1
|
Korsirikoon C, Techaniyom P, Kettawan A, Rungruang T, Metheetrairut C, Prombutara P, Kettawan AK. Cold-pressed extraction of perilla seed oil enriched with alpha-linolenic acid mitigates tumour progression and restores gut microbial homeostasis in the AOM/DSS mice model of colitis-associated colorectal cancer. PLoS One 2024; 19:e0315172. [PMID: 39652552 PMCID: PMC11627366 DOI: 10.1371/journal.pone.0315172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The present investigation explores into the influence of dietary nutrients, particularly alpha-linolenic acid (ALA), a plant-derived omega-3 fatty acid abundant in perilla seed oil (PSO), on the development of colitis-associated colorectal cancer (CRC). The study employs a mouse model to scrutinize the effects of ALA-rich PSO in the context of inflammation-driven CRC. Perilla seeds were subjected to oil extraction, and the nutritional composition of the obtained oil was analysed. Male ICR mice, initiated at four weeks of age, were subjected to diets comprising 5%, 10%, or 20% PSO, 10% fish oil, or 5% soybean oil. All groups, with the exception of the control group (5% soybean oil), underwent induction with azoxymethane (AOM) and dextran sulphate sodium (DSS) to instigate CRC. Disease development, colon samples, preneoplastic lesions, dysplasia, and biomarkers were meticulously evaluated. Furthermore, gut microbiota composition was elucidated through 16S rRNA sequencing. The analysis revealed that PSO contained 61.32% ALA and 783.90 mg/kg tocopherols. Mice subjected to diets comprising 5% soybean or 10% fish oil exhibited higher tumour incidence, burden, multiplicity, and aberrant crypt counts. Remarkably, these parameters were significantly reduced in mice fed a 5% PSO diet. Additionally, 5% PSO-fed mice displayed reduced proliferative and pro-inflammatory markers in colon tissues, coupled with an alleviation of AOM/DSS-induced gut dysbiosis. Notably, PSO demonstrated inhibitory effects on colitis-associated CRC in the AOM/DSS mice model, achieved through the suppression of proliferative and pro-inflammatory protein levels, and mitigation of gut dysbiosis, with discernible efficacy observed at a 5% dietary concentration.
Collapse
Affiliation(s)
- Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | | | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Li M, Jiang N, Guo G, Lu S, Li Z, Mu Y, Xia X, Xu Z, Hu Y, Xiang X. Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food. Foods 2024; 13:3615. [PMID: 39594031 PMCID: PMC11593517 DOI: 10.3390/foods13223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Perilla (Perilla frutescens L.) is an annual herbaceous plant whose seed oil is rich in unsaturated fatty acids such as alpha-linolenic acid (ALA). This oil exhibits various health benefits, including antioxidant, anti-inflammatory, lipid-lowering, hypoglycemic, neuroprotective and immunomodulatory activities. In addition, incorporating perilla oil into a diet can effectively increase the abundance of beneficial bacteria in the gut microbiota. However, perilla oil is prone to oxidation, which reduces its nutritional value and lowers its bioavailability. To address these issues, encapsulation technologies such as emulsions, oleogels, liposomes and microcapsules have been employed, showing promising results. Nonetheless, further research is needed to fully elucidate the underlying mechanisms of perilla seed oil's health effects, validate its benefits through large-scale human clinical trials and optimize encapsulation techniques. Future investigations should also explore the synergistic effects of combining perilla seed oil with other functional components and its role in modulating gut microbiota to achieve comprehensive health benefits.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China;
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
| | - Nanjie Jiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
| | - Guangqi Guo
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Shuaijun Lu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziliang Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yujie Mu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
| | - Xiaoyang Xia
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
| | - Zhenxia Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
| | - Yong Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China;
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; (N.J.); (G.G.); (S.L.); (Z.L.); (Y.M.); (X.X.); (Z.X.)
