1
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025:10.1038/s41569-024-01110-1. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Patt M, Karkossa I, Krieg L, Massier L, Makki K, Tabei S, Karlas T, Dietrich A, Gericke M, Stumvoll M, Blüher M, von Bergen M, Schubert K, Kovacs P, Chakaroun RM. FGF21 and its underlying adipose tissue-liver axis inform cardiometabolic burden and improvement in obesity after metabolic surgery. EBioMedicine 2024; 110:105458. [PMID: 39608059 PMCID: PMC11638646 DOI: 10.1016/j.ebiom.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND This research investigates the determinants of circulating FGF21 levels in a cohort reflecting metabolic disease progression, examining the associations of circulating FGF21 with morphology and function of adipose tissue (AT), and with metabolic adjustments following metabolic surgery. METHODS We measured serum FGF21 in 678 individuals cross-sectionally and in 189 undergoing metabolic surgery longitudinally. Relationships between FGF21 levels, AT histology, transcriptomes and proteomes, cardiometabolic risk factors, and post-surgery metabolic adjustments were assessed using univariate and multivariate analyses, causal mediation analysis, and network integration of AT transcriptomes and proteomes. FINDINGS FGF21 levels were linked to central adiposity, subclinical inflammation, insulin resistance, and cardiometabolic risk, and were driven by circulating leptin and liver enzymes. Higher FGF21 were linked with AT dysfunction reflected in fibro-inflammatory and lipid dysmetabolism pathways. Specifically, visceral AT inflammation was tied to both FGF21 elevation and liver dysfunction. Post-surgery, FGF21 peaked transitorily at three months. Mediation analysis highlighted an underlying increased AT catabolic state with elevated free fatty acids (FFA), contributing to higher liver stress and FGF21 levels (total effect of free fatty acids on FGF21 levels: 0.38, p < 0.01; proportion mediation via liver 32%, p < 0.01). In line with this, histological AT fibrosis linked with less pronounced FGF21 responses and reduced fat loss post-surgery (FFA and visceral AT fibrosis: rho = -0.31, p = 0.030; FFA and fat-mass loss: rho = 0.17, p = 0.020). INTERPRETATION FGF21 reflects the liver's disproportionate metabolic stress response in both central adiposity and after metabolic surgery, with its dynamics reflecting an AT-liver crosstalk. FUNDING This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, CRC1382 and a Walther-Benjamin Fellowship and by a junior research grant by the Medical Faculty, University of Leipzig, and by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1501. Part of this work was supported by the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement HEALTH-F4-2012-305312 and by the CRC1382 and the Novo Nordisk Foundation and by the Deutsche Forschungsgemeinschaft (DFG, German Research foundation) project number 530364326.
Collapse
Affiliation(s)
- Marie Patt
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lucas Massier
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kassem Makki
- INSERM U1060, INRAE UMR1397, Université de Lyon, France
| | - Shirin Tabei
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany; Centre of Brain, Behaviour, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Medical Department II, University of Leipzig Medical Centre, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Centre, Leipzig, Germany
| | - Martin Gericke
- Leipzig University, Institute of Anatomy, Leipzig, Germany
| | - Michael Stumvoll
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima M Chakaroun
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Centre for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
4
|
Cicatiello AG, Nappi A, Franchini F, Nettore IC, Raia M, Rocca C, Angelone T, Dentice M, Ungaro P, Macchia PE. The histone methyltransferase SMYD1 is induced by thermogenic stimuli in adipose tissue. Epigenomics 2024; 16:359-374. [PMID: 38440863 DOI: 10.2217/epi-2023-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.
Collapse
Affiliation(s)
- Annunziata G Cicatiello
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Annarita Nappi
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Fabiana Franchini
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Immacolata C Nettore
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| | - Maddalena Raia
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Carmine Rocca
- Laboratory of Cellular & Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology & Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Tommaso Angelone
- Laboratory of Cellular & Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology & Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy
| | - Monica Dentice
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Paola Ungaro
- National Research Council - Institute for Experimental Endocrinology & Oncology 'Gaetano Salvatore', 80131, Naples, Italy
| | - Paolo E Macchia
- Department of Clinical Medicine & Surgery, University of Naples 'Federico II', 80131, Naples, Italy
| |
Collapse
|
5
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
6
|
Weber SL, Hustedt K, Schnepel N, Visscher C, Muscher-Banse AS. Modulation of GCN2/eIF2α/ATF4 Pathway in the Liver and Induction of FGF21 in Young Goats Fed a Protein- and/or Phosphorus-Reduced Diet. Int J Mol Sci 2023; 24:ijms24087153. [PMID: 37108315 PMCID: PMC10138370 DOI: 10.3390/ijms24087153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mammals respond to amino acid (AA) deficiency by initiating an AA response pathway (AAR) that involves the activation of general control nonderepressible 2 (GCN2), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and activation of transcription factor 4 (ATF4). In this study, the effects of protein (N) and/or phosphorus (P) restriction on the GCN2/eIF2α/ATF4 pathway in the liver and the induction of fibroblast growth factor 21 (FGF21) in young goats were investigated. An N-reduced diet resulted in a decrease in circulating essential AA (EAA) and an increase in non-essential AA (NEAA), as well as an increase in hepatic mRNA expression of GCN2 and ATF4 and protein expression of GCN2. Dietary N restriction robustly increased both hepatic FGF21 mRNA expression and circulating FGF21 levels. Accordingly, numerous significant correlations demonstrated the effects of the AA profile on the AAR pathway and confirmed an association. Furthermore, activation of the AAR pathway depended on the sufficient availability of P. When dietary P was restricted, the GCN2/eIF2α/ATF4 pathway was not initiated, and no increase in FGF21 was observed. These results illustrate how the AAR pathway responds to N- and/or P-reduced diets in ruminants, thus demonstrating the complexity of dietary component changes.
Collapse
Affiliation(s)
- Sarah L Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Karin Hustedt
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Nadine Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Alexandra S Muscher-Banse
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| |
Collapse
|
7
|
Obadimu AA, Adebayo OL, Fagbohunka BS, Adenuga GA. Fish oil supplementation protects against protein undernutrition-induced testicular and ovarian biochemical alterations in rats. Reprod Toxicol 2023; 118:108367. [PMID: 36963525 DOI: 10.1016/j.reprotox.2023.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Proteins are required for biological functions and their inadequacy might impair the growth and development of the reproductive system. The study investigated the effects of fish oil (FO) supplementation on low-protein diet-induced alterations in male and female reproductive organs. Male and female rats were assigned randomly to four groups respectively. The NPD rats had five rats per group and were given 16% casein diet while the LPD rats had eight rats per group and received 5% casein diet. After the 8th week, FO was administered for 3 weeks via oral gavage at a concentration of 400mg Kg-1 after which the rats were sacrificed and testes and ovaries were excised. LPD-fed rats showed lower body weights for both genders. In LPD-fed rats, NO was significantly increased while GSH, vitamins C and E levels, the activities of CAT (except in ovaries), and GST were significantly reduced in both tissues. The activities of SOD and GPx were only reduced in the testes including sperm count, motility, and increase deformed sperm cells. Testosterone and progesterone levels were also reduced and lipid homeostasis was disrupted in the plasma of LPD-fed rats. FO supplementation reduces the NO, CHOL, TG, LDL (in females), and VLDL but significantly improves HDL (in females), testosterone, and progesterone levels, sperm count, motility, and morphology. The antioxidant status of both tissues also increased significantly in LPD-fed rats. Conclusively, FO might be effective in improving testicular and ovarian functions and for the maintenance of plasma lipid homeostasis in LPD-fed rats.
