cells (RGCs) contain primary cilia in primate and rodent retinas. However, whether primary cilia are present in the inner retina of human retinal organoids remains unknown. The purpose of this study is to characterize the primary cilia distribution in human embryonic stem cell (hESC-derived retinal organoid development. Materials and Methods Retinal organoids were differentiated from a hESC line, harvested at various developmental timepoints (day 44-day 266), and immunostained with antibodies for primary cilia, including Arl13b (for the axoneme), AC3, and Centrin3 (for the basal body). AP2α, Prox1, GAD67, Calretinin, GFAP, PKCα, and Chx10 antibodies as well as Brn3b-promoted tdTomato expression were used to visualize retinal cell types. Results A group of ciliated cells were present in the inner aspects of retinal organoids from day 44 to day 266 in culture. Ciliated Chx10-positive retinal progenitor cells, GFAP-positive astrocytes, and PKCα-positive rod-bipolar cells were detected later during development (day 176 to day 266). Ciliation persisted during all stages of retinal developmental in AP2α-positive amacrine cells, but it was decreased in Brn3b-positive retinal ganglion cells (RGCs) at later time points. Additionally, AC3-positive astrocytes significantly decreased during the later stages of organoid formation. Conclusions Amacrine cells in retinal organoids retain cilia throughout development, whereas RGC ciliation gradually and progressively decreases with organoid maturation.
Collapse
|
9
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
10
|
Cilleros-Rodriguez D, Martin-Morales R, Barbeito P, Deb Roy A, Loukil A, Sierra-Rodero B, Herranz G, Pampliega O, Redrejo-Rodriguez M, Goetz SC, Izquierdo M, Inoue T, Garcia-Gonzalo FR. Multiple ciliary localization signals control INPP5E ciliary targeting. eLife 2022; 11:e78383. [PMID: 36063381 PMCID: PMC9444247 DOI: 10.7554/elife.78383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Primary cilia are sensory membrane protrusions whose dysfunction causes ciliopathies. INPP5E is a ciliary phosphoinositide phosphatase mutated in ciliopathies like Joubert syndrome. INPP5E regulates numerous ciliary functions, but how it accumulates in cilia remains poorly understood. Herein, we show INPP5E ciliary targeting requires its folded catalytic domain and is controlled by four conserved ciliary localization signals (CLSs): LLxPIR motif (CLS1), W383 (CLS2), FDRxLYL motif (CLS3) and CaaX box (CLS4). We answer two long-standing questions in the field. First, partial CLS1-CLS4 redundancy explains why CLS4 is dispensable for ciliary targeting. Second, the essential need for CLS2 clarifies why CLS3-CLS4 are together insufficient for ciliary accumulation. Furthermore, we reveal that some Joubert syndrome mutations perturb INPP5E ciliary targeting, and clarify how each CLS works: (i) CLS4 recruits PDE6D, RPGR and ARL13B, (ii) CLS2-CLS3 regulate association to TULP3, ARL13B, and CEP164, and (iii) CLS1 and CLS4 cooperate in ATG16L1 binding. Altogether, we shed light on the mechanisms of INPP5E ciliary targeting, revealing a complexity without known parallels among ciliary cargoes.
