1
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:041001. [PMID: 38996412 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| |
Collapse
|
2
|
Yan Y, Zhang W, Wu R, Guan T, Li Z, Tu Q, Liu Y, Gu X, Liu M. Promising application of a novel biomaterial, light chain of silk fibroin combined with NT3, in repairment of rat sciatic nerve defect injury. Int J Biol Macromol 2023; 240:124447. [PMID: 37080411 DOI: 10.1016/j.ijbiomac.2023.124447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Autologous nerve transplantation is the gold standard for treating peripheral nerve defects, but it is associated with defects such as insufficient donor and secondary injury. Artificial nerve guidance conduits (NGCs) are now considered promising alternatives for bridging long nerve gaps, although exploring new biomaterials to construct NGCs remains challenging. Silk fibroin (SF) has good biocompatibility and can self-assemble in aqueous solutions1. However, the lack of proximal neurotrophic factors after nerve injury is a major concern, leading to incomplete nerve regeneration. In this study, NT-3, a neurotrophin that promotes neuronal survival and differentiation, was bound to the light chain of silk fibroin (FIBL) in two ways: one was directly bound to FIBL (FIBL-NT3) and the other was a polypeptides-linker (FIBL-Linker-NT3). The design aimed to take advantage of silk fiber's character of self-assembly of heavy-light chains and test whether a flexible linker with NT3 molecule is easy to be a NT3 dimer, the active form. In vitro studies indicated that FIBL-Linker-NT3 combined with SF membranes promoted axon growth in adult rat dorsal root ganglion (DRG) neurons. Then we tested if FIBL-Linker-NT3 could self-assemble with the SF heavy chain (SFH). DTT (Dithiothreitol) was used to break the disulfide bonds between the SF light and heavy chains, and the light-chain protein was removed via dialysis. SFH was assembled using FIBL-Linker-NT3, as evidenced by the western blotting results that showed a high molecular band corresponding to SFH-FIBL-Linker-NT3. Chitosan scaffolds have been identified to provide a suitable microenvironment, so a chitosan/SF-FIBL-Linker-NT3 conduit was also constructed. Nerve transplantation of this conduit was evaluated in vivo in a rat sciatic nerve defect model. Immunohistochemical assays showed that the chitosan/SF-FIBL-Linker-NT3 group was superior to the chitosan/PBS, SF, PBS + FIBL-Linker-NT3 groups in nerve regeneration. In addition, the chitosan/SF-FIBL-Linker-NT3 conduit-transplanted group exhibited better recovery in terms of neurite length, sciatic functional index value, sensitivity to heat, time on the rotarod, wet weight ratio, cross-sectional area, compound muscle action potential, number of myelin layers, and myelin thickness in the nerve. Taking together, our study identified that FIBL-Linker-NT3 could promote axonal growth and regeneration in vivo and in vitro and is a promising candidate biomaterial for artificial NGCs.
Collapse
Affiliation(s)
- Yingying Yan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Qifeng Tu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
3
|
Lai CSE, Leyva-Aranda V, Kong VH, Lopez-Silva TL, Farsheed AC, Cristobal CD, Swain JWR, Lee HK, Hartgerink JD. A Combined Conduit-Bioactive Hydrogel Approach for Regeneration of Transected Sciatic Nerves. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00132. [PMID: 35446025 PMCID: PMC11097895 DOI: 10.1021/acsabm.2c00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.
Collapse
Affiliation(s)
- Cheuk Sun Edwin Lai
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Victoria H Kong
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Tania L Lopez-Silva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Carlo D Cristobal
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
5
|
Wei Z, Hong FF, Cao Z, Zhao SY, Chen L. In Situ Fabrication of Nerve Growth Factor Encapsulated Chitosan Nanoparticles in Oxidized Bacterial Nanocellulose for Rat Sciatic Nerve Regeneration. Biomacromolecules 2021; 22:4988-4999. [PMID: 34724615 DOI: 10.1021/acs.biomac.1c00947] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autograft is currently the gold standard in the clinical treatment of peripheral nerve injury (PNI), which, however, is limited by the availability of a donor nerve and secondary injuries. Nerve guidance conduits (NGC) provide a suitable microenvironment to promote the regeneration of injured nerves, which could be the substitutes for autografts. In this study, nerve growth factor (NGF) encapsulated chitosan nanoparticles (CSNPs) were first constructed in situ in an oxidized bacterial cellulose (OBC) conduit using the ion gel method after the introduction of a CS/NGF solution under pressure to enable a sustainable release of NGF. A novel NGF@CSNPs/OBC nanocomposite with antibacterial activity, biodegradability, and porous microstructure was successfully developed. In vitro experiments showed that the nanocomposite promoted the adhesion and proliferation of Schwann cells. When the nanocomposite was applied as NGC to repair the sciatic nerve defect of rats, a successful repair of the 10 mm nerve defect was observed after 4 weeks. At week 9, the diameter, morphology, histology, and functional recovery of the regenerated nerve was comparable to the autografts, indicating that the NGC effectively promoted the regeneration and function recovery of the nerve. In summary, the NGF@CSNPs/OBC as a novel NGC provides great potential in the treatment of PNI.
Collapse
Affiliation(s)
- Zhao Wei
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Feng F Hong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.,Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, Shanghai, 201620, China
| | - Zhangjun Cao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China
| | - Lin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Coy R, Berg M, Phillips JB, Shipley RJ. Modelling-informed cell-seeded nerve repair construct designs for treating peripheral nerve injuries. PLoS Comput Biol 2021; 17:e1009142. [PMID: 34237052 PMCID: PMC8266098 DOI: 10.1371/journal.pcbi.1009142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/02/2021] [Indexed: 11/19/2022] Open
Abstract
Millions of people worldwide are affected by peripheral nerve injuries (PNI), involving billions of dollars in healthcare costs. Common outcomes for patients include paralysis and loss of sensation, often leading to lifelong pain and disability. Engineered Neural Tissue (EngNT) is being developed as an alternative to the current treatments for large-gap PNIs that show underwhelming functional recovery in many cases. EngNT repair constructs are composed of a stabilised hydrogel cylinder, surrounded by a sheath of material, to mimic the properties of nerve tissue. The technology also enables the spatial seeding of therapeutic cells in the hydrogel to promote nerve regeneration. The identification of mechanisms leading to maximal nerve regeneration and to functional recovery is a central challenge in the design of EngNT repair constructs. Using in vivo experiments in isolation is costly and time-consuming, offering a limited insight on the mechanisms underlying the performance of a given repair construct. To bridge this gap, we derive a cell-solute model and apply it to the case of EngNT repair constructs seeded with therapeutic cells which produce vascular endothelial growth factor (VEGF) under low oxygen conditions to promote vascularisation in the construct. The model comprises a set of coupled non-linear diffusion-reaction equations describing the evolving cell population along with its interactions with oxygen and VEGF fields during the first 24h after transplant into the nerve injury site. This model allows us to evaluate a wide range of repair construct designs (e.g. cell-seeding strategy, sheath material, culture conditions), the idea being that designs performing well over a short timescale could be shortlisted for in vivo trials. In particular, our results suggest that seeding cells beyond a certain density threshold is detrimental regardless of the situation considered, opening new avenues for future nerve tissue engineering.