Collapse
Affiliation(s)
- Adedayo Adedeji Obadimu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Olusegun Lateef Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, P.M.B. 230 Ede, Osun State, Nigeria.
| | - Bamidele Sanya Fagbohunka
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Gbenga Adebola Adenuga
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| |
Collapse
|
8
|
Corbee RJ, van Everdingen DL, Kooistra HS, Penning LC. Fibroblast growth factor-21 (FGF21) analogs as possible treatment options for diabetes mellitus in veterinary patients. Front Vet Sci 2023; 9:1086987. [PMID: 36699319 PMCID: PMC9868460 DOI: 10.3389/fvets.2022.1086987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) are involved in numerous metabolic processes. The endocrine subfamily of FGFs, consisting of FGF19, FGF21, and FGF23, might have beneficial effects in the treatment of diabetes mellitus (DM) and/or obesity. The analog with the greatest potential, FGF21, lowers blood glucose levels, improves insulin sensitivity, and induces weight loss in several animal models. In this review we summarize recent (pre)clinical findings with FGF21 analogs in animal models and men. Furthermore, possible applications of FGF21 analogs for pets with DM will be discussed. As currently, information about the use of FGF21 analogs in pet animals is scarce.
Collapse
|
9
|
Richie JP, Sinha R, Dong Z, Nichenametla SN, Ables GP, Ciccarella A, Sinha I, Calcagnotto AM, Chinchilli VM, Reinhart L, Orentreich D. Dietary Methionine and Total Sulfur Amino Acid Restriction in Healthy Adults. J Nutr Health Aging 2023; 27:111-123. [PMID: 36806866 PMCID: PMC10782544 DOI: 10.1007/s12603-023-1883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Dietary restriction of methionine (Met) and cysteine (Cys) delays the aging process and aging-related diseases, improves glucose and fat metabolism and reduces oxidative stress in numerous laboratory animal models. Little is known regarding the effects of sulfur amino acid restriction in humans. Thus, our objectives were to determine the impact of feeding diets restricted in Met alone (MetR) or in both Met and Cys (total sulfur amino acids, SAAR) to healthy adults on relevant biomarkers of cardiometabolic disease risk. DESIGN A controlled feeding study. SETTING AND PARTICIPANTS We included 20 healthy adults (11 females/9 males) assigned to MetR or SAAR diet groups consisting of three 4-wk feeding periods: Control period; low level restriction period (70% MetR or 50% SAAR); and high level restriction period (90% MetR or 65% SAAR) separated by 3-4-wk washout periods. RESULTS No adverse effects were associated with either diet and level of restriction and compliance was high in all subjects. SAAR was associated with significant reductions in body weight and plasma levels of total cholesterol, LDL, uric acid, leptin, and insulin, BUN, and IGF-1, and increases in body temperature and plasma FGF-21 after 4 weeks (P<0.05). Fewer changes occurred with MetR including significant reductions in BUN, uric acid and 8-isoprostane and an increase in FGF-21 after 4 weeks (P<0.05). In the 65% SAAR group, plasma Met and Cys levels were significantly reduced by 15% and 13% respectively (P<0.05). CONCLUSION These results suggest that many of the short-term beneficial effects of SAAR observed in animal models are translatable to humans and support further clinical development of this intervention.
Collapse
Affiliation(s)
- John P. Richie
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey PA
| | - Zhen Dong
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Sailendra N. Nichenametla
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Gene P. Ables
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Amy Ciccarella
- Center for Clinical Research, Pennsylvania State University, State College, PA
| | - Indu Sinha
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey PA
| | - Ana M. Calcagnotto
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Lisa Reinhart
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - David Orentreich
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| |
Collapse
|
10
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
11
|
Gebeyew K, Yang C, Mi H, Cheng Y, Zhang T, Hu F, Yan Q, He Z, Tang S, Tan Z. Lipid metabolism and m 6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet. J Anim Sci Biotechnol 2022; 13:85. [PMID: 35821163 PMCID: PMC9277831 DOI: 10.1186/s40104-022-00733-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Methionine or lysine has been reported to influence DNA methylation and fat metabolism, but their combined effects in N6-methyl-adenosine (m6A) RNA methylation remain unclarified. The combined effects of rumen-protected methionine and lysine (RML) in a low-protein (LP) diet on lipid metabolism, m6A RNA methylation, and fatty acid (FA) profiles in the liver and muscle of lambs were investigated. Sixty-three male lambs were divided into three treatment groups, three pens per group and seven lambs per pen. The lambs were fed a 14.5% crude protein (CP) diet (adequate protein [NP]), 12.5% CP diet (LP), and a LP diet plus RML (LP + RML) for 60 d. Results The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin (P = 0.07), triglyceride (P = 0.05), and non-esterified FA (P = 0.08). Feeding a LP diet increased the enzyme activity or mRNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet. This effect was reversed by supplementation of RML with a LP diet. The inclusion of RML in a LP diet affected the polyunsaturated fatty acids (PUFA), n-3 PUFA, and n-6 PUFA in the liver but not in the muscle, which might be linked with altered expression of FA desaturase-1 (FADS1) and acetyl-CoA carboxylase (ACC). A LP diet supplemented with RML increased (P < 0.05) total m6A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein (FTO) and alkB homologue 5 (ALKBH5). The mRNA expressions of methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) in the LP + RML diet group were lower than those in the other two groups. Supplementation of RML with a LP diet affected only liver YTH domain family (YTHDF2) proteins (P < 0.05) and muscle YTHDF3 (P = 0.09), which can be explained by limited m6A-binding proteins that were mediated in mRNA fate. Conclusions Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle. These changes in fat metabolism may be associated with the modification of m6A RNA methylation. Graphical abstract A systematic graph illustrates the mechanism of dietary methionine and lysine influence on lipid metabolism and M6A. The green arrow with triangular heads indicates as activation and brown-wine arrows with flat heads indicates as suppression.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00733-z.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Tianxi Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,University of Chinese Academy of Science, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
12
|