| |
Collapse
|
3
|
Guan L, Zhu L, Zhang X, Han Y, Wang K, Ji N, Yao X, Zhou Y, Li B, Chen Q, Fan J, Sha D, Lu S. Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods. Molecules 2024; 29:5258. [PMID: 39598647 PMCID: PMC11596803 DOI: 10.3390/molecules29225258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Perilla (Perilla frutescens) seeds are emerging as a valuable resource for functional foods and medicines owing to their rich oil and protein content with diverse nutritional and health benefits. Perilla seed oil (PSO) possesses a high level of a-linolenic acid (ALA), a favorable ratio of unsaturated to saturated fatty acids, and other active ingredients such as tocopherols and phytosterols, which contribute to its antioxidant, anti-inflammatory, and cardiovascular protective effects. The balanced amino acid ratio and good functional properties of perilla seed protein make it suitable for a variety of food applications. The chemical composition, health benefits, and potential applications of PSO as well as the structural characterization, functional properties, modification methods, bioactivities, and application scenarios of perilla seed protein are comprehensively presented in this paper. Furthermore, the challenges as well as future prospects and research focus of PSO and perilla seed protein are discussed. The growing interest in plant-based diets and functional foods has made PSO and perilla seed protein promising ingredients for the development of novel foods and health products. The purpose of this paper is to highlight implications for future research and development utilizing these two untapped resources to improve human health and nutrition.
Collapse
Affiliation(s)
- Lijun Guan
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Ling Zhu
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Xindi Zhang
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Yaxi Han
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Kunlun Wang
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Nina Ji
- Institute of Soya Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
| | - Xinmiao Yao
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Ye Zhou
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Bo Li
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Qing Chen
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Jing Fan
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Dixin Sha
- Institute of Food Processing Research, Heilongjiang Province Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Shuwen Lu
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| |
Collapse
|
4
|
Xia J, Yin S, Yu J, Wang J, Jin X, Wang Y, Liu H, Sun G. Improvement in Glycolipid Metabolism Parameters After Supplementing Fish Oil-Derived Omega-3 Fatty Acids Is Associated with Gut Microbiota and Lipid Metabolites in Type 2 Diabetes Mellitus. Nutrients 2024; 16:3755. [PMID: 39519588 PMCID: PMC11547733 DOI: 10.3390/nu16213755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to investigate the effects of fish oil-derived omega-3 polyunsaturated fatty acids (omega-3 PUFAs) on gut microbiota and serum lipid metabolites in T2DM. METHODS In a three-month, randomized, double-blind, placebo-controlled study, 110 T2DM patients received either fish oil (n = 55) or corn oil (n = 55) capsules daily. Serum lipids, glycemic parameters, gut microbiota diversity, and lipidomics were assessed. RESULTS This study found that fish oil-derived omega-3 PUFAs intervention did not significantly lower the fasting plasma glucose levels when compared with the baseline level (p > 0.05). However, serum fasting blood glucose (p = 0.039), glycosylated hemoglobin levels (p = 0.048), HOMA-IR (p = 0.022), total cholesterol (p < 0.001), triglyceride (p = 0.034), LDL cholesterol (p = 0.048), and non-HDL levels (p = 0.046) were significantly lower in the fish oil group compared with the corn oil group after three months of intervention. Also, it altered glycerophospholipid metabolism and gut microbiota. After three months, the fish oil group showed a significantly lower abundance of Desulfobacterota compared with the corn oil control group (p = 0.003), with reduced levels of Colidextribacter (p = 0.002), Ralstonia (p = 0.021), and Klebsiella (p = 0.013). Conversely, the abundance of Limosilactobacillus (p = 0.017), Lactobacillus (p = 0.011), and Haemophilus (p = 0.018) increased significantly. In addition, relevant glycolipid metabolism indicators showed significant correlations with the altered profiles of serum lipid metabolites, intestinal bacteria, and fungi. CONCLUSIONS This study highlights the impact of fish oil-derived omega-3 PUFAs on intestinal microbiota structure and function in patients with type 2 diabetes. The observed decrease in pathogenic bacterial species and the enhancement of beneficial species may have significant implications for gut health and systemic inflammation, both of which are pivotal in managing diabetes. Further research is warranted to comprehensively elucidate the long-term benefits and underlying mechanisms of these microbiota alterations.