Collapse
Affiliation(s)
- Rachel Coy
- Department of Mechanical Engineering, UCL, London, United Kingdom
- Center for Nerve Engineering, UCL, London, United Kingdom
| | - Maxime Berg
- Department of Mechanical Engineering, UCL, London, United Kingdom
- Center for Nerve Engineering, UCL, London, United Kingdom
- * E-mail:
| | - James B. Phillips
- Center for Nerve Engineering, UCL, London, United Kingdom
- Department of Pharmacology, School of Pharmacy, UCL, London, United Kingdom
| | - Rebecca J. Shipley
- Department of Mechanical Engineering, UCL, London, United Kingdom
- Center for Nerve Engineering, UCL, London, United Kingdom
| |
Collapse
|
7
|
Bioactive Nanofiber-Based Conduits in a Peripheral Nerve Gap Management-An Animal Model Study. Int J Mol Sci 2021; 22:ijms22115588. [PMID: 34070436 PMCID: PMC8197537 DOI: 10.3390/ijms22115588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aim was to examine the efficiency of a scaffold made of poly (L-lactic acid)-co-poly(ϵ-caprolactone), collagen (COL), polyaniline (PANI), and enriched with adipose-derived stem cells (ASCs) as a nerve conduit in a rat model. P(LLA-CL)-COL-PANI scaffold was optimized and electrospun into a tubular-shaped structure. Adipose tissue from 10 Lewis rats was harvested for ASCs culture. A total of 28 inbred male Lewis rats underwent sciatic nerve transection and excision of a 10 mm nerve trunk fragment. In Group A, the nerve gap remained untouched; in Group B, an excised trunk was used as an autograft; in Group C, nerve stumps were secured with P(LLA-CL)-COL-PANI conduit; in Group D, P(LLA-CL)-COL-PANI conduit was enriched with ASCs. After 6 months of observation, rats were sacrificed. Gastrocnemius muscles and sciatic nerves were harvested for weight, histology analysis, and nerve fiber count analyses. Group A showed advanced atrophy of the muscle, and each intervention (B, C, D) prevented muscle mass decrease (p < 0.0001); however, ASCs addition decreased efficiency vs. autograft (p < 0.05). Nerve fiber count revealed a superior effect in the nerve fiber density observed in the groups with the use of conduit (D vs. B p < 0.0001, C vs. B p < 0.001). P(LLA-CL)-COL-PANI conduits with ASCs showed promising results in managing nerve gap by decreasing muscle atrophy.
Collapse
|
8
|
Bahremandi Tolou N, Salimijazi H, Kharaziha M, Faggio G, Chierchia R, Lisi N. A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112110. [PMID: 34082932 DOI: 10.1016/j.msec.2021.112110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/17/2023]
Abstract
In this study, a novel nerve guide conduit was developed, based on a three-dimensional (3D) graphene conductive core grown, by chemical vapor deposition (CVD) coupled with a polycaprolactone (PCL) polymer coating. Firstly, the monolithic 3D-graphene foam (3D-GF) was synthesized on Ni foam templates via inductive heating CVD, subsequently, Ni/Graphene samples were dipped successively in PCL and cyclododecane (CDD) solutions prior to the removal of Ni from the 3D-GF/PCL scaffold in FeCl3. Our results showed that the electrical conductivity of the polymer composites reached to 25 S.m-1 after incorporation of 3D-GF. Moreover, the mechanical properties of 3D-GF/PCL composite scaffold were enhanced with respect to the same geometry of PCL scaffolds. The wettability, surface porosity, and morphology did not show any significant changes, while the PC12 cell proliferation and extension were increased for the developed 3D-GF/PCL nanocomposite. It can be concluded that 3D-GF/PCL nanocomposites could be good candidates to utilize as a versatile system for the engineering of peripheral nerve tissue.
Collapse
Affiliation(s)
- Neda Bahremandi Tolou
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran; ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| | - Hamidreza Salimijazi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Giuliana Faggio
- Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), Mediterranea University of Reggio Calabria, Reggio Calabria, Italy.
| | - Rosa Chierchia
- ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| | - Nicola Lisi
- ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| |
Collapse
|
9
|
Huang L, Yang X, Deng L, Ying D, Lu A, Zhang L, Yu A, Duan B. Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16106-16117. [PMID: 33787211 DOI: 10.1021/acsami.1c01904] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nerve guidance conduit (NGC) is a promising clinical strategy for regenerating the critical-sized peripheral nerve injury. In this study, the polysaccharide chitin is used to fabricate the hydrogel film for inducing the impaired sciatic nerve regeneration through incorporating the conductive poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) and modifying with cell adhesive tetrapeptide Cys-Arg-Gly-Asp (CRGD) (ChT-PEDOT-p). The partial deacetylation process of chitin for exposing the amino groups is performed to (i) improve the electrostatic interaction between chitin and the negatively charged PEDOT for enhancing the composite hydrogel strength and (ii) offer the active sites for peptide modification. The as-prepared hydrogel remarkably promotes the in vitro RSC-96 cell adhesion and proliferation, as well as the Schwann cell activity-related gene S100, NF-200, and myelin basic protein (MBP) expression. Function of gastrocnemius muscle and thickness of myelinated axon in chitin/PEDOT groups are analogous to the autograft in 10 mm rat sciatic nerve defect. Immunofluorescence, immunohistochemistry, western blotting, and toluidine blue staining analyses on the regenerated sciatic nerve explain that the attachment and proliferation enhancement of Schwann cells and angiogenesis are the vital factors for the chitin/PEDOT composite to facilitate the nerve regeneration. This work provides an applicable chitin-based NGC material for accelerating the peripheral nerve restoration.
Collapse
Affiliation(s)
- Lin Huang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiaqing Yang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Linglong Deng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Daofa Ying
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Mendibil X, González-Pérez F, Bazan X, Díez-Ahedo R, Quintana I, Rodríguez FJ, Basnett P, Nigmatullin R, Lukasiewicz B, Roy I, Taylor CS, Glen A, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Duffy P, Merino S. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomater Sci Eng 2021; 7:672-689. [DOI: 10.1021/acsbiomaterials.0c01476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xabier Mendibil
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco González-Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Xabier Bazan
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Ruth Díez-Ahedo
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Iban Quintana
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Barbara Lukasiewicz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Caroline S. Taylor
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Adam Glen
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - John W. Haycock
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Patrick Duffy
- Ashland Specialties Ireland, Synergy Centre, Dublin Road, Petitswood Mullingar, Co. Westmeath N91 F6PD, Ireland
| | - Santos Merino
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
11
|
Colony Formation, Migratory, and Differentiation Characteristics of Multipotential Stromal Cells (MSCs) from "Clinically Accessible" Human Periosteum Compared to Donor-Matched Bone Marrow MSCs. Stem Cells Int 2019; 2019:6074245. [PMID: 31871468 PMCID: PMC6906873 DOI: 10.1155/2019/6074245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Periosteum is vital for fracture healing, as a highly vascular and multipotential stromal cell- (MSC-) rich tissue. During surgical bone reconstruction, small fragments of periosteum can be “clinically accessible,” yet periosteum is currently not ultilised, unlike autologous bone marrow (BM) aspirate. This study is aimed at comparing human periosteum and donor-matched iliac crest BM MSC content and characterising MSCs in terms of colony formation, growth kinetics, phenotype, cell migration patterns, and trilineage differentiation capacity. “Clinically accessible” periosteum had an intact outer fibrous layer, containing CD271+ candidate MSCs located perivasculary; the inner cambium was rarely present. Following enzymatic release of cells, periosteum formed significantly smaller fibroblastic colonies compared to BM (6.1 mm2 vs. 15.5 mm2, n = 4, P = 0.0006). Periosteal colonies were more homogenous in size (range 2-30 mm2 vs. 2-54 mm2) and on average 2500-fold more frequent (2.0% vs. 0.0008%, n = 10, P = 0.004) relative to total viable cells. When expanded in vitro, similar growth rates up to passage 0 (P0) were seen (1.8 population doublings (PDs) per day (periosteum), 1.6 PDs per day (BM)); however, subsequently BM MSCs proliferated significantly slower by P4 (4.3 PDs per day (periosteum) vs. 9.3 PDs per day (BM), n = 9, P = 0.02). In early culture, periosteum cells were less migratory at slower speeds than BM cells. Both MSC types exhibited MSC phenotype and trilineage differentiation capacity; however, periosteum MSCs showed significantly lower (2.7-fold) adipogenic potential based on Nile red : DAPI ratios with reduced expression of adipogenesis-related transcripts PPAR-γ. Altogether, these data revealed that “clinically accessible” periosteal samples represent a consistently rich source of highly proliferative MSCs compared to donor-matched BM, which importantly show similar osteochondral capacity and lower adipogenic potential. Live cell tracking allowed determination of unique morphological and migration characteristics of periosteal MSCs that can be used for the development of novel bone graft substitutes to be preferentially repopulated by these cells.
