1
|
Traina A, Quinci EM, Sabatino N, Del Core M, Bellante A, Bono G, Giuga M, Avellone G, Sprovieri M, D’Agostino F. Protein, Essential Amino Acid, and Fatty Acid Composition of Five Target Fishery Species of Central Mediterranean Sea. Animals (Basel) 2024; 14:2158. [PMID: 39123684 PMCID: PMC11310956 DOI: 10.3390/ani14152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The protein, essential amino acid, and fatty acid composition of European pilchard (Sardina pilchardus), European hake (Merluccius merluccius), surmullet (Mullus surmuletus), red mullet (Mullus barbatus), and deep water rose shrimp (Parapenaeus longirostris) from the central Mediterranean Sea were investigated. All the species showed an essential amino acid content of about 50% of total amino acids, while the protein and total fatty acids content varied from 19.9 to 24.8% and from 1.4 to 5.1%, respectively. The fatty acid profile mainly followed the order SFA (39.1-52.6%) > PUFA (21.0-39.3%) > MUFA (15.6-24.3%). Palmitic and stearic acids were predominant among saturated fatty acids (38-52% and 21-25%, respectively), while palmitoleic and oleic acids were the most represented of the total monounsaturated acids (10-21% and 55-68%, respectively). All the species, as expected, showed a more significant proportion of n-3 PUFA (EPA + DHA) of about 81-93% of the total PUFA, with the highest values was found in European pilchard. Also, several fat quality index values, such as n-6/n-3 ratio, PUFA/SFA, the index of atherogenicity (IA), the index of thrombogenicity (IT), the hypocholesterolemic/hypercholesterolemic ratio (HH), and fish lipid quality/flesh lipid quality (FLQ) were calculated to assess the nutritional quality. All the obtained results, along with the fat quality indexes, indicated the excellent nutritional values of the selected species.
Collapse
Affiliation(s)
- Anna Traina
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), 90149 Palermo, Italy; (A.T.)
| | - Enza Maria Quinci
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Torretta Granitola-Campobello di Mazara, 91021 Trapani, Italy (F.D.)
| | - Nadia Sabatino
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), 90149 Palermo, Italy; (A.T.)
| | - Marianna Del Core
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Torretta Granitola-Campobello di Mazara, 91021 Trapani, Italy (F.D.)
| | - Antonio Bellante
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Torretta Granitola-Campobello di Mazara, 91021 Trapani, Italy (F.D.)
| | - Gioacchino Bono
- National Research Council of Italy, Institute for Biological Resources and Marine Biotechnology (CNR-IRBIM), Mazara Del Vallo, 91026 Trapani, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Marta Giuga
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), 16149 Genova, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mario Sprovieri
- National Research Council of Italy, Institute of Marine Science (CNR-ISMAR), 30122 Venezia, Italy
| | - Fabio D’Agostino
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Torretta Granitola-Campobello di Mazara, 91021 Trapani, Italy (F.D.)
| |
Collapse
|
2
|
Wang X, Cui S, Liu J, Ye Z, Xu Y, Wang Z, Tang M, Zhang Z, Zhang Y, Huang W. The same species, different nutrients: Lipidomics analysis of muscle in mud crabs (Scylla paramamosain) fed with lard oil and fish oil. Food Chem 2024; 440:138174. [PMID: 38160593 DOI: 10.1016/j.foodchem.2023.138174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Aiming to assess the effects of lard oil (LO) and fish oil (FO) on the nutritional value of mud crabs (Scylla paramamosain), non-targeted lipidomics analysis was performed on the muscle of crabs after eight weeks of feeding trail. Compared to FO, dietary LO reduced the content of phosphatidylethanolamine (PE) and phosphatidylserine (PS) with 18:0 bound at sn-1/3 site, the content of ether phospholipids containing 20:5n-3 (EPA) and 22:6n-3 (DHA) combined at sn-2 site, and increased the content of ether PE containing 18:0 and 18:1n-9. Furthermore, the deposition of 16:0, 16:1n-7, 18:2n-6, 18:3n-3, 20:4n-6, EPA and DHA at each site of PE, PS, phosphatidylcholine and/or triacylglycerols were reduced by dietary LO, while the DHA content at the sn-2 position of PE was increased. In conclusion, the nutritional value of mud crabs was reduced by dietary LO with the manifestation of variation in FA composition and positional distribution on phospholipids.