Strength training alters the tissue fatty acids profile and slightly improves the thermogenic pathway in the adipose tissue of obese mice. Sci Rep 2022; 12:6913. [PMID: 35484170 PMCID: PMC9050661 DOI: 10.1038/s41598-022-10688-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Obesity is a disease characterized by the exacerbated increase of adipose tissue. A possible way to decrease the harmful effects of excessive adipose tissue is to increase the thermogenesis process, to the greater energy expenditure generated by the increase in heat in the body. In adipose tissue, the thermogenesis process is the result of an increase in mitochondrial work, having as substrate H+ ions, and which is related to the increased activity of UCP1. Evidence shows that stress is responsible for increasing the greater induction of UCP1 expression via β-adrenergic receptors. It is known that physical exercise is an important implement for sympathetic stimulation promoting communication between norepinephrine/epinephrine with membrane receptors. Thus, the present study investigates the influence of short-term strength training (STST) on fatty acid composition, lipolysis, lipogenesis, and browning processes in the subcutaneous adipose tissue (sWAT) of obese mice. For this, Swiss mice were divided into three groups: lean control, obesity sedentary, and obese strength training (OBexT). Obese animals were fed a high-fat diet for 14 weeks. Trained obese animals were submitted to 7 days of strength exercise. It was demonstrated that STST sessions were able to reduce fasting glycemia. In the sWAT, the STST was able to decrease the levels of the long-chain fatty acids profile, saturated fatty acid, and palmitic fatty acid (C16:0). Moreover, it was showed that STST did not increase protein levels responsible for lipolysis, the ATGL, ABHD5, pPLIN1, and pHSL. On the other hand, the exercise protocol decreased the expression of the lipogenic enzyme SCD1. Finally, our study demonstrated that the STST increased browning process-related genes such as PGC-1α, PRDM16, and UCP1 in the sWAT. Interestingly, all these biomolecular mechanisms have been observed independently of changes in body weight. Therefore, it is concluded that short-term strength exercise can be an effective strategy to initiate morphological changes in sWAT.
Collapse
|
13
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
14
|
Wang D, Ye J, Shi R, Zhao B, Liu Z, Lin W, Liu X. Dietary protein and amino acid restriction: Roles in metabolic health and aging-related diseases. Free Radic Biol Med 2022; 178:226-242. [PMID: 34890767 DOI: 10.1016/j.freeradbiomed.2021.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity is a worldwide phenomenon in all age groups and is associated with aging-related diseases such as type 2 diabetes, as well metabolic and cardiovascular diseases. The use of dietary restriction (DR) while avoiding malnutrition has many profound beneficial effects on aging and metabolic health, and dietary protein or specific amino acid (AA) restrictions, rather than overall calorie intake, are considered to play key roles in the effects of DR on host health. Whereas comprehensive reviews of the underlying mechanisms are limited, protein restriction and methionine (Met) restriction improve metabolic health and aging-related neurodegenerative diseases, and may be associated with FGF21, mTOR and autophagy, improved mitochondrial function and oxidative stress. Circulating branched-chain amino acids (BCAAs) are inversely correlated with metabolic health, and BCAAs and leucine (Leu) restriction promote metabolic homeostasis in rodents. Although tryptophan (Trp) restriction extends the lifespan of rodents, the Trp-restricted diet is reported to increase inflammation in aged mice, while severe Trp restriction has side effects such as anorexia. Furthermore, inadequate protein intake in the elderly increases the risk of muscle-centric health. Therefore, the restriction of specific AAs may be an effective and executable dietary manipulation for metabolic and aging-related health in humans, which warrants further investigation to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wei Lin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
15
|
Pezeshki A, Chelikani PK. Low Protein Diets and Energy Balance: Mechanisms of Action on Energy Intake and Expenditure. Front Nutr 2021; 8:655833. [PMID: 34055853 PMCID: PMC8155302 DOI: 10.3389/fnut.2021.655833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Low protein diets are associated with increased lifespan and improved cardiometabolic health primarily in rodents, and likely improve human health. There is strong evidence that moderate to severe reduction in dietary protein content markedly influences caloric intake and energy expenditure, which is often followed by a decrease in body weight and adiposity in animal models. While the neuroendocrine signals that trigger hyperphagic responses to protein restriction are better understood, there is accumulating evidence that increased sympathetic flux to brown adipose tissue, fibroblast growth factor-21 and serotonergic signaling are important for the thermogenic effects of low protein diets. This mini-review specifically focuses on the effect of low protein diets with variable carbohydrate and lipid content on energy intake and expenditure, and the underlying mechanisms of actions by these diets. Understanding the mechanisms by which protein restriction influences energy balance may unveil novel approaches for treating metabolic disorders in humans and improve production efficiency in domestic animals.
Collapse
Affiliation(s)
- Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Prasanth K Chelikani
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States.,Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
16
|
Dietary Essential Amino Acid Restriction Promotes Hyperdipsia via Hepatic FGF21. Nutrients 2021; 13:nu13051469. [PMID: 33926065 PMCID: PMC8144947 DOI: 10.3390/nu13051469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.
Collapse
|
17
|
Nakamura S, Kuda T, Midorikawa Y, Takahashi H, Kimura B. Typical gut indigenous bacteria in ICR mice fed a soy protein-based normal or low-protein diet. Curr Res Food Sci 2021; 4:295-300. [PMID: 33997796 PMCID: PMC8102713 DOI: 10.1016/j.crfs.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
For patients with inflammatory bowel disease, cow’s milk allergy, and lactose intolerance, soymilk is a potential alternative to cow’s milk. In this study, we aimed to identify the effects of a soy protein-based low-protein diet on the body and organ weights and the gut microbiome of six-week-old mice fed a diet containing 20% (SP) or 5% (LP) soy protein for 14 days via 16S rRNA (V4) amplicon sequencing. Body weight gain (growth) and liver, spleen, and fat tissue weight were significantly suppressed by the LP diet. Operational taxonomic unit numbers and α-diversity were lower in the LP group than in the SP group. A principal coordinate analysis revealed differences in the gut microbiome compositions of SP and LP mice. The abundances of caecal Roseburia sp., Alistipes sp., and bacteria from the family Muribaculaceae were lower in the LP group than in the SP group. In contrast, the abundance of Desulfovibrionaceae, which is positively correlated with inflammation, was higher in the LP group than in the SP group. These results differed from the effects of a milk casein-based low-protein diet (reported previously). Based on these findings, we conclude that the undesirable effects of a low-protein diet and/or protein deficiency are related to changes in the gut microbiome composition and may differ depending on the kind of proteins used. Six-week-old ICR mice were fed a diet containing 20% (SP) or 5% (LP) soy protein for 14 days. Body weight gain and liver, spleen, and fat tissue weight were significantly suppressed by the LP diet. Caecal Roseburia sp., Alistipes sp., and bacteria from the family Muribaculaceae was lower in the LP. Desulfovibrionaceae, which is positively correlated with inflammation, was higher in the LP group.