Collapse
|
12
|
Fogli B, Corthout N, Kerstens A, Bosse F, Klimaschewski L, Munck S, Schweigreiter R. Imaging axon regeneration within synthetic nerve conduits. Sci Rep 2019; 9:10095. [PMID: 31300753 PMCID: PMC6626049 DOI: 10.1038/s41598-019-46579-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/28/2019] [Indexed: 11/23/2022] Open
Abstract
While axons within the central nervous system (CNS) do not regenerate following injury, those in the peripheral nervous system (PNS) do, although not in a clinically satisfactory manner as only a small proportion of axons exhibit long-distance regeneration. Moreover, functional recovery is hampered by excessive axonal sprouting and aberrant reinnervation of target tissue. In order to investigate the mechanisms governing the regrowth of axons following injury, previous studies have used lesion paradigms of peripheral nerves in rat or mouse models, and reagents or cells have been administered to the lesion site through nerve conduits, aiming to improve early-stage regeneration. Morphological analysis of such in vivo experiments has however been limited by the incompatibility of synthetic nerve conduits with existing tissue-clearing and imaging techniques. We present herein a novel experimental approach that allows high-resolution imaging of individual axons within nerve conduits, together with quantitative assessment of fiber growth. We used a GFP-expressing mouse strain in a lesion model of the sciatic nerve to describe a strategy that combines nerve clearing, chemical treatment of chitosan nerve conduits, and long working distance confocal microscopy with image processing and analysis. This novel experimental setup provides a means of documenting axon growth within the actual conduit during the critical initial stage of regeneration. This will greatly facilitate the development and evaluation of treatment regimens to improve axonal regeneration following nerve damage.
Collapse
Affiliation(s)
- Barbara Fogli
- Innsbruck Medical University, Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, 6020, Innsbruck, Austria
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research O&N 4, Campus Gasthuisberg, 3000, Leuven, Belgium.,KU Leuven, Department for Neuroscience, Campus Gasthuisberg, 3000, Leuven, Belgium.,VIB Bio Imaging Core, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Axelle Kerstens
- VIB-KU Leuven Center for Brain & Disease Research O&N 4, Campus Gasthuisberg, 3000, Leuven, Belgium.,KU Leuven, Department for Neuroscience, Campus Gasthuisberg, 3000, Leuven, Belgium.,VIB Bio Imaging Core, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Frank Bosse
- Heinrich-Heine-University Düsseldorf, Department of Neurology, Molecular Neurobiology Laboratory, 40225, Düsseldorf, Germany
| | - Lars Klimaschewski
- Innsbruck Medical University, Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, 6020, Innsbruck, Austria
| | - Sebastian Munck
- VIB-KU Leuven Center for Brain & Disease Research O&N 4, Campus Gasthuisberg, 3000, Leuven, Belgium. .,KU Leuven, Department for Neuroscience, Campus Gasthuisberg, 3000, Leuven, Belgium. .,VIB Bio Imaging Core, Campus Gasthuisberg, 3000, Leuven, Belgium.
| | - Rüdiger Schweigreiter
- Innsbruck Medical University, Biocenter, Division of Neurobiochemistry, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Fukuda T, Kusuhara H, Nakagoshi T, Isogai N, Sueyoshi Y. A basic fibroblast growth factor slow-release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model. Microsurgery 2018; 38:899-906. [PMID: 30380172 DOI: 10.1002/micr.30387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND A basic fibroblast growth factor (bFGF) slow-release system was combined to a biodegradable nerve conduit with the hypothesis this slow-release system would increase the capacity to promote nerve vascularization and Schwann cell proliferation in a rat model. MATERIALS AND METHODS Slow-release of bFGF was determined using Enzyme-Linked ImmunoSorbent Assay (ELISA). A total of 60 rats were used to create a 10 mm gap in the sciatic nerve. A polyglycolic acid-based nerve conduit was used to bridge the gap, either without or with a bFGF slow-release incorporated around the conduit (n = 30 in each group). At 2 (n = 6), 4 (n = 6), 8 (n = 6), and 20 (n = 12) weeks after surgery, samples were resected and subjected to histological, immunohistochemical, and transmission electron microscopic evaluation for nerve regeneration. RESULTS Continuous release of bFGF was found during the observation period of 2 weeks. After in vivo implantation of the nerve conduit, greater endothelial cell migration and vascularization resulted at 2 weeks (proximal: 20.0 ± 2.0 vs. 12.7 ± 2.1, P = .01, middle: 17.3 ± 3.5 vs. 8.7 ± 3.2, P = .03). Schwann cells showed a trend toward greater proliferation and axonal growth had significant elongation (4.9 ± 1.1 mm vs. 2.8 ± 1.5 mm, P = .04) at 4 weeks after implantation. The number of myelinated nerve fibers, indicating nerve maturation, were increased 20 weeks after implantation (proximal: 83.3 ± 7.5 vs. 53.3 ± 5.5, P = .06, distal: 71.0 ± 12.5 vs. 44.0 ± 11.1, P = .04). CONCLUSIONS These findings suggest that the bFGF slow-release system improves nerve vascularization and Schwann cell proliferation through the biodegradable nerve conduit.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirohisa Kusuhara
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takuya Nakagoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Noritaka Isogai
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yu Sueyoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Wang ZZ, Sakiyama-Elbert SE. Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Exp Neurol 2018; 319:112837. [PMID: 30291854 DOI: 10.1016/j.expneurol.2018.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Nerve injuries can be life-long debilitating traumas that severely impact patients' quality of life. While many acellular neural scaffolds have been developed to aid the process of nerve regeneration, complete functional recovery is still very difficult to achieve, especially for long-gap peripheral nerve injury and most cases of spinal cord injury. Cell-based therapies have shown many promising results for improving nerve regeneration. With recent advances in neural tissue engineering, the integration of biomaterial scaffolds and cell transplantation are emerging as a more promising approach to enhance nerve regeneration. This review provides an overview of important considerations for designing cell-carrier biomaterial scaffolds. It also discusses current biomaterials used for scaffolds that provide permissive and instructive microenvironments for improved cell transplantation.