Collapse
Affiliation(s)
- Xuexi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Special Aquatic Formula Feed of Fujian Province, Fujian Tianma Science and Technology Group Co., Ltd., Fuzhou 350002, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs (Jimei University), P.R.China; Key Laboratory of Aquaculture Biotechnology (Ningbo University), Ministry of Education, P.R.China.
| | - Shihui Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinjin Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihao Ye
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifang Xu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Tang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde 352100, China
| | - Weiqing Huang
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde 352100, China
| |
Collapse
|
3
|
Park K, Kong CH, Kang WC, Jeon M, Lee WH, Lee J, Kim SC, Jung SY, Ryu JH. LPC20K modified from krill oil ameliorates the scopolamine-induced cognitive impairment. Behav Brain Res 2024; 461:114836. [PMID: 38145873 DOI: 10.1016/j.bbr.2023.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.
Collapse
Affiliation(s)
- Keontae Park
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Juyeon Lee
- Croda Korea Ltd., Seongnam-si, Gyeonggi-do 13636, the Republic of Korea
| | - Sang Chul Kim
- Croda Korea Ltd., Seongnam-si, Gyeonggi-do 13636, the Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
4
|
Wang YW, Li Q, Li XY, Zhao YC, Wang CC, Xue CH, Wang YM, Zhang TT. A Comparative Study about the Neuroprotective Effects of DHA-Enriched Phosphatidylserine and EPA-Enriched Phosphatidylserine against Oxidative Damage in Primary Hippocampal Neurons. Mar Drugs 2023; 21:410. [PMID: 37504941 PMCID: PMC10381609 DOI: 10.3390/md21070410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Nerve damage caused by accumulated oxidative stress is one of the characteristics and main mechanisms of Alzheimer's disease (AD). Previous studies have shown that phosphatidylserine (PS) rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) plays a significant role in preventing and mitigating the progression of AD. However, whether DHA-PS and EPA-PS can directly protect primary hippocampal neurons against oxidative damage has not been studied. Here, the neuroprotective functions of DHA-PS and EPA-PS against H2O2/t-BHP-induced oxidative damage and the possible mechanisms were evaluated in primary hippocampal neurons. It was found that DHA-PS and EPA-PS could significantly improve cell morphology and promote the restoration of neural network structure. Further studies showed that both of them significantly alleviated oxidative stress-mediated mitochondrial dysfunction. EPA-PS significantly inhibited the phosphorylation of ERK, thus playing an anti-apoptotic role, and EPA-PS significantly increased the protein expressions of p-TrkB and p-CREB, thus playing a neuroprotective role. In addition, EPA-PS, rather than DHA-PS could enhance synaptic plasticity by increasing the expression of SYN, and both could significantly reduce the expression levels of p-GSK3β and p-Tau. These results provide a scientific basis for the use of DHA/EPA-enriched phospholipids in the treatment of neurodegenerative diseases, and also provide a reference for the development of related functional foods.
Collapse
Affiliation(s)
- Yi-Wen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qian Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
5
|
Rebouças JSA, Oliveira FPS, Araujo ACDS, Gouveia HL, Latorres JM, Martins VG, Prentice Hernández C, Tesser MB. Shellfish industrial waste reuse. Crit Rev Biotechnol 2023; 43:50-66. [PMID: 34933613 DOI: 10.1080/07388551.2021.2004989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The global production of aquatic organisms has grown steadily in recent decades. This increase in production results in high volumes of by-products and waste, generally considered to be of low commercial value and part of them are consequently discarded in landfills or in the sea, causing serious environmental problems when not used. Currently, a large part of the reused aquaculture waste is destined for the feed industry. This generally undervalued waste presents an important source of bioactive compounds in its composition, such as: amino acids, carotenoids, chitin and its derivatives, fatty acids and minerals. These compounds are capable of offering numerous benefits due to their bioactive properties. However, the applicability of these compounds may be opportune in several other sectors. This review describes studies that seek to obtain and apply bioactive compounds from different sources of aquaculture waste, thus adding commercial value to these underutilized biomasses.HIGHLIGHTSVolume of aquaculture industrial waste from crustaceans and mollusks.Quantity and quality of bioactive components in aquaculture waste.Applications of recovered proteins, lipids, chitin, carotenoids and minerals.Future prospects for the destination of aquaculture waste.