Collapse
Affiliation(s)
- Saori Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yuko Midorikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
18
|
Dommerholt MB, Blankestijn M, Vieira‐Lara MA, van Dijk TH, Wolters H, Koster MH, Gerding A, van Os RP, Bloks VW, Bakker BM, Kruit JK, Jonker JW. Short-term protein restriction at advanced age stimulates FGF21 signalling, energy expenditure and browning of white adipose tissue. FEBS J 2021; 288:2257-2277. [PMID: 33089625 PMCID: PMC8048886 DOI: 10.1111/febs.15604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Dietary protein restriction has been demonstrated to improve metabolic health under various conditions. However, the relevance of ageing and age-related decline in metabolic flexibility on the effects of dietary protein restriction has not been addressed. Therefore, we investigated the effect of short-term dietary protein restriction on metabolic health in young and aged mice. Young adult (3 months old) and aged (18 months old) C57Bl/6J mice were subjected to a 3-month dietary protein restriction. Outcome parameters included fibroblast growth factor 21 (FGF21) levels, muscle strength, glucose tolerance, energy expenditure (EE) and transcriptomics of brown and white adipose tissue (WAT). Here, we report that a low-protein diet had beneficial effects in aged mice by reducing some aspects of age-related metabolic decline. These effects were characterized by increased plasma levels of FGF21, browning of subcutaneous WAT, increased body temperature and EE, while no changes were observed in glucose homeostasis and insulin sensitivity. Moreover, the low-protein diet used in this study was well-tolerated in aged mice indicated by the absence of adverse effects on body weight, locomotor activity and muscle performance. In conclusion, our study demonstrates that a short-term reduction in dietary protein intake can impact age-related metabolic health alongside increased FGF21 signalling, without negatively affecting muscle function. These findings highlight the potential of protein restriction as a strategy to induce EE and browning of WAT in aged individuals.
Collapse
Affiliation(s)
- Marleen B. Dommerholt
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Maaike Blankestijn
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Marcel A. Vieira‐Lara
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Henk Wolters
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Mirjam H. Koster
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Albert Gerding
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Ronald P. van Os
- Mouse Clinic for Cancer and AgingCentral Animal FacilityUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent W. Bloks
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Barbara M. Bakker
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Janine K. Kruit
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Johan W. Jonker
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
19
|
Jensen-Cody SO, Potthoff MJ. Hepatokines and metabolism: Deciphering communication from the liver. Mol Metab 2020; 44:101138. [PMID: 33285302 PMCID: PMC7788242 DOI: 10.1016/j.molmet.2020.101138] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/09/2023] Open
Abstract
Background The liver is a key regulator of systemic energy homeostasis and can sense and respond to nutrient excess and deficiency through crosstalk with multiple tissues. Regulation of systemic energy homeostasis by the liver is mediated in part through regulation of glucose and lipid metabolism. Dysregulation of either process may result in metabolic dysfunction and contribute to the development of insulin resistance or fatty liver disease. Scope of review The liver has recently been recognized as an endocrine organ that secretes hepatokines, which are liver-derived factors that can signal to and communicate with distant tissues. Dysregulation of liver-centered inter-organ pathways may contribute to improper regulation of energy homeostasis and ultimately metabolic dysfunction. Deciphering the mechanisms that regulate hepatokine expression and communication with distant tissues is essential for understanding inter-organ communication and for the development of therapeutic strategies to treat metabolic dysfunction. Major conclusions In this review, we discuss liver-centric regulation of energy homeostasis through hepatokine secretion. We highlight key hepatokines and their roles in metabolic control, examine the molecular mechanisms of each hepatokine, and discuss their potential as therapeutic targets for metabolic disease. We also discuss important areas of future studies that may contribute to understanding hepatokine signaling under healthy and pathophysiological conditions.
Collapse
Affiliation(s)
- Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Pignatti C, D’Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and Pathways that Regulate Health Span and Life Span. Geriatrics (Basel) 2020; 5:geriatrics5040095. [PMID: 33228041 PMCID: PMC7709628 DOI: 10.3390/geriatrics5040095] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20–25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.
Collapse
Affiliation(s)
- Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Stefania D’Adamo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy;
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy;
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
- Correspondence: ; Tel.: +39-051-209-1241
| |
Collapse
|
21
|
Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nat Commun 2020; 11:2894. [PMID: 32518324 PMCID: PMC7283339 DOI: 10.1038/s41467-020-16568-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary protein dilution (DPD) promotes metabolic-remodelling and -health but the precise nutritional components driving this response remain elusive. Here, by mimicking amino acid (AA) supply from a casein-based diet, we demonstrate that restriction of dietary essential AA (EAA), but not non-EAA, drives the systemic metabolic response to total AA deprivation; independent from dietary carbohydrate supply. Furthermore, systemic deprivation of threonine and tryptophan, independent of total AA supply, are both adequate and necessary to confer the systemic metabolic response to both diet, and genetic AA-transport loss, driven AA restriction. Dietary threonine restriction (DTR) retards the development of obesity-associated metabolic dysfunction. Liver-derived fibroblast growth factor 21 is required for the metabolic remodelling with DTR. Strikingly, hepatocyte-selective establishment of threonine biosynthetic capacity reverses the systemic metabolic response to DTR. Taken together, our studies of mice demonstrate that the restriction of EAA are sufficient and necessary to confer the systemic metabolic effects of DPD. Dietary protein dilution, where protein is reduced and replaced by other nutrient sources without caloric restriction, promotes metabolic health via the hepatokine Fgf21. Here, the authors show that essential amino acids threonine and tryptophan are necessary and sufficient to induce these effects.
Collapse
|
22
|
Ajuogu PK, Al-Aqbi MA, Hart RA, Wolden M, Smart NA, McFarlane JR. The effect of dietary protein intake on factors associated with male infertility: A systematic literature review and meta-analysis of animal clinical trials in rats. Nutr Health 2020; 26:53-64. [PMID: 31992124 DOI: 10.1177/0260106019900731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Studies have shown that the amount of protein in the diet affects the hypothalamic-pituitary-testis axis and sub-optimal quantity reduces male fertility potential in both animals and humans. However, individual research reports on the factors associated with male infertility are collectively uncharacterized. AIM We systematically reviewed, and meta-analysed animal (rats) studies on the effect of low protein diet on factors associated with male infertility. METHODS PubMed Central, EMBASE and Scopus databases were searched from inception to 30 March 2019 for the study concepts and related keywords in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Data on the outcome measures were extracted and pooled across trials using random-effects model and expressed as mean differences (MD) at a 95% confidence interval (CI). RESULTS Twelve trials identified from 3327 studies, met our inclusion criteria in the comparison of a low protein diet (2-10% protein) vs control protein diet (17-23% protein). The results showed that a low protein diet caused a significant reduction in the body weight (P = 0.0001) testis weight (P = 0.0001), seminal vesicle weight (P = 0.0003), epididymis weight P = 0.02), serum testosterone (P = 0.001) and follicle-stimulating hormone (FSH) concentrations (P = 0.04) compared with the control treatments. No effect on luteinizing hormone (LH) plasma concentration (P = 0.13) was observed. CONCLUSION This study revealed that low protein diet caused significant reductions in body weight, testis, epididymis and seminal vesicle weights, serum testosterone and FSH concentration in rats. We infer that sub-optimal protein consumption reduces the gonadal and endocrine function, and consequently male infertility.