Collapse
Affiliation(s)
- Ze Zhong Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biomedical Engineering, University of Austin at Texas, Austin, TX, USA
| | | |
Collapse
|
15
|
Riccio M, Marchesini A, Pugliese P, Francesco F. Nerve repair and regeneration: Biological tubulization limits and future perspectives. J Cell Physiol 2018; 234:3362-3375. [DOI: 10.1002/jcp.27299] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Pierfrancesco Pugliese
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Francesco Francesco
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| |
Collapse
|
16
|
Yi J, Jiang N, Li B, Yan Q, Qiu T, Swaminatha Iyer K, Yin Y, Dai H, Yetisen AK, Li S. Painful Terminal Neuroma Prevention by Capping PRGD/PDLLA Conduit in Rat Sciatic Nerves. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700876. [PMID: 29938170 PMCID: PMC6010769 DOI: 10.1002/advs.201700876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Neuroma formation after amputation as a long-term deficiency leads to spontaneous neuropathic pain that reduces quality of life of patients. To prevent neuroma formation, capping techniques are implemented as effective treatments. However, an ideal, biocompatible material covering the nerves is an unmet clinical need. In this study, biocompatible characteristics presented by the poly(D,L-lactic acid)/arginylglycylaspartic acid (RGD peptide) modification of poly{(lactic acid)-co- [(glycolic acid)-alt-(L-lysine)]} (PRGD/PDLLA) are evaluated as a nerve conduit. After being capped on the rat sciatic nerve stump in vivo, rodent behaviors and tissue structures are compared via autotomy scoring and histological analyses. The PRGD/PDLLA capped group gains lower autotomy score and improves the recovery, where inflammatory infiltrations and excessive collagen deposition are defeated. Transmission electron microscopy images of the regeneration of myelin sheath in both groups show that abnormal myelination is only present in the uncapped rats. Changes in related genes (MPZ, MBP, MAG, and Krox20) are monitored quantitative real-time polymerase chain reaction (qRT-PCR) for mechanism investigation. The PRGD/PDLLA capping conduits not only act as physical barriers to inhibit the invasion of inflammatory infiltration in the scar tissue but also provide a suitable microenvironment for promoting nerve repairing and avoiding neuroma formation during nerve recovery.
Collapse
Affiliation(s)
- Jiling Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
- School of Molecular SciencesUniversity of Western Australia35 Stirling HwyCrawleyWA6009Australia
| | - Nan Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
| | - Qiongjiao Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
| | | | - Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
- Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02115USA
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
| | - Ali K. Yetisen
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
| |
Collapse
|
17
|
Du J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration. Biomater Sci 2018; 6:1299-1311. [PMID: 29725688 PMCID: PMC5978680 DOI: 10.1039/c8bm00260f] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral nerve injury is a common disease that affects more than 20 million people in the United States alone and remains a major burden to society. The current gold standard treatment for critical-sized nerve defects is autologous nerve graft transplantation; however, this method is limited in many ways and does not always lead to satisfactory outcomes. The limitations of autografts have prompted investigations into artificial neural scaffolds as replacements, and some neural scaffold devices have progressed to widespread clinical use; scaffold technology overall has yet to be shown to be consistently on a par with or superior to autografts. Recent advances in biomimetic scaffold technologies have opened up many new and exciting opportunities, and novel improvements in material, fabrication technique, scaffold architecture, and lumen surface modifications that better reflect biological anatomy and physiology have independently been shown to benefit overall nerve regeneration. Furthermore, biomimetic features of neural scaffolds have also been shown to work synergistically with other nerve regeneration therapy strategies such as growth factor supplementation, stem cell transplantation, and cell surface glycoengineering. This review summarizes the current state of neural scaffolds, highlights major advances in biomimetic technologies, and discusses future opportunities in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Xiuli Yang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA. ; Tel: +1 410-706-5025
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Zhou C, Liu B, Huang Y, Zeng X, You H, Li J, Zhang Y. The effect of four types of artificial nerve graft structures on the repair of 10-mm rat sciatic nerve gap. J Biomed Mater Res A 2017; 105:3077-3085. [PMID: 28782192 PMCID: PMC5659138 DOI: 10.1002/jbm.a.36172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
Abstract
Investigating the effect of four types of artificial nerve graft (ANG) structures on rat sciatic nerve defect repair will aid future ANG designs. In this study, fibroin fibers and polylactic acid were used to prepare four ANGs with differing structures: nerve conduit with micron-sized pores (Conduit with pore group), nerve conduit without micron-sized pores (Conduit group), nerve scaffold comprising Conduit with pore group material plus silk fibers (Scaffold with pore group), and nerve scaffold comprising Conduit group material plus silk fibers (Scaffold group). ANGs or autologous nerves (Autologous group) were implanted into 10 mm rat sciatic nerve defects (n = 50 per group). Twenty weeks after nerve grafting, the time required to retract the surgical limb from the hot water was ranked as follows: Conduit with pore group > Scaffold with pore group > Conduit group > Scaffold group > Autologous group. The static sciatic index was ranked in descending order: Autologous group > Scaffold group > Conduit group > Scaffold with pore group > Conduit with pore group. Immunofluorescence staining identified significant differences in the distribution and number of axons, Schwann cells, and fibroblasts. These findings indicate that ANGs with micron-sized pores had a negative impact on the repair of peripheral nerve defects, while internal microchannels were beneficial. © 2017 The Authors. Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3077-3085, 2017.
Collapse
Affiliation(s)
- Chan Zhou
- Chongqing Academy of Animal Science, Chongqing, 400015, China
| | - Bin Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yong Huang
- Chongqing Academy of Animal Science, Chongqing, 400015, China
| | - Xiu Zeng
- Chongqing Academy of Animal Science, Chongqing, 400015, China
| | - Huajian You
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Chongqing academy of Chinese medicine, Chongqing, 400065, China
| | - Jin Li
- Chongqing Academy of Animal Science, Chongqing, 400015, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
19
|
Wang GW, Yang H, Wu WF, Zhang P, Wang JY. Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair. Biomaterials 2017; 131:145-159. [DOI: 10.1016/j.biomaterials.2017.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
|
20
|
The Efficacy of a Prevascularized, Retrievable Poly(D,L,-lactide-co-ε-caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets. Transplantation 2017; 101:e112-e119. [PMID: 28207637 DOI: 10.1097/tp.0000000000001663] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The liver as transplantation site for human pancreatic islets is a harsh microenvironment for islets and it lacks the ability to retrieve the graft. A retrievable, extrahepatic transplantation site that mimics the pancreatic environment is desired. Ideally, this transplantation site should be located subdermal for easy surgical-access but this never resulted in normoglycemia. Here, we describe the design and efficacy of a novel prevascularized, subcutaneously implanted, retrievable poly (D,L-lactide-co-ε-caprolactone) scaffold. METHOD Three dosages of rat islets, that is, 400, 800, and 1200, were implanted in immune compromised mice to test the efficacy (n = 5). Islet transplantation under the kidney capsule served as control (n = 5). The efficacy was determined by nonfasting blood glucose measurements and glucose tolerance tests. RESULTS Transplantation of 800 (n = 5) and 1200 islets (n = 5) into the scaffold reversed diabetes in respectively 80 and 100% of the mice within 6.8 to 18.5 days posttransplant. The marginal dose of 400 islets (n = 5) induced normoglycemia in 20%. The glucose tolerance test showed major improvement of the glucose clearance in the scaffold groups compared to diabetic controls. However, the kidney capsule was slightly more efficacious because all 800 (n = 5) and 1200 islets (n = 5) recipients and 40% of the 400 islets (n = 5) recipients became normoglycemic within 8 days. Removal of the scaffolds or kidney grafts resulted in immediate return to hyperglycemia. Normoglycemia was not achieved with 1200 islets in the unmodified skin group. CONCLUSIONS Our findings demonstrate that the prevascularized poly (D,L-lactide-co-ε-caprolactone) scaffold maintains viability and function of islets in the subcutaneous site.
Collapse
|
21
|
Bhatnagar D, Bushman JS, Murthy NS, Merolli A, Kaplan HM, Kohn J. Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:79. [PMID: 28389905 PMCID: PMC5384961 DOI: 10.1007/s10856-017-5889-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Porous conduits provide a protected pathway for nerve regeneration, while still allowing exchange of nutrients and wastes. However, pore sizes >30 µm may permit fibrous tissue infiltration into the conduit, which may impede axonal regeneration. Coating the conduit with Fibrin Glue (FG) is one option for controlling the conduit's porosity. FG is extensively used in clinical peripheral nerve repair, as a tissue sealant, filler and drug-delivery matrix. Here, we compared the performance of FG to an alternative, hyaluronic acid (HA) as a coating for porous conduits, using uncoated porous conduits and reverse autografts as control groups. The uncoated conduit walls had pores with a diameter of 60 to 70 µm that were uniformly covered by either FG or HA coatings. In vitro, FG coatings degraded twice as fast as HA coatings. In vivo studies in a 1 cm rat sciatic nerve model showed FG coating resulted in poor axonal density (993 ± 854 #/mm2), negligible fascicular area (0.03 ± 0.04 mm2), minimal percent wet muscle mass recovery (16 ± 1 in gastrocnemius and 15 ± 5 in tibialis anterior) and G-ratio (0.73 ± 0.01). Histology of FG-coated conduits showed excessive fibrous tissue infiltration inside the lumen, and fibrin capsule formation around the conduit. Although FG has been shown to promote nerve regeneration in non-porous conduits, we found that as a coating for porous conduits in vivo, FG encourages scar tissue infiltration that impedes nerve regeneration. This is a significant finding considering the widespread use of FG in peripheral nerve repair.