Collapse
Affiliation(s)
- José Stênio Aragão Rebouças
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Alan Carvalho de Sousa Araujo
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Helena Leão Gouveia
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Carlos Prentice Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
6
|
Gaspar L, Ricardo F, Melo T, Domingues P, Domingues MR, Calado R, Rey F. Lipidomics of common octopus' (Octopus vulgaris) tentacle muscle using untargeted high-resolution liquid chromatography-mass spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Yuan L, Yang J, Li Y, Yuan L, Liu F, Yuan Y, Tang X. Matrine alleviates cisplatin-induced acute kidney injury by inhibiting mitochondrial dysfunction and inflammation via SIRT3/OPA1 pathway. J Cell Mol Med 2022; 26:3702-3715. [PMID: 35650472 PMCID: PMC9258713 DOI: 10.1111/jcmm.17398] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Cisplatin is extensively used to treat malignancies. However, its clinical use is always limited due to the serious side effects, especially the nephrotoxicity. Matrine (MAT), a tetracyclic quinolizine alkaloid found in sophora genus, exerts multiple pharmacological roles, including anti-oxidative stress, anti-inflammation and anti-apoptosis, but the role of MAT on acute kidney injury (AKI) has not been evaluated. Here, we found that MAT potently inhibited cell injury induced by cisplatin in HK2 cells in vitro, which was associated with the inhibition of oxidative injury and NF-κB-mediated inflammation. Moreover, MAT treatment could activate the SIRT3/OPA1 axis and subsequently suppress the mitochondrial fragmentation and improve mitochondrial function. More importantly, SIRT3 knockdown suppressed the deacetylation of OPA1, which blocked the protective role of MAT on cisplatin-induced cell injury. In vivo, MAT treatment alleviated renal dysfunction, histological damage and inflammation induced by cisplatin in mice. Furthermore, consistent with the founding in vitro, MAT also activated SIRT3-mediated deacetylation of OPA1 and alleviated mitochondrial dysfunction in AKI mice. Our study proved that MAT protected against cisplatin-induced AKI by synergic anti-oxidative stress and anti-inflammation actions via SIRT3/OPA1-mediated improvement of mitochondrial function, suggesting that MAT may be a novel and effective strategy for AKI.
Collapse
Affiliation(s)
- Lu Yuan
- The First People's Hospital of Shuangliu District, Airport Hospital of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Jingchao Yang
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Li
- The First People's Hospital of Shuangliu District, Airport Hospital of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaochi Tang
- The First People's Hospital of Shuangliu District, Airport Hospital of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wang Z, Karrar E, Wang Y, Liu R, Chang M, Wang X. The bioactive of four dietary sources phospholipids on heavy metal-induced skeletal muscle injury in zebrafish: A comparison of phospholipid profiles. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Song W, Zhang K, Xue T, Han J, Peng F, Ding C, Lin F, Li J, Sze FTA, Gan J, Chen X. Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting Acer truncatum Bunge seed oil revealed by lipidomics approach. Food Funct 2022; 13:2475-2490. [PMID: 35147628 DOI: 10.1039/d1fo03671h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acer truncatum Bunge seed oil (ASO) is rich in ω-9 (53.93%) and ω-6 (30.7%) fatty acids (FAs) and characterized by 3-7% nervonic acid (NA, C24:1ω-9). Evidence suggests that ω-9 FAs such as NA participate in processes of cognitive improvement; however, their mechanism remains ambiguous. In this study, we investigated the effect of ASO on rat memory and the change in lipid profiling and underlying metabolism. After ASO was administrated to rats for one, three and seven days, their capacity for learning and memory significantly increased via the MWM test. Lipid profiling showed alterations in a wide range of metabolic features after ASO was administrated to the rats, in which sphingolipids (SP) in the serum and glycerophospholipids (GP) in the brain were regulated significantly. The changes in the fatty acids in the serum and brain showed the synergetic effects of NA, EA, OA and DHA, where NA, EA and OA exhibited similar change trends. The enrichment analysis based on KEGG indicated that ASO supplementation evoked the pathways of neurotrophin signaling, glycerophospholipid metabolism and sphingolipid metabolism, which are related to memory and cognition improvement. Among the metabolites with different molecular forms, the biomarkers with C24:1ω-9 chains exhibited a positive correlation with others both in the serum SP and brain GP. These results suggest the synergistic effects of ω-9 FAs and that their conversion into each other may result in enhanced cognition in rats ingesting Acer truncatum Bunge seed oil.