Collapse
Affiliation(s)
| | - Mohammed Ak Al-Aqbi
- School of Science and Technology, University of New England, Australia.,College of Agriculture, Wasit University, Iraq
| | - Robert A Hart
- School of Science and Technology, University of New England, Australia
| | | | - Neil A Smart
- School of Science and Technology, University of New England, Australia
| | - James R McFarlane
- School of Science and Technology, University of New England, Australia
| |
Collapse
|
23
|
Klein Hazebroek M, Keipert S. Adapting to the Cold: A Role for Endogenous Fibroblast Growth Factor 21 in Thermoregulation? Front Endocrinol (Lausanne) 2020; 11:389. [PMID: 32714278 PMCID: PMC7343899 DOI: 10.3389/fendo.2020.00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is in biomedical focus as a treatment option for metabolic diseases, given that administration improves metabolism in mice and humans. The metabolic effects of exogenous FGF21 administration are well-characterized, but the physiological role of endogenous FGF21 has not been fully understood yet. Despite cold-induced FGF21 expression and increased circulating levels in some studies, which co-occur with brown fat thermogenesis, recent studies in cold-acclimated mice demonstrate the dispensability of FGF21 for maintenance of body temperature, thereby questioning FGF21's role for thermogenesis. Here we discuss the evidence either supporting or opposing the role of endogenous FGF21 for thermogenesis based on the current literature. FGF21, secreted by brown fat or liver, is likely not required for energy homeostasis in the cold, but the nutritional conditions could modulate the interaction between FGF21, energy metabolism, and thermoregulation.
Collapse
|
24
|
Fibroblast Growth Factor 21 and the Adaptive Response to Nutritional Challenges. Int J Mol Sci 2019; 20:ijms20194692. [PMID: 31546675 PMCID: PMC6801670 DOI: 10.3390/ijms20194692] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The Fibroblast Growth Factor 21 (FGF21) is considered an attractive therapeutic target for obesity and obesity-related disorders due to its beneficial effects in lipid and carbohydrate metabolism. FGF21 response is essential under stressful conditions and its metabolic effects depend on the inducer factor or stress condition. FGF21 seems to be the key signal which communicates and coordinates the metabolic response to reverse different nutritional stresses and restores the metabolic homeostasis. This review is focused on describing individually the FGF21-dependent metabolic response activated by some of the most common nutritional challenges, the signal pathways triggering this response, and the impact of this response on global homeostasis. We consider that this is essential knowledge to identify the potential role of FGF21 in the onset and progression of some of the most prevalent metabolic pathologies and to understand the potential of FGF21 as a target for these diseases. After this review, we conclude that more research is needed to understand the mechanisms underlying the role of FGF21 in macronutrient preference and food intake behavior, but also in β-klotho regulation and the activity of the fibroblast activation protein (FAP) to uncover its therapeutic potential as a way to increase the FGF21 signaling.
Collapse
|
25
|
Lyophilized Maqui ( Aristotelia chilensis) Berry Induces Browning in the Subcutaneous White Adipose Tissue and Ameliorates the Insulin Resistance in High Fat Diet-Induced Obese Mice. Antioxidants (Basel) 2019; 8:antiox8090360. [PMID: 31480627 PMCID: PMC6769892 DOI: 10.3390/antiox8090360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A-stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.
Collapse
|
26
|
Rose AJ. Role of Peptide Hormones in the Adaptation to Altered Dietary Protein Intake. Nutrients 2019; 11:E1990. [PMID: 31443582 PMCID: PMC6770041 DOI: 10.3390/nu11091990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Dietary protein profoundly influences organismal traits ultimately affecting healthspan. While intracellular signalling downstream of altered amino acid supply is undoubtedly important, peptide hormones have emerged as critical factors determining systemic responses to variations in protein intake. Here the regulation and role of certain peptides hormones in such responses to altered dietary protein intake is reviewed.
Collapse
Affiliation(s)
- Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|
27
|
Zapata RC, Singh A, Pezeshki A, Avirineni BS, Patra S, Chelikani PK. Low-Protein Diets with Fixed Carbohydrate Content Promote Hyperphagia and Sympathetically Mediated Increase in Energy Expenditure. Mol Nutr Food Res 2019; 63:e1900088. [PMID: 31365786 DOI: 10.1002/mnfr.201900088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/17/2019] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary protein restriction elicits hyperphagia and increases energy expenditure; however, less is known of whether these responses are a consequence of increasing carbohydrate content. The effects of protein-diluted diets with fixed carbohydrate content on energy balance, hormones, and key markers of protein sensing and thermogenesis in tissues are determined. METHODS AND RESULTS Obesity-prone rats (n = 13-16 per group) are randomized to diets containing fixed carbohydrate (52% calories) and varying protein concentrations: 15% (control), 10% (mild protein restriction), 5% (moderate protein restriction) or 1% (severe protein restriction) protein calories, or protein-matched to 5% protein, for 21 days. Propranolol and ondansetron are administered to interrogate the roles of sympathetic and serotonergic systems, respectively, in diet-induced changes in energy expenditure. It is found that mild-to-moderate protein restriction promotes transient hyperphagia, whereas severe protein restriction induces hypophagia, with alterations in meal patterns. Protein restriction enhances energy expenditure that is partly attenuated by propranolol, but not ondansetron. Moderate to severe protein restriction decreases gains in body weight, lean and fat mass, decreased postprandial glucose and leptin, but increased fibroblast growth factor-21 concentrations. Protein-matching retains lean mass suggesting that intake of dietary protein, but not calories, is important for preserving lean mass. Notably, protein restriction increases the protein and/or transcript abundance of key amino acid sensing molecules in liver and intestine (PERK, eIF2α, ATF2, CHOP, 4EBP1, FGF21), and upregulated thermogenic markers (β2AR, Klotho, HADH, UCP-1) in brown adipose tissue. CONCLUSION Low-protein diets promote hyperphagia and sympathetically mediated increase in energy expenditure, prevent gains in tissue reserves, and concurrently upregulate hepatic and intestinal amino acid sensing intermediaries and thermogenic markers in brown adipose tissue.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Adel Pezeshki
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Bharath S Avirineni
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Souvik Patra
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
28
|
Alemán G, Castro AL, Vigil-Martínez A, Torre-Villalvazo I, Díaz-Villaseñor A, Noriega LG, Medina-Vera I, Ordáz G, Torres N, Tovar AR. Interaction between the amount of dietary protein and the environmental temperature on the expression of browning markers in adipose tissue of rats. GENES AND NUTRITION 2019; 14:19. [PMID: 31178938 PMCID: PMC6549346 DOI: 10.1186/s12263-019-0642-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