Collapse
Affiliation(s)
- Dario Cilleros-Rodriguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Raquel Martin-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Pablo Barbeito
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Abhijit Deb Roy
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Abdelhalim Loukil
- Department of Pharmacology and Cancer Biology, Duke University School of MedicineDurhamUnited States
| | - Belen Sierra-Rodero
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Gonzalo Herranz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
| | - Olatz Pampliega
- Department of Neurosciences, University of the Basque Country, Achucarro Basque Center for Neuroscience-UPV/EHULeioaSpain
| | - Modesto Redrejo-Rodriguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
| | - Sarah C Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of MedicineDurhamUnited States
| | - Manuel Izquierdo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Francesc R Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| |
Collapse
|
11
|
Xie C, Habif JC, Ukhanov K, Uytingco CR, Zhang L, Campbell RJ, Martens JR. Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies. JCI Insight 2022; 7:158736. [PMID: 35771640 PMCID: PMC9462494 DOI: 10.1172/jci.insight.158736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ciliopathies are a class of genetic diseases resulting in cilia dysfunction in multiple organ systems, including the olfactory system. Currently, there are no available curative treatments for olfactory dysfunction and other symptoms in ciliopathies. The loss or shortening of olfactory cilia, as seen in multiple mouse models of the ciliopathy Bardet–Biedl syndrome (BBS), results in olfactory dysfunction. However, the underlying mechanism of the olfactory cilia reduction is unknown, thus limiting the development of therapeutic approaches for BBS and other ciliopathies. Here, we demonstrated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a phosphoinositide typically excluded from olfactory cilia, aberrantly redistributed into the residual cilia of BBS mouse models, which caused F-actin ciliary infiltration. Importantly, PI(4,5)P2 and F-actin were necessary for olfactory cilia shortening. Using a gene therapeutic approach, the hydrolyzation of PI(4,5)P2 by overexpression of inositol polyphosphate-5-phosphatase E (INPP5E) restored cilia length and rescued odor detection and odor perception in BBS. Together, our data indicate that PI(4,5)P2/F-actin–dependent cilia disassembly is a common mechanism contributing to the loss of olfactory cilia in BBS and provide valuable pan-therapeutic intervention targets for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Robert J Campbell
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| |
Collapse
|
12
|
Ning K, Sendayen BE, Kowal TJ, Wang B, Jones BW, Hu Y, Sun Y. Primary Cilia in Amacrine Cells in Retinal Development. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34241625 PMCID: PMC8287049 DOI: 10.1167/iovs.62.9.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose Primary cilia are conserved organelles found in polarized cells within the eye that regulate cell growth, migration, and differentiation. Although the role of cilia in photoreceptors is well-studied, the formation of cilia in other retinal cell types has received little attention. In this study, we examined the ciliary profile focused on the inner nuclear layer of retinas in mice and rhesus macaque primates. Methods Retinal sections or flatmounts from Arl13b-Cetn2 tg transgenic mice were immunostained for cell markers (Pax6, Sox9, Chx10, Calbindin, Calretinin, ChaT, GAD67, Prox1, TH, and vGluT3) and analyzed by confocal microscopy. Primate retinal sections were immunostained for ciliary and cell markers (Pax6 and Arl13b). Optical coherence tomography (OCT) and ERGs were used to assess visual function of Vift88 mice. Results During different stages of mouse postnatal eye development, we found that cilia are present in Pax6-positive amacrine cells, which were also observed in primate retinas. The cilia of subtypes of amacrine cells in mice were shown by immunostaining and electron microscopy. We also removed primary cilia from vGluT3 amacrine cells in mouse and found no significant vision defects. In addition, cilia were present in the outer limiting membrane, suggesting that a population of Müller glial cells forms cilia. Conclusions We report that several subpopulations of amacrine cells in inner nuclear layers of the retina form cilia during early retinal development in mice and primates.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Brent E Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Palo Alto Veterans Administration, Palo Alto, California, United States
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Bryan W Jones
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Palo Alto Veterans Administration, Palo Alto, California, United States
| |
Collapse
|
13
|
Xie C, Martens JR. Potential Therapeutic Targets for Olfactory Dysfunction in Ciliopathies Beyond Single-Gene Replacement. Chem Senses 2021; 46:6159785. [PMID: 33690843 DOI: 10.1093/chemse/bjab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory dysfunction is a common disorder in the general population. There are multiple causes, one of which being ciliopathies, an emerging class of human hereditary genetic disorders characterized by multiple symptoms due to defects in ciliary biogenesis, maintenance, and/or function. Mutations/deletions in a wide spectrum of ciliary genes have been identified to cause ciliopathies. Currently, besides symptomatic therapy, there is no available therapeutic treatment option for olfactory dysfunction caused by ciliopathies. Multiple studies have demonstrated that targeted gene replacement can restore the morphology and function of olfactory cilia in olfactory sensory neurons and further re-establish the odor-guided behaviors in animals. Therefore, targeted gene replacement could be potentially used to treat olfactory dysfunction in ciliopathies. However, due to the potential limitations of single-gene therapy for polygenic mutation-induced diseases, alternative therapeutic targets for broader curative measures need to be developed for olfactory dysfunction, and also for other symptoms in ciliopathies. Here we review the current understanding of ciliogenesis and maintenance of olfactory cilia. Furthermore, we emphasize signaling mechanisms that may be involved in the regulation of olfactory ciliary length and highlight potential alternative therapeutic targets for the treatment of ciliopathy-induced dysfunction in the olfactory system and even in other ciliated organ systems.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|