Collapse
Affiliation(s)
- Wangting Song
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
| | - Ke Zhang
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Teng Xue
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,Zhong Guan Cun Biological and Medical Big Data Center, Beijing, China
| | - Jiarui Han
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
| | - Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Feng Lin
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Jiujun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Fat Tin Agassi Sze
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan, China
| | - Jianwen Gan
- Macau University of Science and Technology, Macau, China
| | - Xianyang Chen
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China. .,Zhong Guan Cun Biological and Medical Big Data Center, Beijing, China
| |
Collapse
|
10
|
Fu SS, Wen M, Zhao YC, Shi HH, Wang YM, Xue CH, Wei ZH, Zhang TT. Short-term supplementation of EPA-enriched ethanolamine plasmalogen increases the level of DHA in the brain and liver of n-3 PUFA deficient mice in early life after weaning. Food Funct 2022; 13:1906-1920. [PMID: 35088775 DOI: 10.1039/d1fo03345j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lack of n-3 polyunsaturated fatty acids (PUFAs) in mothers' diet significantly reduced the amount of docosahexaenoic acid (DHA) in the brains of offspring, which might affect their brain function. Our previous research has proven multiple benefits of eicosapentaenoic acid (EPA)-enriched ethanolamine plasmalogen (pPE) in enhancing the learning and memory ability. However, the effect of dietary supplementation with EPA-pPE on the DHA content in the brain and liver of offspring lacking n-3 PUFAs in early life is still unclear. Female ICR mice were fed with n-3 PUFA-deficient diets throughout the gestation and lactation periods to get n-3 PUFA-deficient offspring. The lipid profiles in the cerebral cortex and liver of offspring were analyzed using lipidomics after dietary supplementation with EPA-pPE (0.05%, w/w) and EPA-phosphatidylcholine (PC) (0.05%, w/w) for 2 weeks after weaning. Dietary supplementation with EPA could significantly change fatty acid composition in a variety of phospholipid molecular species compared with the n-3 deficient group. EPA-pPE and EPA-PC remarkably increased the DHA content in the brain PC, ether-linked phosphatidylcholine (ePC), and phosphatidylethanolamine plasmalogen (pPE) and liver triglyceride (TG), lyso-phosphatidylcholine (LPC), ePC, phosphatidylethanolamine (PE), and pPE molecular species, in which EPA-pPE showed more significant effects on the increase of DHA in cerebral cortex PC, ePC and liver PC compared with EPA-PC. Both EPA-phospholipids could effectively increase the DHA levels, and the pPE form was superior to PC in the contribution of DHA content in the cerebral cortex PC, ePC and liver PC molecular species. EPA-enriched ethanolamine plasmalogen might be a good nutritional supplement to increase DHA levels in the brains of n-3 PUFA-deficient offspring.
Collapse
Affiliation(s)
- Shuai-Shuai Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Min- Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, China
| | - Zi-Hao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
11
|
Guo Y, Zhao Q, Tian Y, Liu Y, Yan Z, Xue C, Wang J. Study on the effects of the different polar group of EPA-enriched phospholipids on the proliferation and apoptosis in 95D cells. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:519-528. [PMID: 37073266 PMCID: PMC10077167 DOI: 10.1007/s42995-021-00097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/02/2021] [Indexed: 05/03/2023]
Abstract
EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylethanolamine (EPA-PE) are newly identified marine phospholipids. The polar group of phospholipids is known to influence EPA-phospholipid activity. However, the differences in anti-tumor effects between EPA-PC and EPA-PE have not been reported. In this study, we evaluated the effects of two forms of EPA on the proliferation and apoptosis in the lung-cancer cell line 95D as well as possible molecular mechanisms. Our results showed that EPA-PC effectively inhibited proliferative activity and promoted apoptosis of 95D cells in a dose-dependent manner, while EPA-PE had no effect on cell proliferation, although it slightly promoted apoptosis. Western blot results showed that EPA-PC and EPA-PE upregulated the expression of PPARγ, RXRα, and PTEN, and downregulated the PI3K/AKT signaling pathway. Furthermore, EPA-PC and EPA-PE induced the expression of the pro-apoptotic gene, Bax, and reduced the expression of the anti-apoptotic gene, Bcl-xl. Additionally, EPA-PC and EPA-PE promoted the release of cytochrome c and activated the apoptotic enzyme-cleaved caspase-3. These data suggest that the anti-tumor effect of EPA-phospholipids may be exerted via a PPARγ-related mechanism. EPA-PC was more efficacious as compared to EPA-PE, which might be due to the different polar groups of phospholipids.