Collapse
Affiliation(s)
- Divya Bhatnagar
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jared S Bushman
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
- School of Pharmacy, University of Wyoming, 1000 E University Ave Dept. 3375, Laramie, WY, 82071, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Antonio Merolli
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
22
|
Wilson MT, Chuang SK, Ziccardi VB. Lingual Nerve Microsurgery Outcomes Using 2 Different Conduits: A Retrospective Cohort Study. J Oral Maxillofac Surg 2017; 75:609-615. [DOI: 10.1016/j.joms.2016.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/23/2016] [Accepted: 09/13/2016] [Indexed: 01/18/2023]
|
23
|
Santos D, Wieringa P, Moroni L, Navarro X, Valle JD. PEOT/PBT Guides Enhance Nerve Regeneration in Long Gap Defects. Adv Healthc Mater 2017; 6. [PMID: 27973708 DOI: 10.1002/adhm.201600298] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Development of new nerve guides is required for replacing autologous nerve grafts for the repair of long gap defects after nerve injury. A nerve guide comprised only of electrospun fibers able to bridge a critical (15 mm) nerve gap in a rat animal model is reported for the first time. The nerve conduits are made of poly(ethylene oxide terephthalate) and poly(butylene terephthalate) (PEOT/PBT), a biocompatible copolymer composed of alternating amorphous, hydrophilic poly(ethylene oxide terephthalate), and crystalline, hydrophobic poly(butylene terephthalate) segments. These guides show suitable mechanical properties, high porosity, and fibers aligned in the longitudinal axis of the guide. In vitro studies show that both neurites and Schwann cells exhibit growth alignment with PA fibers. In vivo studies reveal that, after rat sciatic nerve transection and repair with PEOT/PBT guides, axons grow occupying a larger area compared to silicone tubes. Moreover, after repair of limiting (10 mm) and critical (15 mm) nerve gaps, PEOT/PBT guides significantly increase the percentage of regenerated nerves, the number of regenerated myelinated axons, and improve motor, sensory, and autonomic reinnervation in both gaps. This nerve conduit design combines the properties of PEOT/PBT with electrospun structure, demonstrating that nerve regeneration through long gaps can be achieved through the design of instructive biomaterial constructs.
Collapse
Affiliation(s)
- Daniel Santos
- Institute of Neurosciences; Department of Cell Biology; Physiology and Immunology; Universitat Autònoma de Barcelona, and CIBERNED; 08193 Bellaterra Spain
| | - Paul Wieringa
- Department of Complex Tissue Regeneration; MERLN Institute; Maastricht University; 6229 ER Maastricht The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration; MERLN Institute; Maastricht University; 6229 ER Maastricht The Netherlands
| | - Xavier Navarro
- Institute of Neurosciences; Department of Cell Biology; Physiology and Immunology; Universitat Autònoma de Barcelona, and CIBERNED; 08193 Bellaterra Spain
| | - Jaume Del Valle
- Institute of Neurosciences; Department of Cell Biology; Physiology and Immunology; Universitat Autònoma de Barcelona, and CIBERNED; 08193 Bellaterra Spain
| |
Collapse
|
24
|
Pixley SK, Hopkins TM, Little KJ, Hom DB. Evaluation of peripheral nerve regeneration through biomaterial conduits via micro-CT imaging. Laryngoscope Investig Otolaryngol 2016; 1:185-190. [PMID: 28894816 PMCID: PMC5510275 DOI: 10.1002/lio2.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Hollow nerve conduits made of natural or synthetic biomaterials are used clinically to aid regeneration of peripheral nerves damaged by trauma or disease. To support healing, conduit lumen patency must be maintained until recovery occurs. New methods to study conduit structural integrity would provide an important means to optimize conduits in preclinical studies. We explored a novel combined technique to examine structural integrity of two types of nerve conduits after in vivo healing. STUDY DESIGN Micro-CT imaging with iodine contrast was combined with histological analysis to examine two different nerve conduits after in vivo nerve reconstruction in rats. MATERIALS AND METHODS Sciatic nerve gaps in adult Lewis rats were reconstructed with poly(caprolactone) (PCL, 1.6 cm gap, 14-week survival) or silicone (1 cm gap, 6-week survival) conduits (N = 12 total). Conduits with regenerating tissues were imaged by micro-CT with iodine contrast and compared to the histology (hematoxylin and eosin, immunostaining for axons) of regenerated tissues after iodine removal. RESULTS PCL nerve conduits showed extensive breakage throughout their length, but all showed successful nerve growth through the conduits. The silicone conduits remained intact, although significant constriction was uniquely detected by micro-CT, with 1 of 6 animals showing incomplete tissue regeneration. CONCLUSIONS Micro-CT with iodine contrast offers a unique and valuable means to determine 3D structural integrity of nerve conduits and nerve healing following reconstruction. Furthermore, this paper shows that even if conduit compression and degradation occur, nerve regeneration can still take place.
Collapse
Affiliation(s)
- Sarah K Pixley
- Department of Molecular and Cellular Physiology (S.K.P., T.M.H.) Cincinnati Children's Hospital Medical Center Cincinnati Ohio U.S.A
| | - Tracy M Hopkins
- Department of Molecular and Cellular Physiology (S.K.P., T.M.H.) Cincinnati Children's Hospital Medical Center Cincinnati Ohio U.S.A
| | - Kevin J Little
- Pediatric Hand and Upper Extremity Center (K.J.L.), Cincinnati Children's Hospital Medical Center Cincinnati Ohio U.S.A
| | - David B Hom
- Department of Otolaryngology-Head and Neck Surgery (D.B.H.) University of Cincinnati School of Medicine Cincinnati Ohio U.S.A
| |
Collapse
|
25
|
Advances and Future Applications of Augmented Peripheral Nerve Regeneration. Int J Mol Sci 2016; 17:ijms17091494. [PMID: 27618010 PMCID: PMC5037771 DOI: 10.3390/ijms17091494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and economic costs. Much research continues to be performed in areas related to improving the surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic factors are highlighted. Selected pre-clinical and available clinical data using cell based methods such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for translation into the clinical arena are suggested.