Background A low-protein diet increases the expression and circulating concentration of FGF21. FGF21 stimulates the browning process of WAT by enhancing the expression of UCP1 coupled with an increase in PGC1α. Interestingly, the consumption of a low-protein diet could stimulate WAT differentiation into beige/brite cells by increasing FGF21 expression and Ucp1 mRNA abundance. However, whether the stimulus of a low-protein diet on WAT browning can synergistically interact with another browning stimulus, such as cold exposure, remains elusive. Results In the present study, rats were fed 6% (low), 20% (adequate), or 50% (high) dietary protein for 10 days and subsequently exposed to 4 °C for 72 h. Body weight, food intake, and energy expenditure were measured, as well as WAT browning and BAT thermogenesis markers and FGF21 circulating levels. The results showed that during cold exposure, the consumption of a high-protein diet reduced UCP1, TBX1, Cidea, Cd137, and Prdm16 in WAT when compared with the consumption of a low-protein diet. In contrast, at room temperature, a low-protein diet increased the expression of UCP1, Cidea, and Prdm16 associated with an increase in FGF21 expression and circulating levels when compared with a consumption of a high-protein diet. Consequently, the consumption of a low-protein diet increased energy expenditure. Conclusions These results indicate that in addition to the environmental temperature, WAT browning is nutritionally modulated by dietary protein, affecting whole-body energy expenditure. Graphical abstract ![]()
Collapse
Affiliation(s)
- Gabriela Alemán
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Ana Laura Castro
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Ana Vigil-Martínez
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Ivan Torre-Villalvazo
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Andrea Díaz-Villaseñor
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico.,2Instituto de Investigaciones Biomédicas, UNAM, 04510 Mexico City, Mexico
| | - Lilia G Noriega
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Isabel Medina-Vera
- 3Department of Research Methodology, Instituto Nacional de Pediatría, 04530 Mexico City, Mexico
| | - Guillermo Ordáz
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Nimbe Torres
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Armando R Tovar
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| |
Collapse
|
29
|
Keuper M, Häring HU, Staiger H. Circulating FGF21 Levels in Human Health and Metabolic Disease. Exp Clin Endocrinol Diabetes 2019; 128:752-770. [PMID: 31108554 DOI: 10.1055/a-0879-2968] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human fibroblast growth factor 21 (FGF21) is primarily produced and secreted by the liver as a hepatokine. This hormone circulates to its target tissues (e. g., brain, adipose tissue), which requires two components, one of the preferred FGF receptor isoforms (FGFR1c and FGFR3c) and the co-factor beta-Klotho (KLB) to trigger downstream signaling pathways. Although targeting FGF21 signaling in humans by analogues and receptor agonists results in beneficial effects, e. g., improvements in plasma lipids and decreased body weight, it failed to recapitulate the improvements in glucose handling shown for many mouse models. FGF21's role and metabolic effects in mice and its therapeutic potential have extensively been reviewed elsewhere. In this review we focus on circulating FGF21 levels in humans and their associations with disease and clinical parameters, focusing primarily on obesity and obesity-associated diseases such as type-2 diabetes. We provide a comprehensive overview on human circulating FGF21 levels under normal physiology and metabolic disease. We discuss the emerging field of inactivating FGF21 in human blood by fibroblast activation protein (FAP) and its potential clinical implications.
Collapse
Affiliation(s)
- Michaela Keuper
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
von Holstein-Rathlou S, Gillum MP. Fibroblast growth factor 21: an endocrine inhibitor of sugar and alcohol appetite. J Physiol 2019; 597:3539-3548. [PMID: 30921473 DOI: 10.1113/jp277117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived hormone with pleiotropic metabolic effects. Its production is induced by various dietary imbalances in mice (including low-protein and ketogenic diets, fructose feeding and ethanol), hinting that it might influence food preference given the role of the liver in maintaining homeostatic levels of circulating nutrients. In 2016, it was shown that FGF21 selectively inhibits consumption of sugars and the primary product of their fermentation, ethanol, but not intake of fat, protein or complex carbohydrates. Since then, studies have sought to unravel this selectivity, its physiological purpose and translational relevance, as well as delineate the neural mechanisms involved. Initially found to impact ingestive behaviours in mice and non-human primates, FGF21 is also induced in humans by sugars and, far more dramatically, by acute alcohol intake. Genetic studies have revealed that patterns of weekly candy and alcohol consumption are associated with genetic variants in FGF21 and its co-receptor β-klotho (KLB), suggesting that liking for sugar, and fermented sugar, may be influenced by natural variation in FGF21 signal strength in humans. Herein, we discuss our nascent understanding of FGF21 as a selective negative regulator of sugar and alcohol appetite as well as reasons why such a peculiar system may have evolved in mammals. Uncovering the regulatory network governing sugar, and fermented sugar, intake could provide new opportunities to improve dietary choices in a population suffering from Western diet-induced diseases fuelled in part by a runaway sweet - and alcohol - tooth.
Collapse
Affiliation(s)
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Nutritional Regulation of Gene Expression: Carbohydrate-, Fat- and Amino Acid-Dependent Modulation of Transcriptional Activity. Int J Mol Sci 2019; 20:ijms20061386. [PMID: 30893897 PMCID: PMC6470599 DOI: 10.3390/ijms20061386] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to detect changes in nutrient levels and generate an adequate response to these changes is essential for the proper functioning of living organisms. Adaptation to the high degree of variability in nutrient intake requires precise control of metabolic pathways. Mammals have developed different mechanisms to detect the abundance of nutrients such as sugars, lipids and amino acids and provide an integrated response. These mechanisms include the control of gene expression (from transcription to translation). This review reports the main molecular mechanisms that connect nutrients’ levels, gene expression and metabolism in health. The manuscript is focused on sugars’ signaling through the carbohydrate-responsive element binding protein (ChREBP), the role of peroxisome proliferator-activated receptors (PPARs) in the response to fat and GCN2/activating transcription factor 4 (ATF4) and mTORC1 pathways that sense amino acid concentrations. Frequently, alterations in these pathways underlie the onset of several metabolic pathologies such as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete understanding of these mechanisms may improve our knowledge of metabolic diseases and may offer new therapeutic approaches based on nutritional interventions and individual genetic makeup.