Collapse
Affiliation(s)
- Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shiyu Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Junhui Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiongnan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingyi Jin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hechun Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (J.X.); (S.Y.); (J.Y.); (J.W.); (X.J.); (Y.W.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Kaur S, Seem K, Ali A, Jaiswal S, Gumachanamardi P, Kaur G, Singh N, Touthang L, Singh SK, Bhardwaj R, Singh BK, Mishra VK, Riar A. A comprehensive review on nutritional, nutraceutical, and industrial perspectives of perilla ( Perilla frutscens L.) seeds - An orphan oilseed crop. Heliyon 2024; 10:e33281. [PMID: 39022021 PMCID: PMC11252951 DOI: 10.1016/j.heliyon.2024.e33281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
There is a growing need to mainstream orphan or underutilized crops to enhance nutritional security and sustainable agriculture. Among these, Perilla frutescens L. is an important crop due to its rich nutritional and phytochemical content which makes it significant in nutrition, medicine, and industrial sector. Perilla seeds are mainly rich in ω-3 fatty acids, dietary fiber, amino acids, vitamins, and minerals, high α-linolenic acid, which contributes to their health benefits. This review explores the nutritional profile of perilla seeds and highlights its unique composition compared to other oilseed crops. It also analyzes the phytochemical components of perilla seeds and their various biological activities, including antioxidant, antidiabetic, antiobesity, cardioprotective, anticancer, antimicrobial, neuroprotective, and anti-inflammatory effects. These activities demonstrate the potential of perilla seeds in both pharmaceutical and food sectors. The review also covers recent advancements in genomics and transgenic research discussing potential areas for crop improvement. Additionally, it explores the use of perilla seeds in functional foods, blending perilla oil with other oils, and their applications in enhancing product formulations. This review offers valuable insights for researchers, students, policymakers, environmentalists, and industry professionals by detailing the potential of perilla seeds across various sectors. The findings support sustainable agriculture, crop diversification, and innovative product development, thus contributing to the integration of perilla into mainstream agriculture.
Collapse
Affiliation(s)
- Simardeep Kaur
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Karishma Seem
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ansheef Ali
- ICAR-Indian Agricultural Research Institute, Assam, 734301, India
| | - Sandeep Jaiswal
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | | | - Gurkanwal Kaur
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Naseeb Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Letngam Touthang
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | | | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Binay K. Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Vinay Kumar Mishra
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| |
Collapse
|
6
|
Bae SH, Lee MH, Lee JH, Yu Y, Lee J, Kim TH. The Genome of the Korean Island-Originated Perilla citriodora 'Jeju17' Sheds Light on Its Environmental Adaptation and Fatty Acid and Lipid Production Pathways. Genes (Basel) 2023; 14:1898. [PMID: 37895247 PMCID: PMC10606934 DOI: 10.3390/genes14101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Perilla is a key component of Korean food. It contains several plant-specialized metabolites that provide medical benefits. In response to an increased interest in healthy supplement food from the public, people are focusing on the properties of Perilla. Nevertheless, unlike rice and soybeans, there are few studies based on molecular genetics on Perilla, so it is difficult to systematically study the molecular breed. The wild Perilla, Perilla citriodora 'Jeju17', was identified a decade ago on the Korean island of Jeju. Using short-reads, long-reads, and Hi-C, a chromosome-scale genome spanning 676 Mbp, with high contiguity, was assembled. Aligning the 'Jeju17' genome to the 'PC002' Chinese species revealed significant collinearity with respect to the total length. A total of 31,769 coding sequences were predicted, among which 3331 were 'Jeju17'-specific. Gene enrichment of the species-specific gene repertoire highlighted environment adaptation, fatty acid metabolism, and plant-specialized metabolite biosynthesis. Using a homology-based approach, genes involved in fatty acid and lipid triacylglycerol biosynthesis were identified. A total of 22 fatty acid desaturases were found and comprehensively characterized. Expression of the FAD genes in 'Jeju17' was examined at the seed level, and hormone signaling factors were identified. The results showed that the expression of FAD genes in 'Jeju17' at the seed level was high 25 days after flowering, and their responses of hormones and stress were mainly associated with hormone signal transduction and abiotic stress via cis-elements patterns. This study presents a chromosome-level genome assembly of P. citriodora 'Jeju17', the first wild Perilla to be sequenced from the Korean island of Jeju. The analyses provided can be useful in designing ALA-enhanced Perilla genotypes in the future.