Collapse
|
26
|
Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:425-32. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
27
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
28
|
Smink AM, de Haan BJ, Paredes-Juarez GA, Wolters AHG, Kuipers J, Giepmans BNG, Schwab L, Engelse MA, van Apeldoorn AA, de Koning E, Faas MM, de Vos P. Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation. ACTA ACUST UNITED AC 2016; 11:035006. [PMID: 27173149 DOI: 10.1088/1748-6041/11/3/035006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The liver is currently the site for transplantation of islets in humans. This is not optimal for islets, but alternative sites in humans are not available. Polymeric scaffolds in surgically accessible areas are a solution. As human donors are rare, the polymers should not interfere with functional survival of human-islets. We applied a novel platform to test the adequacy of polymers for application in scaffolds for human-islet transplantation. Viability, functionality, and immune parameters were included to test poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. The type of polymer influenced the functional survival of human islets. In islets cultured on PDLLCL the glucagon-producing α-cells and insulin-producing β-cells contained more hormone granules than in islets in contact with PEOT/PBT or polysulfone. This was studied with ultrastructural analysis by electron microscopy (nanotomy) during 7 d of culture. PDLLCL was also associated with statistically significant lower release of double-stranded DNA (dsDNA, a so called danger-associate molecular pattern (DAMP)) from islets on PDLLCL when compared to the other polymers. DAMPs support undesired immune responses. Hydrophilicity of the polymers did not influence dsDNA release. Islets on PDLLCL also showed less cellular outgrowth. These outgrowing cells were mainly fibroblast and some β-cells undergoing epithelial to mesenchymal cell transition. None of the polymers influenced the glucose-stimulated insulin secretion. As PDLLCL was associated with less release of DAMPs, it is a promising candidate for creating a scaffold for human islets. Our study demonstrates that for sensitive, rare cadaveric donor tissue such as pancreatic islets it might be necessary to first select materials that do not influence functionality before proposing the biomaterial for in vivo application. Our presented platform may facilitate this selection of biomaterials.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, EA11, 9700 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ezra M, Bushman J, Shreiber D, Schachner M, Kohn J. Porous and Nonporous Nerve Conduits: The Effects of a Hydrogel Luminal Filler With and Without a Neurite-Promoting Moiety. Tissue Eng Part A 2016; 22:818-26. [PMID: 27102571 PMCID: PMC4876540 DOI: 10.1089/ten.tea.2015.0354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 04/21/2016] [Indexed: 02/05/2023] Open
Abstract
Nerve conduits prefilled with hydrogels are frequently explored in an attempt to promote nerve regeneration. This study examines the interplay in vivo between the porosity of the conduit wall and the level of bioactivity of the hydrogel used to fill the conduit. Nerve regeneration in porous (P) or nonporous (NP) conduits that were filled with either collagen only or collagen enhanced with a covalently attached neurite-promoting peptide mimic of the glycan human natural killer cell antigen-1 (m-HNK) were compared in a 5 mm critical size defect in the mouse femoral nerve repair model. Although collagen is a cell-friendly matrix that does not differentiate between neural and nonneural cells, the m-HNK-enhanced collagen specifically promotes axon growth and appropriate motor neuron targeting. In this study, animals treated with NP conduits filled with collagen grafted with m-HNK (CollagenHNK) had the best overall functional recovery, based on a range of histomorphometric observations and parameters of functional recovery. Our data indicate that under some conditions, the use of generally cell friendly fillers such as collagen may limit nerve regeneration. This finding is significant, considering the frequent use of collagen-based hydrogels as fillers of nerve conduits.
Collapse
Affiliation(s)
- Mindy Ezra
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jared Bushman
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - David Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Melitta Schachner
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
30
|
C3 toxin and poly-DL-lactide-ε-caprolactone conduits in the critically damaged peripheral nervous system: a combined therapeutic approach. Ann Plast Surg 2015; 74:350-3. [PMID: 25643184 DOI: 10.1097/sap.0000000000000415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Peripheral nerve regeneration over longer distances through conduits is limited. In the presented study, critical size nerve gap bridging with a poly-DL-lactide-ε-caprolactone (PLC) conduit was combined with application of C3 toxin to facilitate axonal sprouting. MATERIALS AND METHODS The PLC filled with fibrin (n = 10) and fibrin gel loaded with 1-μg C3-C2I and 2-μg C2II (n = 10) were compared to autologous nerve grafts (n = 10) in a 15-mm sciatic nerve gap lesion model of the rat. Functional and electrophysiological analyses were performed before histological evaluation. RESULTS Evaluation of motor function and nerve conduction velocity at 16 weeks revealed no differences between the groups. All histological parameters and muscle weight were significantly elevated in nerve graft group. No differences were observed in both PLC groups. CONCLUSIONS The PLCs are permissive for nerve regeneration over a 15-mm defect in rats. Intraluminal application of C3 toxin did not lead to significant enhancement of nerve sprouting.
Collapse
|
31
|
Thomas AM, Shea LD. Cryotemplation for the Rapid Fabrication of Porous, Patternable Photopolymerized Hydrogels. J Mater Chem B 2014; 2:4521-4530. [PMID: 25083293 PMCID: PMC4112475 DOI: 10.1039/c4tb00585f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA ; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA ; Center for Reproductive Science (CRS), Northwestern University, Evanston, IL, USA ; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA ; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA
| |
Collapse
|
32
|
Zeng W, Rong M, Hu X, Xiao W, Qi F, Huang J, Luo Z. Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor. PLoS One 2014; 9:e101300. [PMID: 24983464 PMCID: PMC4077743 DOI: 10.1371/journal.pone.0101300] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support. Methods Microsphere–Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF–CMSs) into collagen-chitosan scaffolds (CCH) with longitudinally oriented microchannels (NGF–CMSs/CCH). The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF–CMSs/CCH, CCH physically absorbed NGF (NGF/CCH), CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed. Results The NGF–CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF–CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF–CMSs/CCH were better than those of NGF/CCH or CCH. Conclusion Our findings suggest that incorporation of NGF–CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Mengyao Rong
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xueyu Hu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wei Xiao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Fengyu Qi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (JHH); (ZJL)
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (JHH); (ZJL)
| |
Collapse
|
33
|
Challenges for nerve repair using chitosan-siloxane hybrid porous scaffolds. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153808. [PMID: 25054129 PMCID: PMC4087280 DOI: 10.1155/2014/153808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/02/2023]
Abstract
The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.
Collapse
|
34
|
Hinüber C, Chwalek K, Pan-Montojo FJ, Nitschke M, Vogel R, Brünig H, Heinrich G, Werner C. Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth. Acta Biomater 2014; 10:2086-95. [PMID: 24406197 DOI: 10.1016/j.actbio.2013.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 01/19/2023]
Abstract
Traumatic peripheral nerve lesions can cause local anesthesia, paralysis and loss of autonomic control. Reconstruction using engineered nerve guidance conduits (NGCs) is rarely successful due to the sub-optimal characteristics of the conduits. To address the demands of clinical practice, we developed a hierarchically structured NGC from slowly resorbing poly(3-hydroxybutyric acid) (P3HB). The NGC consists of a permeable single-lumen tube and melt-spun fibrillar lumen fillers. Permeable tubes were constructed from P3HB/poly(ɛ-caprolactone) (PCL) blends or poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) (P(3HB-co-4HB)). Polyvinylpyrrolidone was used as a porogen in solvent-free thermoplastic processing, followed by selective polymer leaching. All tested material compositions showed hydrolytic degradation after 16weeks in phosphate buffered saline, whereas P3HB/PCL tubes maintained mechanical strength compared to (P(3HB-co-4HB)). The porous scaffolds allowed diffusion of large molecules (∼70kDa). In vitro studies demonstrated that mouse fibroblasts survived and proliferated inside closed porous tubes. An in vitro model of axonal regeneration using dorsal root ganglia and sympathetic cervical ganglia demonstrated that the NGCs successfully supported neuron survival and neurite outgrowth. The introduction of fibrillar lumen fillers promoted oriented neurite growth and coating with extracellular matrix proteins further increased ganglia attachment and cell migration. In this study we show that P3HB-based NGCs scaffolds have potential in long gap peripheral nerve repair strategies.
Collapse
Affiliation(s)
- C Hinüber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Institute of Material Science, Helmholtzstrasse 7, 01069 Dresden, Germany.
| | - K Chwalek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - F J Pan-Montojo
- Technische Universität Dresden, Institute of Anatomy/University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - M Nitschke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - R Vogel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - H Brünig
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - G Heinrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Institute of Material Science, Helmholtzstrasse 7, 01069 Dresden, Germany
| | - C Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Tatzberg 47, 01187 Dresden, Germany
| |
Collapse
|
35
|
Abstract
Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.