Collapse
|
32
|
Zhuo Y, Hua L, Feng B, Jiang X, Li J, Jiang D, Huang X, Zhu Y, Li Z, Yan L, Jin C, Che L, Fang Z, Lin Y, Xu S, Li J, Wu D. Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve. EBioMedicine 2019; 41:623-635. [PMID: 30772303 PMCID: PMC6444179 DOI: 10.1016/j.ebiom.2019.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Global consumption of protein per capita is rising, while rates of infertility are increasing. However, a clear relationship between protein intake and reproductive health has not been demonstrated. The activation of the quiescent primordial follicles is the first step of folliculogenesis, and their activation must be tightly controlled to prevent premature exhaustion of the ovarian follicular reserve. Methods The primordial follicle reserve of wild-type or liver-specific ablation of fibroblast growth factor 21 (FGF21) in mice, subjected to limited or excessive protein diets or oral gavage test, were detected in vivo. Mouse ovary organ cultures were used to examine the direct role of metabolites or metabolic hormones on primordial follicle activation. Findings Mouse primordial follicle activation, was reduced by restricted protein intake and was accelerated by excessive protein intake, in an ovarian mTORC1 signaling-dependent manner. Furthermore, restricted or excessive protein intake resulted in an augmentation or decline of oocyte number and fertility at older age, respectively. Liver-specific ablation of FGF21, which resulted in a reduction of 87% in circulating FGF21, abrogated the preserving effect of low-protein intake on primordial follicle pool. Interestingly, FGF21 had no direct effect on the activation of primordial follicles, but instead required an adipokine adiponectin. Moreover, AdipoRon, an oral adiponectin receptor agonist, prevented the over-activation effect of excessive protein intake on primordial follicle activation. Interpretation Dietary protein consumption controlled ovarian primordial follicle reserve and fertility, which required coordination between FGF21 and adiponectin. Fund Natural Science Foundation of China (Grant 31772616).
Collapse
Affiliation(s)
- Yong Zhuo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jing Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dandan Jiang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaohua Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yingguo Zhu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhen Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lijun Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Chao Jin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
33
|
Madsen L, Myrmel LS, Fjære E, Øyen J, Kristiansen K. Dietary Proteins, Brown Fat, and Adiposity. Front Physiol 2018; 9:1792. [PMID: 30631281 PMCID: PMC6315128 DOI: 10.3389/fphys.2018.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
High protein diets have become popular for body weight maintenance and weight loss despite controversies regarding efficacy and safety. Although both weight gain and weight loss are determined by energy consumption and expenditure, data from rodent trials consistently demonstrate that the protein:carbohydrate ratio in high fat diets strongly influences body and fat mass gain per calorie eaten. Here, we review data from rodent trials examining how high protein diets may modulate energy metabolism and the mechanisms by which energy may be dissipated. We discuss the possible role of activating brown and so-called beige/BRITE adipocytes including non-canonical UCP1-independent thermogenesis and futile cycles, where two opposing metabolic pathways are operating simultaneously. We further review data on how the gut microbiota may affect energy expenditure. Results from human and rodent trials demonstrate that human trials are less consistent than rodent trials, where casein is used almost exclusively as the protein source. The lack of consistency in results from human trials may relate to the specific design of human trials, the possible distinct impact of different protein sources, and/or the differences in the efficiency of high protein diets to attenuate obesity development in lean subjects vs. promoting weight loss in obese subjects.
Collapse
Affiliation(s)
- Lise Madsen
- Institute of Marine Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Li Z, Rasmussen ML, Li J, Henriquez-Olguin C, Knudsen JR, Madsen AB, Sanchez-Quant E, Kleinert M, Jensen TE. Periodized low protein-high carbohydrate diet confers potent, but transient, metabolic improvements. Mol Metab 2018; 17:112-121. [PMID: 30193785 PMCID: PMC6197680 DOI: 10.1016/j.molmet.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Chronic ad libitum low protein-high carbohydrate diet (LPHC) increases health- and life-span in mice. A periodized (p) LPHC regimen would be a more practical long-term human lifestyle intervention, but the metabolic benefits of pLPHC are not known. Also, the interactions between LPHC diet and exercise training have not been investigated. Presently, we aimed to provide proof-of-concept data in mice of the efficacy of pLPHC and to explore the potential interactions with concurrent exercise training. METHODS A detailed phenotypic and molecular characterization of mice undergoing different durations of 14 d LPHC (5 E% protein)/14 d control diet cycles for up to 4 months with or without concurrent access to activity wheels allowing voluntary exercise training. RESULTS pLPHC conferred metabolic benefits similar to chronic LPHC, including increased FGF21 and adaptive thermogenesis, obesity-protection despite increased total energy intake and improved insulin sensitivity. The improved insulin sensitivity showed large fluctuations between diet periods and was lost within 14 days of switching back to control diet. Parallel exercise training improved weight maintenance but impaired the FGF21 response to pLPHC whereas repeated pLPHC cycles progressively augmented this response. Both the FGF21 suppression by exercise and potentiation by repeated cycles correlated tightly with Nupr1 mRNA in liver, suggesting dependence on liver integrated stress response. CONCLUSION These results suggest that pLPHC may be a viable strategy to promote human health but also highlight the transient nature of the benefits and that the interaction with other lifestyle-interventions such as exercise training warrants consideration.
Collapse
Affiliation(s)
- Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mette Line Rasmussen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jonas Roland Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Agnete Bjerregaard Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Eva Sanchez-Quant
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
35
|
Mu WC, VanHoosier E, Elks CM, Grant RW. Long-Term Effects of Dietary Protein and Branched-Chain Amino Acids on Metabolism and Inflammation in Mice. Nutrients 2018; 10:nu10070918. [PMID: 30021962 PMCID: PMC6073443 DOI: 10.3390/nu10070918] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Aging is the main factor involved in the onset of degenerative diseases. Dietary protein restriction has been shown to increase the lifespan of rodents and improve metabolic phenotype. Branched-chain amino acids (BCAA) can act as nutrient signals that increase the lifespan of mice after prolonged supplementation. It remains unclear whether the combination of protein restriction and BCAA supplementation improves metabolic and immunological profiles during aging. Here, we investigated how dietary protein levels and BCAA supplementation impact metabolism and immune profile during a 12-month intervention in adult male C57BL/6J mice. We found that protein restriction improved insulin tolerance and increased hepatic fibroblast growth factor 21 mRNA, circulating interleukin (IL)-5 concentration, and thermogenic uncoupling protein 1 in subcutaneous white fat. Surprisingly, BCAA supplementation conditionally increased body weight, lean mass, and fat mass, and deteriorated insulin intolerance during protein restriction, but not during protein sufficiency. BCAA also induced pro-inflammatory gene expression in visceral adipose tissue under both normal and low protein conditions. These results suggest that dietary protein levels and BCAA supplementation coordinate a complex regulation of metabolism and tissue inflammation during prolonged feeding.