Collapse
Affiliation(s)
- Yao Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Qin Zhao
- School of Food Engineering, Ludong University, Yantai, 264025 China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266061 China
| | - Yuanyuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Ziyi Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
12
|
Wang Z, Zhao J, Wang Y, Zhang T, Liu R, Chang M, Wang X. Advances in EPA-GPLs: Structural features, mechanisms of nutritional functions and sources. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Bozzatello P, Blua C, Rocca P, Bellino S. Mental Health in Childhood and Adolescence: The Role of Polyunsaturated Fatty Acids. Biomedicines 2021; 9:850. [PMID: 34440053 PMCID: PMC8389598 DOI: 10.3390/biomedicines9080850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
There is increasing awareness of the importance of polyunsaturated fatty acids (PUFAs) for optimal brain development and function. In recent decades, researchers have confirmed the central role of PUFAs in a variety of patho-physiological processes. These agents modulate the mechanisms of brain cell signalling including the dopaminergic and serotonergic pathways. Therefore, nutritional insufficiencies of PUFAs may have adverse effects on brain development and developmental outcomes. The role of n-3 PUFAs has been studied in several psychiatric disorders in adulthood: schizophrenia, major depression, bipolar disorder, anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, eating disorders, substance use disorder, and borderline personality disorder. In contrast to the great number of studies conducted in adults, there are only limited data on the effects of n-3 PUFA supplementation in children and adolescents who suffer from mental disorders or show a high risk of developing psychiatric disorders. The aim of this review is to provide a complete and updated account of the available evidence of the impact of polyunsaturated fatty acids on developmental psychopathology in children and adolescents and the effect of fatty acid supplementation during developmental milestones, particularly in high-risk populations of children with minimal but detectable signs or symptoms of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Silvio Bellino
- Department of Neuroscience, University of Turin, 10126 Turin, Italy; (P.B.); (C.B.); (P.R.)
| |
Collapse
|
14
|
Shi HH, Wang CC, Ding L, Mao XZ, Xue CH, Yanagita T, Zhang TT, Wang YM. Comparative evaluation of phosphatidylcholine and phosphatidylserine with different fatty acids on nephrotoxicity in vancomycin-induced mice. Biosci Biotechnol Biochem 2021; 85:1873-1884. [PMID: 34196365 DOI: 10.1093/bbb/zbab105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
Phospholipids reportedly alleviate drug-induced acute kidney injury. However, no study has compared the effect of phospholipids with different fatty acids and polar heads on drug-induced nephrotoxicity. In the present study, we aimed to compare the possible nephroprotection afforded by phosphatidylcholine and phosphatidylserine with different fatty acids in a mouse model of vancomycin-induced nephrotoxicity. Pretreatment with phospholipids rich in docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) doubled the survival time when compared with the model group. Moreover, phospholipids rich in DHA/EPA significantly reduced the serum levels of renal function biomarkers and ameliorated kidney pathologies. In terms of alleviating renal damage, no significant differences were observed between different polar heads in DHA-enriched phospholipids, while phosphatidylserine from soybean was better than phosphatidylcholine in mitigating renal injury. Furthermore, DHA/EPA-enriched phospholipids inhibited vancomycin-induced nephrotoxicity mainly by inhibiting apoptosis and oxidative stress. These results provide a scientific basis for phospholipids as potential ingredients to prevent acute kidney injury.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P. R. China
| |
Collapse
|
15
|
Petenuci ME, Lopes AP, Camparim R, Schneider VVA, Visentainer JV. Fatty acid composition in fractions of neutral lipids and phospholipids of Hemisorubim platyrhynchos with seasonal distinction. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Xu ZJ, Li Q, Ding L, Shi HH, Xue CH, Mao XZ, Wang YM, Zhang TT. A comparative study of the effects of phosphatidylserine rich in DHA and EPA on Aβ-induced Alzheimer's disease using cell models. Food Funct 2021; 12:4411-4423. [PMID: 33876786 DOI: 10.1039/d1fo00286d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent, irreversible neurodegenerative disease, and one of the pathological features is amyloid-β (Aβ) deposition. Previous studies have shown that phosphatidylserine (PS) enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exhibited significant effects in preventing and alleviating the progress of AD. However, no studies have focused on the differences in the preventive effects on AD between EPA-PS and DHA-PS. Here, the effects of EPA-PS and DHA-PS on Aβ production, Aβ-induced neurotoxicity and Aβ clearance have been studied. The results show that DHA-PS significantly reduced Aβ production in CHO-APP/PS1 cells compared to EPA-PS. Moreover, both EPA-PS and DHA-PS significantly protected the primary hippocampal neurons against Aβ-induced toxicity by inhibiting the mitochondrial-dependent apoptotic pathway and phosphorylation of JNK and p38. Compared to DHA-PS, EPA-PS administration significantly improved the Aβ phagocytic capacity of BV2 cells. In addition, EPA-PS and DHA-PS significantly promoted the neurite outgrowth of primary hippocampal neurons. These findings might provide dietary guidance for the prevention of AD as well as a reference for the development of related functional foods.