Collapse
|
36
|
Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides. BIOMED RESEARCH INTERNATIONAL 2014; 2014:835269. [PMID: 24818158 PMCID: PMC4000981 DOI: 10.1155/2014/835269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/22/2014] [Accepted: 02/10/2014] [Indexed: 11/25/2022]
Abstract
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.
Collapse
|
37
|
Salvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res A 2014; 102:4406-14. [PMID: 24532089 DOI: 10.1002/jbm.a.35124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 11/12/2022]
Abstract
The microstructural, mechanical, compositional, and degradative properties of a nerve conduit are known to strongly affect the regenerative process of the injured peripheral nerve. Starting from the fabrication of micropatterned collagen-based nerve guides, according to a spin-casting process reported in the literature, this study further investigates the possibility to modulate the degradation rate of the scaffolds over a wide time frame, in an attempt to match different rates of nerve regeneration that might be encountered in vivo. To this aim, three different crosslinking methods, that is, dehydrothermal (DHT), carbodiimide-based (EDAC), and glutaraldehyde-based (GTA) crosslinking, were selected. The elastically effective degree of crosslinking, attained by each method and evaluated according to the classical rubber elasticity theory, was found to significantly tune the in vitro half-life (t1/2 ) of the matrices, with an exponential dependence of the latter on the crosslink density. The high crosslinking efficacy of EDAC and GTA treatments, respectively threefold and fourfold when compared to the one attained by DHT, led to a sharp increase of the corresponding in vitro half-lives (ca., 10, 172, and 690 h, for DHT, EDAC, and GTA treated matrices, respectively). As shown by cell viability assays, the cytocompatibility of both DHT and EDAC treatments, as opposed to the toxicity of GTA, suggests that such methods are suitable to crosslink collagen-based scaffolds conceived for clinical use. In particular, nerve guides with expected high residence times in vivo might be produced by finely controlling the biocompatible reaction(s) adopted for crosslinking.
Collapse
Affiliation(s)
- L Salvatore
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100, Lecce, Italy; TypeOne Ltd., Via per Monteroni, 73100, Lecce, Italy
| | | | | | | | | |
Collapse
|
38
|
Cerri F, Salvatore L, Memon D, Boneschi FM, Madaghiele M, Brambilla P, Del Carro U, Taveggia C, Riva N, Trimarco A, Lopez ID, Comi G, Pluchino S, Martino G, Sannino A, Quattrini A. Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials 2014; 35:4035-4045. [PMID: 24559639 DOI: 10.1016/j.biomaterials.2014.01.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Several bioengineering approaches have been proposed for peripheral nervous system repair, with limited results and still open questions about the underlying molecular mechanisms. We assessed the biological processes that occur after the implantation of collagen scaffold with a peculiar porous micro-structure of the wall in a rat sciatic nerve transection model compared to commercial collagen conduits and nerve crush injury using functional, histological and genome wide analyses. We demonstrated that within 60 days, our conduit had been completely substituted by a normal nerve. Gene expression analysis documented a precise sequential regulation of known genes involved in angiogenesis, Schwann cells/axons interactions and myelination, together with a selective modulation of key biological pathways for nerve morphogenesis induced by porous matrices. These data suggest that the scaffold's micro-structure profoundly influences cell behaviors and creates an instructive micro-environment to enhance nerve morphogenesis that can be exploited to improve recovery and understand the molecular differences between repair and regeneration.
Collapse
Affiliation(s)
- Federica Cerri
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Luca Salvatore
- Department of Innovation Engineering, University of Lecce, Via per Monteroni, 73100 Lecce, Italy
| | - Danish Memon
- Department of Clinical Neurosciences, Centre for Brain Repair, University of Cambridge, Robinson Way CB2 0PY, UK
| | | | - Marta Madaghiele
- Department of Innovation Engineering, University of Lecce, Via per Monteroni, 73100 Lecce, Italy
| | - Paola Brambilla
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Nilo Riva
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Amelia Trimarco
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Ignazio D Lopez
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Centre for Brain Repair, University of Cambridge, Robinson Way CB2 0PY, UK
| | - Gianvito Martino
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Sannino
- Department of Innovation Engineering, University of Lecce, Via per Monteroni, 73100 Lecce, Italy
| | - Angelo Quattrini
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
39
|
Ezra M, Bushman J, Shreiber D, Schachner M, Kohn J. Enhanced femoral nerve regeneration after tubulization with a tyrosine-derived polycarbonate terpolymer: effects of protein adsorption and independence of conduit porosity. Tissue Eng Part A 2013; 20:518-28. [PMID: 24011026 DOI: 10.1089/ten.tea.2013.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Following complete nerve transection, entubulation of the nerve stumps helps guide axons to reconnect distally. In this study, a biodegradable and noncytotoxic tyrosine-derived polycarbonate terpolymer composed of 89.5 mol% desaminotyrosyl tyrosine ethyl ester (DTE), 10 mol% desaminotyrosyl tyrosine (DT), and 0.5 mol% poly(ethylene glycol) (PEG, molecular weight [Mw]=1 kDa) [designated as E10-0.5(1K)] was used to fabricate conduits for peripheral nerve regeneration. These conduits were evaluated against commercially available nonporous polyethylene (PE) tubes. The two materials are characterized in vitro for differences in surface properties, and the conduits are then evaluated in vivo in a critical-sized nerve defect in the mouse femoral nerve model. Conduits were fabricated from E10-0.5(1K) in both porous [P-E10-0.5(1K)] and nonporous [NP-E10-0.5(1K)] configurations. The results illustrate that adsorption of laminin, fibronectin, and collagen type I was enhanced on E10-0.5(1K) compared to PE. In addition, in vivo the E10-0.5(1K) conduits improved functional recovery over PE conduits, producing regenerated nerves with a fivefold increase in the number of axons, and an eightfold increase in the percentage of myelinated axons. These increases were observed for both P-E10-0.5(1K) and NP-E10-0.5(1K) after 15 weeks. When conduits were removed at 7 or 14 days following implantation, an increase in Schwann cell proteins and fibrin matrix formation was observed in E10-0.5(1K) conduits over PE conduits. These results indicate that E10-0.5(1K) is a pro-regenerative material for peripheral nerves and that the porosity of P-E10-0.5(1K) conduits was inconsequential in this model of nerve injury.
Collapse
Affiliation(s)
- Mindy Ezra
- 1 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
40
|
Szarek D, Marycz K, Laska J, Bednarz P, Jarmundowicz W. Assessment of in vivo behavior of polymer tube nerve grafts simultaneously with the peripheral nerve regeneration process using scanning electron microscopy technique. SCANNING 2013; 35:232-245. [PMID: 23037803 DOI: 10.1002/sca.21056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/01/2012] [Indexed: 06/01/2023]
Abstract
In this study, scanning electron microscopy (SEM) has been applied for instantaneous assessment of processes occurring at the site of regenerating nerve. The technique proved to be especially useful when an artificial implant should have been observed but have not yet been extensively investigated before for assessment of nerve tissue. For in vivo studies, evaluation of implant's morphology and its neuroregenerative properties is of great importance when new prototype is developed. However, the usually applied histological techniques require separate and differently prepared samples, and therefore, the results are never a 100% comparable. In our research, we found SEM as a technique providing detailed data both on an implant behavior and the nerve regeneration process inside the implant. Observations were carried out during 12-week period on rat sciatic nerve injury model reconstructed with nerve autografts and different tube nerve grafts. Samples were analyzed with haematoxylin-eosin (HE), immunocytochemical staining for neurofillament and S-100 protein, SEM, TEM, and the results were compared. SEM studies enabled to obtain characteristic pictures of the regeneration process similarly to TEM and histological studies. Schwann cell transformation and communication as well as axonal outgrowth were identified, newly created and matured axons could be recognized. Concurrent analysis of biomaterial changes in the implant (degradation, collapsing of the tube wall, migration of alginate gel) was possible. This study provides the groundwork for further use of the described technique in the nerve regeneration studies.