Collapse
Affiliation(s)
- Seon-Hwa Bae
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Myoung Hee Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea;
| | - Jeong-Hee Lee
- SEEDERS Inc., 118, Jungang-ro, Jung-gu, Daejeon 34912, Republic of Korea;
| | - Yeisoo Yu
- DNACARE Co., Ltd., 48, Teheran-ro 25-gil, Gangnam-gu, Seoul 06126, Republic of Korea;
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae-Ho Kim
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
7
|
Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023; 28:5883. [PMID: 37570851 PMCID: PMC10421205 DOI: 10.3390/molecules28155883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.
Collapse
Affiliation(s)
- Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yi Nan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Doudou Lu
- Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Fandi Meng
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| |
Collapse
|
8
|
Liu S, Jin X, Shang Y, Wang L, Du K, Chen S, Li J, He J, Fang S, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicity and quality control of Perillae Fructus. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116022. [PMID: 36481246 DOI: 10.1016/j.jep.2022.116022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perilla frutescens (Linnaeus) Britton, Mem. Torrey Bot. Club 5: 277. 1894., is famous as a worldwide plant with multiple medical parts, including leaves, stems, fruits, etc. Perillae Fructus, the desiccative ripe fruit of P. frutescens, is locally called Zisuzi in Chinese Pharmacopoeia. It is a popularly used herb for relieving cough and asthma, dissipating phlegm and treating constipation in some Asian countries, such as China, Japan, India, South Korea, etc. Various chemical compounds were isolated and identified from Perillae Fructus. THE AIM OF THE REVIEW This review aims to summarize the botany, ethnopharmacological applications, phytochemistry, pharmacology, toxicity and quality control of Perillae Fructus to provide scientific evidence for development and utilization Perillae Fructus. MATERIALS AND METHODS Relevant information about Perillae Fructus was collected from ScienceDirect, PubMed, Web of science, CNKI, WanFang data, ancient classics and clinical reports. Some electronic databases were also retrieved. RESULTS Perillae Fructus was exerted to treat cough and asthma in traditional application. It also had the effect on moistening intestine to relieve constipation for tremendous lipid substances. Up to now, 193 compounds have been isolated and identified from Perillae Fructus, mainly including fatty acids, flavonoids, phenolic acids, phytosterols, triterpenoids and volatile oils. As for its pharmacological activities, prevalent traditional applications of Perillae Fructus have been supported by modern pharmacological experiments in vivo or in vitro, such as anti-inflammatory and anti-oxidant effects. Besides, Perillae Fructus also has hypolipidemic, anti-tumor, antibacterial effects, etc. This review will provide a scientific basis for further studies and rational applications of Perillae Fructus in the future. CONCLUSIONS According to its traditional applications, phytochemicals and pharmacological activities, Perillae Fructus was regarded as a valuable herb for application in medicine and food fields. Although some ingredients have been confirmed to have multiple pharmacological activities, their mechanisms of action are still unclear. Further studies on the material basis and mechanism of action are clearly warranted.