Collapse
Affiliation(s)
- Zhen-Jing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gonçalves RM, Petenuci ME, Maistrovicz FC, Galuch MB, Montanher PF, Pizzo JS, Gualda IP, Visentainer JV. Lipid profile and fatty acid composition of marine fish species from Northeast coast of Brazil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1177-1189. [PMID: 33678899 DOI: 10.1007/s13197-020-04631-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/30/2020] [Accepted: 07/03/2020] [Indexed: 11/24/2022]
Abstract
Total lipid content, fatty acid composition and nutritional profile of lipid fraction of fourteen fish species from the Brazilian Northeastern coast were evaluated. Lipid content was determined by Bligh and Dyer methodology, whereas the fatty acid composition was determined by gas chromatography with flame ionization detector. The indices of atherogenicity, thrombogenicity and hypocholesterolemic/hypercholesterolemic ratio were used to evaluate the nutritional quality of lipid fraction. The total lipid content ranged from 0.25 to 3.09%, with higher values in L. synagris. A significant difference (p < 0.05) were noted in fatty acids composition between the fourteen fish species. PUFA were the major fatty acids in twelve of fourteen species and C. leiarchus showed the highest content. The n-3 content ranged from 69.83 to 270.62 mg g-1 of total lipids, being EPA and DHA the major fatty acids in most of the species studied. The species L. synagris, M. bonaci and S. brasiliensis exceeded the WHO daily intake recommendation of 250 mg per day from those fatty acids. The quality indexes of the lipid fraction as well as the n-6/n-3 and PUFA/SFA ratios indicated that all fish species can be healthy nutritional options, and can bring many benefits to human health. The principal component analysis resulted in a two-principal-component model that described 79.78% of data variance. Also, it highlighted that despite the differences between the breeding strategies of fish families, the species could be grouped according to their similarity in fatty acids composition.
Collapse
Affiliation(s)
- Renata Menoci Gonçalves
- Food Science Program, State University of Maringá, Colombo Avenue, 5790, Maringá, PR 87020-900 Brazil
| | - Maria Eugênia Petenuci
- Food Science Program, State University of Maringá, Colombo Avenue, 5790, Maringá, PR 87020-900 Brazil
| | | | | | | | - Jessica Santos Pizzo
- Department of Chemistry, State University of Maringá, Maringá, PR 87020-900 Brazil
| | - Isabella Peres Gualda
- Food Science Program, State University of Maringá, Colombo Avenue, 5790, Maringá, PR 87020-900 Brazil
| | | |
Collapse
|
18
|
Hu S, Du M, Su L, Yang H. Phosphatidylserine from Portunus trituberculatus Eggs Alleviates Insulin Resistance and Alters the Gut Microbiota in High-Fat-Diet-Fed Mice. Mar Drugs 2020; 18:md18090483. [PMID: 32971772 PMCID: PMC7551936 DOI: 10.3390/md18090483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Portunus trituberculatus eggs contain phospholipids, whose components and bioactivity are unclear. Here, we investigated the fatty acid composition of phosphatidylserine from P. trituberculatus eggs (Pt-PS). Moreover, its effects on insulin resistance and gut microbiota were also evaluated in high-fat-diet-fed mice. Our results showed that Pt-PS accounted for 26.51% of phospholipids and contained abundant polyunsaturated fatty acids (more than 50% of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)). Animal experiments indicated that Pt-PS significantly decreased body weight and adipose weight gain, improved hyperglycemia and hyperinsulinemia, mitigated insulin resistance, and regulated circulatory cytokines. Pt-PS activated insulin receptor substrate 1 (IRS1) and increased the levels of IRS1-associated phosphatidylinositol 3-hydroxy kinase (PI3K), phosphorylated protein kinase B (Akt) protein, and plasma membrane glucose transporter 4 protein. Furthermore, Pt-PS modified the gut microbiota, inducing, especially, a dramatic decrease in the ratio of Firmicutes to Bacteroidetes at the phylum level, as well as a remarkable improvement in their subordinate categories. Pt-PS also reduced fecal lipopolysaccharide concentration and enhanced fecal acetate, propionate, and butyrate concentrations. Additionally, the effects of Pt-PS on alleviation of insulin resistance and regulation of intestinal bacteria were better than those of phosphatidylserine from soybean. These results suggest that Pt-PS mitigates insulin resistance by altering the gut microbiota. Therefore, Pt-PS may be developed as an effective food supplement for the inhibition of insulin resistance and the regulation of human gut health.