Collapse
Affiliation(s)
- Dariusz Szarek
- Department of Neurosurgery, Wroclaw University Hospital, Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
41
|
Strauch RJ, Strauch B. Nerve conduits: an update on tubular nerve repair and reconstruction. J Hand Surg Am 2013; 38:1252-5; quiz 1255. [PMID: 23602436 DOI: 10.1016/j.jhsa.2013.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Robert J Strauch
- Department of Orthopaedic Surgery, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
42
|
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | |
Collapse
|
43
|
Liao IC, Wan H, Qi S, Cui C, Patel P, Sun W, Xu H. Preclinical evaluations of acellular biological conduits for peripheral nerve regeneration. J Tissue Eng 2013; 4:2041731413481036. [PMID: 23532671 PMCID: PMC3604911 DOI: 10.1177/2041731413481036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Various types of natural biological conduits have been investigated as alternatives to the current surgical standard approach for peripheral nerve injuries. Autologous nerve graft, the current gold standard for peripheral nerve damage, is limited by clinical challenges such as donor-site morbidity and limited availability. The purpose of this study was to evaluate the efficacy of using acellular xenographic conduits (nerve, artery, and dermis) for the repair of a 1.2 cm critical size defect of peripheral nerve in a rodent model. Four months post surgery, the animal group receiving acellular artery as a nerve conduit showed excellent physiological outcome in terms of the prevention of muscle atrophy and foot ulcer. Histological assessment of the bridged site revealed excellent axon regeneration, as opposed to the nonrepaired control group or the group receiving dermal conduit. Finally, the study evaluated the potential improvement via the addition of undifferentiated mesenchymal stem cells into the artery conduit during the bridging procedure. The mesenchymal stem cell–dosed artery conduit group resulted in significantly higher concentration of regenerated axons over artery conduit alone, and exhibited accelerated muscle atrophy rescue. Our results demonstrated that xenographic artery conduits promoted excellent axonal regeneration with highly promising clinical relevance.
Collapse
Affiliation(s)
- I-Chien Liao
- Department of Research & Development, LifeCell Corporation, Bridgewater, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Meek MF, Coert JH. Re: Chiriac et al. Experience of using the bioresorbable copolyester poly(DL-lactide-ε-caprolactone) nerve conduit guide Neurolac™ for nerve repair in peripheral nerve defects: report on a series of 28 lesions. J Hand Surg Eur. 2011, 37: 342-9. J Hand Surg Eur Vol 2012; 37:702-4; author reply 704-5. [PMID: 22879646 DOI: 10.1177/1753193412453804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M. F. Meek
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Experimental composite guidance conduits for peripheral nerve repair: An evaluation of ion release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1654-63. [DOI: 10.1016/j.msec.2012.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 02/10/2012] [Accepted: 04/22/2012] [Indexed: 11/22/2022]
|
46
|
FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 2012; 43:553-72. [PMID: 21269624 DOI: 10.1016/j.injury.2010.12.030] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/27/2010] [Indexed: 02/02/2023]
Abstract
Several nerve guidance conduits (NGCs) and nerve protectant wraps are approved by the US Food and Drug Administration (FDA) for clinical use in peripheral nerve repair. These devices cover a wide range of natural and synthetic materials, which may or may not be resorbable. This review consolidates the data pertaining to all FDA approved materials into a single reference, which emphasizes material composition alongside pre-clinical and clinical safety and efficacy (where possible). This article also summarizes the key advantages and limitations for each material as noted in the literature (with respect to the indication considered). In this context, this review provides a comprehensive reference for clinicians which may facilitate optimal material/device selection for peripheral nerve repair. For materials scientists, this review highlights predicate devices and evaluation methodologies, offering an insight into current deficiencies associated with state-of-the-art materials and may help direct new technology developments and evaluation methodologies thereof.
Collapse
|
47
|
Chiriac S, Facca S, Diaconu M, Gouzou S, Liverneaux P. Experience of using the bioresorbable copolyester poly(DL-lactide-ε-caprolactone) nerve conduit guide Neurolac™ for nerve repair in peripheral nerve defects: report on a series of 28 lesions. J Hand Surg Eur Vol 2012; 37:342-9. [PMID: 21987277 DOI: 10.1177/1753193411422685] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synthetic nerve guides are occasionally used to repair nerve defects. The aim of the present work was to analyse the results of Neurolac™ use in a series of 23 patients. We operated on 28 nerve lesions located on various sites: arm (n = 1), elbow (n = 5), forearm (n = 4), wrist (n = 2), palm (n = 5), fingers (n = 11). Defects averaged 11.03 mm and were repaired using Neurolac™. After an average of 21.9 months' follow up (3-45 months), subjective criteria (pain, cold intolerance, Quick DASH) and objective criteria (strength, Weber and Semmes-Weinstein sensitivity tests) were compared with the contralateral side. Average pain score was 2.17/10. Cold intolerance was reported in fifteen cases. Quick DASH averaged 35.37/100. Grip strength averaged 64.62% of the contralateral side. As regards sensitivity, the difference between the two sides was 18.89 on Weber's test, and 46.92 on Semmes-Weinstein. Defect size did not affect the outcomes. We observed eight complications the most serious being two fistulizations of the Neurolac™ device close to a joint and one neuroma. Neurolac™ presents some advantages (resorption, semi-permeability, emergency use, tenseless repair) like other synthetic guides used for nerve regeneration and its transparency constitutes an added benefit. However, some difficulty in its handling and its expensiveness represent real disadvantages. Our results are not in favour of its use in repairing hand nerve defects.
Collapse
Affiliation(s)
- S Chiriac
- Department of Hand Surgery, University Hospital of Strasbourg, 10 avenue Baumann, Illkirch cedex, France
| | | | | | | | | |
Collapse
|
48
|
Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:40-50. [PMID: 21812591 DOI: 10.1089/ten.teb.2011.0240] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Currently, surgical treatments for peripheral nerve injury are less than satisfactory. The gold standard of treatment for peripheral nerve gaps >5 mm is the autologous nerve graft; however, this treatment is associated with a variety of clinical complications, such as donor site morbidity, limited availability, nerve site mismatch, and the formation of neuromas. Despite many recent advances in the field, clinical studies implementing the use of artificial nerve guides have yielded results that are yet to surpass those of autografts. Thus, the development of a nerve guidance conduit, which could match the effectiveness of the autologous nerve graft, would be beneficial to the field of peripheral nerve surgery. Design strategies to improve surgical outcomes have included the development of biopolymers and synthetic polymers as primary scaffolds with tailored mechanical and physical properties, luminal "fillers" such as laminin and fibronectin as secondary internal scaffolds, surface micropatterning, stem cell inclusion, and controlled release of neurotrophic factors. The current article highlights approaches to peripheral nerve repair through a channel or conduit, implementing chemical and physical growth and guidance cues to direct that repair process.
Collapse
Affiliation(s)
- Alexander R Nectow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
49
|
Korte N, Schenk HC, Grothe C, Tipold A, Haastert-Talini K. Evaluation of periodic electrodiagnostic measurements to monitor motor recovery after different peripheral nerve lesions in the rat. Muscle Nerve 2011; 44:63-73. [DOI: 10.1002/mus.22023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Penna V, Munder B, Stark GB, Lang EM. An in vivo engineered nerve conduit-fabrication and experimental study in rats. Microsurgery 2011; 31:395-400. [DOI: 10.1002/micr.20894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 02/01/2011] [Indexed: 11/10/2022]
|