Collapse
Affiliation(s)
- Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Aldamarany W, Taocui H, Liling D, Wanfu Y, Zhong G. Oral Supplementation with Three Vegetable Oils Differing in Fatty Acid Composition Alleviates High-Fat Diet-Induced Obesity in Mice by Regulating Inflammation and Lipid Metabolism. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/160186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
10
|
α-Linolenic acid regulates macrophages via GPR120-NLRP3 inflammasome pathway to ameliorate diabetic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Liu Y, Hu X, Zheng W, Zhang L, Gui L, Liang G, Zhang Y, Hu L, Li X, Zhong Y, Su T, Liu X, Cheng J, Gong M. Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach. Front Pharmacol 2022; 13:1011608. [PMID: 36339561 PMCID: PMC9633664 DOI: 10.3389/fphar.2022.1011608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
The 9-(R)-HODE is an active compound isolated from cortex lycii that showed significant hypoglycemic effects in our previous in vitro study. In this study, 9-(R)-HODE’s in vivo hypoglycemic activity and effect on alleviating diabetic complications, together with its molecular mechanism, was investigated using a metabolomics approach. The monitored regulation on dynamic fasting blood glucose, postprandial glucose, body weight, biochemical parameters and histopathological analysis confirmed the hypoglycemic activity and attenuation effect, i.e., renal lesions, of 9-(R)-HODE. Subsequent metabolomic studies indicated that 9-(R)-HODE induced metabolomic alterations primarily by affecting the levels of amino acids, organic acids, alcohols and amines related to amino acid metabolism, glucose metabolism and energy metabolism. By mediating the related metabolism or single molecules related to insulin resistance, e.g., kynurenine, myo-inositol and the branched chain amino acids leucine, isoleucine and valine, 9-(R)-HODE achieved its therapeutic effect. Moreover, the mediation of kynurenine displayed a systematic effect on the liver, kidney, muscle, plasma and faeces. Lipidomic studies revealed that 9-(R)-HODE could reverse the lipid metabolism disorder in diabetic mice mainly by regulating phosphatidylinositols, lysophosphatidylcholines, lysophosphatidylcholines, phosphatidylserine, phosphatidylglycerols, lysophosphatidylglycerols and triglycerides in both tissues and plasma. Treatment with 9-(R)-HODE significantly modified the structure and composition of the gut microbiota. The SCFA-producing bacteria, including Rikenellaceae and Lactobacillaceae at the family level and Ruminiclostridium 6, Ruminococcaceae UCG 014, Mucispirillum, Lactobacillus, Alistipes and Roseburia at the genus level, were increased by 9-(R)-HODE treatment. These results were consistent with the increased SCFA levels in both the colon content and plasma of diabetic mice treated with 9-(R)-HODE. The tissue DESI‒MSI analysis strongly confirmed the validity of the metabolomics approach in illustrating the hypoglycemic and diabetic complications-alleviation effect of 9-(R)-HODE. The significant upregulation of liver glycogen in diabetic mice by 9-(R)-HODE treatment validated the interpretation of the metabolic pathways related to glycogen synthesis in the integrated pathway network. Altogether, 9-(R)-HODE has the potential to be further developed as a promising candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, China
| | - Xinyi Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Luolan Gui
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Liang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meng Gong,
| |
Collapse
|
12
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Yin R, Fu Y, Yousaf L, Xue Y, Hu J, Hu X, Shen Q. Crude and refined millet bran oil alleviate lipid metabolism disorders, oxidative stress and affect the gut microbiota composition in high‐fat diet‐induced mice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruiyang Yin
- Key Laboratory of Plant Protein and Grain processing National Engineering Research Center for Fruits and Vegetable Processing College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yongxia Fu
- Key Laboratory of Plant Protein and Grain processing National Engineering Research Center for Fruits and Vegetable Processing College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Laraib Yousaf
- Key Laboratory of Plant Protein and Grain processing National Engineering Research Center for Fruits and Vegetable Processing College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain processing National Engineering Research Center for Fruits and Vegetable Processing College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain processing National Engineering Research Center for Fruits and Vegetable Processing College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain processing National Engineering Research Center for Fruits and Vegetable Processing College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain processing National Engineering Research Center for Fruits and Vegetable Processing College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
14
|
Advances in Understanding the Genetic Basis of Fatty Acids Biosynthesis in Perilla: An Update. PLANTS 2022; 11:plants11091207. [PMID: 35567213 PMCID: PMC9099743 DOI: 10.3390/plants11091207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids’ pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.