Collapse
Affiliation(s)
- Shiwei Hu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan 316022, China; (S.H.); (M.D.)
| | - Mengyu Du
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan 316022, China; (S.H.); (M.D.)
| | - Laijin Su
- Wenzhou Academy of Agricultural Science, Wenzhou Characteristic Food Resources Engineering and Technology Research Center, Wenzhou 325006, China
- Correspondence: ; Tel.: +86-0580-8129858
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China;
| |
Collapse
|
19
|
The hepatoprotective effects of squid gonad phospholipids on fatty liver disease in zebrafish. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Effect of seasonal variations on fatty acid composition and nutritional profiles of siluriformes fish species from the amazon basin. Food Res Int 2020; 132:109051. [DOI: 10.1016/j.foodres.2020.109051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023]
|
21
|
Zhang Y, Wu G, Zhang Y, Wang X, Jin Q, Zhang H. Advances in exogenous docosahexaenoic acid-containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Compr Rev Food Sci Food Saf 2020; 19:1420-1448. [PMID: 33337094 DOI: 10.1111/1541-4337.12543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In recent years, docosahexaenoic acid-containing phospholipids (DHA-PLs) have attracted much attention because of theirs unique health benefits. Compared with other forms of docosahexaenoic acid (DHA), DHA-PLs possess superior biological effects (e.g., anticancer, lipid metabolism regulation, visual development, and brain and nervous system biochemical reactions), more intricate metabolism mechanisms, and a stronger attraction to consumer. The production of DHA-PLs is hampered by several challenges associated with the limited content of DHA-PLs in natural sources, incomplete utilization of by-products, few microorganisms for DHA-PLs production, high cost, and complex process of artificial preparation of DHA-PLs. In this article, the sources, biological activities, and commercial applications of DHA-PLs were summarized, with intensive discussions on advantages of DHA-PLs over DHA, isomerism of DHA in phospholipids (PLs), and brain health. The excellent biological characteristics of DHA-PLs are primarily concerned with DHA and PLs. The metabolic fate of different DHA-PLs varies from the position of DHA in PLs to polar groups in DHA-PLs. Overall, well understanding of DHA-PLs about their sources and characteristics is critical to accelerate the production of DHA-PLs, economically enhance the value of DHA-PLs, and improve the applicability of DHA-PLs and the acceptance of consumers.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
The Nootropic Drug Α-Glyceryl-Phosphoryl-Ethanolamine Exerts Neuroprotective Effects in Human Hippocampal Cells. Int J Mol Sci 2020; 21:ijms21030941. [PMID: 32023864 PMCID: PMC7038199 DOI: 10.3390/ijms21030941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Brain aging involves changes in the lipid membrane composition that lead to a decrease in membrane excitability and neurotransmitter release. These membrane modifications have been identified as contributing factors in age-related memory decline. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and produce valuable therapeutic effects in brain aging. Among promising drugs, alpha-glycerylphosphorylethanolamine (GPE) has demonstrated protective effects in amyloid-injured astrocytes and in an aging model of human neural stem cells. However, the compound properties on mature neuronal cells remain unexplored. Herein, GPE was tested in human hippocampal neurons, which are involved in learning and memory, and characterized by a functional cholinergic transmission, thus representing a valuable cellular model to explore the beneficial properties of GPE. GPE induced the release of the main membrane phospholipids and of the acetylcholine neurotransmitter. Moreover, the compound reduced lipid peroxidation and enhanced membrane fluidity of human brain cells. GPE counteracted the DNA damage and viability decrease observed in in vitro aged neurons. Among GPE treatment effects, the autophagy was found positively upregulated. Overall, these results confirm the beneficial effects of GPE treatment and suggest the compound as a promising drug to preserve hippocampal neurons and virtually memory performances.