Collapse
MESH Headings
- Adiposity
- Aging
- Amino Acids, Branched-Chain/adverse effects
- Amino Acids, Branched-Chain/metabolism
- Amino Acids, Branched-Chain/therapeutic use
- Animals
- Cytokines/blood
- Diet, Protein-Restricted/adverse effects
- Dietary Proteins/adverse effects
- Dietary Proteins/metabolism
- Dietary Proteins/therapeutic use
- Dietary Supplements/adverse effects
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Insulin Resistance
- Liver/growth & development
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Male
- Mice, Inbred C57BL
- Organ Size
- Proteomics/methods
- Random Allocation
- Sarcopenia/immunology
- Sarcopenia/metabolism
- Sarcopenia/pathology
- Sarcopenia/prevention & control
- Spleen/growth & development
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Subcutaneous Fat, Abdominal/growth & development
- Subcutaneous Fat, Abdominal/immunology
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Weight Gain
Collapse
Affiliation(s)
- Wei-Chieh Mu
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Erin VanHoosier
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Carrie M Elks
- Matrix Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Ryan W Grant
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
36
|
Dietary protein dilution limits dyslipidemia in obesity through FGF21-driven fatty acid clearance. J Nutr Biochem 2018; 57:189-196. [PMID: 29751292 DOI: 10.1016/j.jnutbio.2018.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/05/2018] [Accepted: 03/27/2018] [Indexed: 01/13/2023]
Abstract
Recent studies have demonstrated that dietary protein dilution (PD) can promote metabolic inefficiency and improve glucose metabolism. However, whether PD can promote other aspects of metabolic health, such as improve systemic lipid metabolism, and mechanisms therein remains unknown. Mouse models of obesity, such as high-fat-diet-fed C57Bl/6 N mice, and New Zealand Obese mice were fed normal (i.e., 20%P) and protein-dilute (i.e., 5%EP) diets. FGF21-/- and Cd36-/- and corresponding littermate +/+ controls were also studied to examine gene-diet interactions. Here, we show that chronic PD retards the development of hypertrigylceridemia and fatty liver in obesity and that this relies on the induction of the hepatokine fibroblast growth factor 21 (FGF21). Furthermore, PD greatly enhances systemic lipid homeostasis, the mechanisms by which include FGF21-stimulated, and cluster of differentiation 36 (CD36) mediated, fatty acid clearance by oxidative tissues, such as heart and brown adipose tissue. Taken together, our preclinical studies demonstrate a novel nutritional strategy, as well as highlight a role for FGF21-stimulated systemic lipid metabolism, in combating obesity-related dyslipidemia.
Collapse
|
37
|
Sandoval V, Rodríguez-Rodríguez R, Martínez-Garza Ú, Rosell-Cardona C, Lamuela-Raventós RM, Marrero PF, Haro D, Relat J. Mediterranean Tomato-Based Sofrito Sauce Improves Fibroblast Growth Factor 21 (FGF21) Signaling in White Adipose Tissue of Obese ZUCKER Rats. Mol Nutr Food Res 2018; 62. [PMID: 29266852 DOI: 10.1002/mnfr.201700606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/23/2017] [Indexed: 01/24/2023]
Abstract
SCOPE Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Since FGF21 production and signaling are regulated by some bioactive dietary compounds, we analyze the impact of Mediterranean tomato-based sofrito sauce on: (i) the FGF21 expression and signaling in visceral white adipose tissue (vWAT), and (ii) the insulin sensitivity of obese Zucker rats (OZR). METHODS AND RESULTS OZR are fed with a sofrito-supplemented diet or control diet. Insulin sensitivity and FGF21 signaling are determined. We observed that sofrito is able to improve the responsiveness to both hormones in obese rats. Sofrito-supplemented diet increases FGF21 signaling in vWAT by inducing the expression of the FGF receptors (FGFR1 and FGFR4) that promotes the expression of canonical target genes, like Egr-1, c-Fos and uncoupling protein 1 (Ucp1). CONCLUSIONS A sofrito-supplemented diet improves insulin and FGF21 sensitivity in OZR, explaining part of sofrito's healthy effects on glucose metabolism. In addition, induction of UCP1 and the unchanged body weight despite the hyperphagic behavior of the sofrito-fed rats suggests that the increase in FGF21 signaling correlates with an increase in energy expenditure (EE). Further studies in humans may help to understand whether sofrito consumption increases the EE in obese individuals.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB)
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Úrsula Martínez-Garza
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB)
| | - Cristina Rosell-Cardona
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB).,CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro F Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB)
| |
Collapse
|
38
|
Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Mol Metab 2017; 6:873-881. [PMID: 28752051 PMCID: PMC5518726 DOI: 10.1016/j.molmet.2017.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Objective Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. Methods We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total AAD, or the same diet with complete levels of BCAAs (AAD + BCAA). We quantified serum AAs and characterized mice in terms of metabolic efficiency, body composition, glucose homeostasis, serum FGF21, and tissue markers of the integrated stress response (ISR) and mTORC1 signaling. Results Serum BCAAs, while elevated in serum from hyperphagic NZO, were consistently reduced by dietary PD in humans and murine models. Repletion of dietary BCAAs modestly attenuated insulin sensitivity and metabolic efficiency in wildtype mice but did not restore hyperglycemia in NZO mice. While hepatic markers of the ISR such as P-eIF2α and FGF21 were unabated by dietary BCAA repletion, hepatic and peripheral mTORC1 signaling were fully or partially restored, independent of changes in circulating glucose or insulin. Conclusions Repletion of BCAAs in dietary PD is sufficient to oppose changes in somatic mTORC1 signaling but does not reverse the hepatic ISR nor induce insulin resistance in type 2 diabetes during dietary PD. Dietary PD reduces serum BCAAs in humans and mice. Repletion of dietary BCAAs reverses somatic mTORC1 but not hepatic ISR signaling. Glucose control during dietary PD is unperturbed by BCAA repletion in diabetic mice.
Collapse
Key Words
- AA, amino acid
- AAD, amino acid diluted
- BCAA
- BCAA, branched chain amino acid
- Diabetes
- Dietary protein
- FGF21
- FGF21, fibroblast growth factor 21
- HF, high fat
- ISR, integrated stress response
- NZB, New Zealand black
- NZO, New Zealand obese
- PD, protein dilution
- T2D, type 2 diabetes
- mTORC1
- mTORC1, mammalian target of rapamycin complex 1
Collapse
|