Collapse
|
24
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
25
|
Wang T, Cong PX, Cui J, Jiang S, Xu J, Xue CH, Huang QR, Zhang TT, Wang YM. Digestion, Absorption, and Metabolism Characteristics of EPA-Enriched Phosphoethanolamine Plasmalogens Based on Gastrointestinal Functions in Healthy Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12786-12795. [PMID: 31657926 DOI: 10.1021/acs.jafc.9b06072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
EPA-enriched phosphoethanolamine plasmalogens (EPA-pPE), widely present in marine creatures, is a unique glycerophospholipid with EPA at the sn-2 position of the glycerol backbone. EPA-pPE has been reported to exhibit numerous distinctive bioactivities. However, the digestion, absorption, and metabolism characteristics of EPA-pPE in vivo are not clear, which restrict the molecular mechanism analysis related to its distinctive activities. The aim of the present study was to illustrate the digestion, absorption, and metabolism characteristics of EPA-pPE by lipid analysis in serum, intestinal wall, and content after oral administration of EPA-pPE emulsion. Results showed the EPA percentage of total fatty acids in serum was increasing over time, with two peaks at 5 and 10 h by 1.89 ± 0.2 and 2.58 ± 0.27, respectively, and then fell from 1.89 ± 0.17 at 10 h to 1.35 ± 0.16 at 16 h. In small intestinal content, EPA-pPE was hydrolyzed to lyso-phospholipids and EPA by phospholipases A2 and the vinyl ether bond was retained at the sn-1 position. The released EPA could be quickly taken up into the enterocytes and enter circulation. The comparison of simulated digestion in vitro showed that the distinct digestion and absorption process of EPA-pPE was a unique phenomenon. EPA could be retained in serum at a high level for a substantial period of time, which suggested that EPA-pPE was not just a short-lived circulating molecule.
Collapse
Affiliation(s)
- Teng Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
| | - Pei-Xu Cong
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
| | - Jie Cui
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
| | - Shan Jiang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , Shandong 266237 , People's Republic of China
| | - Qing-Rong Huang
- Rutgers State University , Department of Food Science , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| | - Tian-Tian Zhang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , Shandong 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , Shandong 266237 , People's Republic of China
| |
Collapse
|
26
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
27
|
Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci 2019; 227:1-7. [PMID: 30998938 DOI: 10.1016/j.lfs.2019.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
AIMS The current study aims to evaluate the possible protective effect of omega-3 fatty acids on memory impairment induced by sleep-deprivation in rats. MATERIALS AND METHODS Animals were chronically sleep deprived using the modified multiple platform model (8 h/day for 8 weeks). Omega-3 fatty acids were administered as fish oil via oral gavage at a daily dose of 100 mg omega-3 PUFA/100 g BWT. The spatial learning and memory were evaluated using the radial arm water maze (RAWM). Additionally, the following oxidative stress biomarkers were measured in the hippocampus: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS). KEY FINDINGS Animals in the SD group committed significantly more errors in both short- and long- term memory tests of the RAWM compared to other groups. On the other hand, animals that were sleep deprived and treated with omega-3 fatty acids committed similar number of errors compared to the control group. This indicates that SD impaired both short- and long- term memories, and that chronic omega-3 fatty acids administration prevented these effects. Omega-3 fatty acids also prevented the decreases in hippocampal GPx, catalase and GSH/GSSG ratio and normalized the increases in GSSG levels, which were impaired by SD model. No changes were observed on hippocampal TBARS levels, or activity of SOD among experimental groups. SIGNIFICANCE In conclusion, a protective effect of omega-3 fatty acids administration has been observed against chronic SD-induced memory impairment probably via improving hippocampus antioxidant effects.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fadia Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza I Abu Zamzam
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
28
|
Li Q, Che H, Wang C, Zhang L, Ding L, Xue C, Zhang T, Wang Y. Cerebrosides from Sea Cucumber Improved Aβ1–42‐Induced Cognitive Deficiency in a Rat Model of Alzheimer's Disease. Mol Nutr Food Res 2018; 63:e1800707. [DOI: 10.1002/mnfr.201800707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Qian Li
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Hong‐Xia Che
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- College of Marine Science and Biological EngineeringQingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Cheng‐Cheng Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Ling‐Yu Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Lin Ding
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Chang‐Hu Xue
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| | - Tian‐Tian Zhang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
| | - Yu‐Ming Wang
- College of Food Science and EngineeringOcean University of China Qingdao 266003 Shandong China
- Qingdao National Laboratory for Marine Science and TechnologyLaboratory of Marine Drugs and Biological Products Qingdao 266237 Shandong China
| |
Collapse
|