Collapse
|
15
|
Liu H, Li X, Zhu Y, Huang Y, Zhang Q, Lin S, Fang C, Li L, Lv Y, Mei W, Peng X, Yin J, Liu L. Effect of Plant-Derived n-3 Polyunsaturated Fatty Acids on Blood Lipids and Gut Microbiota: A Double-Blind Randomized Controlled Trial. Front Nutr 2022; 9:830960. [PMID: 35223959 PMCID: PMC8873928 DOI: 10.3389/fnut.2022.830960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Background Several cardioprotective mechanisms attributed to n-3 polyunsaturated fatty acids (PUFAs) have been widely documented. Significant interest has recently focused on the role of human gut microbiota in metabolic disorders. However, the role of plant-derived n-3 PUFAs on blood lipid profiles is controversial and the effect on gut microbiota is still unclear. Objectives We aimed to perform a double-blind randomized controlled trial to test the effect of plant-derived n-3 PUFAs on the blood lipids and gut microbiota of patients with marginal hyperlipidemia. Methods According to the inclusion and exclusion criteria, 75 participants with marginal hyperlipidemia were randomly assigned to the intervention group (supplied with n-3 PUFA-enriched plant oil) or control group (supplied with corn oil), respectively, for a 3-month treatment. Participants and assessors were blinded to the allocation. The primary outcomes of the trial were the changes in serum lipid levels. Secondary outcomes were changes in gut microbiota and metabolites. For the primary outcomes, we conducted both an intent-to-treat (ITT) analysis and a per protocol (PP) analysis. For the secondary outcomes, we only conducted the PP analysis among the participants who provided fecal sample. Results Fifty-one participants completed the trial. Relative to the control group, the n-3 PUFA supplementation resulted in significant reduction in total cholesterol (TC) levels (−0.43 mmol/L, 95% CI−0.84 to−0.01 mmol/L, P < 0.05). The n-3 PUFA supplementation was also associated with significantly increased relative abundance of Bacteroidetes in phylum level (P < 0.01; false discovery rate (FDR) corrected p = 0.11), and decreased the ratio between Firmicutes and Bacteroidetes (P < 0.05; FDR corrected p = 0.16). At genus level, the intervention of plant derived n-3 PUFAs resulted in a significant decrease in relative abundance of Phascolarctobacterium (P < 0.01; FDR corrected p = 0.18) and Veillonella (P < 0.01; FDR corrected p = 0.18) after the intervention. Conclusions Our results demonstrated that plant-derived n-3 PUFAs beneficially affected the serum levels of TC and decreased the ratio between Firmicutes and Bacteroidetes during the 12-week intervention period, which might confer advantageous consequences for lipid metabolism and intestinal health.
Collapse
Affiliation(s)
- Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Fang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiawei Yin
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Liegang Liu
| |
Collapse
|
16
|
Beneficial Effects of the Consumption of Hot-Water Extracts of Thinned Immature Mangos (Mangifera indica “Irwin”) on the Hypertriglyceridemia of Apolipoprotein E-Deficient Mice. Metabolites 2022; 12:metabo12020116. [PMID: 35208189 PMCID: PMC8876935 DOI: 10.3390/metabo12020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
The thinned immature fruit of the mango tree (Mangifera indica “Irwin”) are regarded as waste products. In this study, we evaluated the effects of daily consumption of a hot-water extract of thinned immature mango fruits (TIMEx) on the dyslipidemia of apolipoprotein E-deficient (ApoE−/−) mice. ApoE−/− mice and wild-type BALB/c mice were fed a 20% fat diet containing 0%, 0.1%, or 1.0% TIMEx for 8 weeks. Their body mass, food intake, and water consumption were unaffected by the TIMEx. The 1.0% TIMEx supplementation significantly reduced serum triglyceride, but not total cholesterol concentration. This effect was significant in ApoE−/− mice, but less marked under normal conditions in wild-type mice. In addition, the circulating concentrations of three hormones that regulate metabolism, resistin, leptin, and glucose-dependent insulinotropic polypeptide, were reduced by TIMEx consumption, which may be involved in its effect to prevent hypertriglyceridemia. However, none of the concentrations of TIMEx reduced the size of atherosclerotic plaque lesions. In conclusion, daily consumption of TIMEx ameliorates hypertriglyceridemia but not hypercholesterolemia in genetically predisposed mice.
Collapse
|
17
|
Hashimoto M, Matsuzaki K, Maruyama K, Hossain S, Sumiyoshi E, Wakatsuki H, Kato S, Ohno M, Tanabe Y, Kuroda Y, Yamaguchi S, Kajima K, Ohizumi Y, Shido O. Perilla seed oil in combination with the nobiletin-rich ponkan powder enhances cognitive function in healthy elderly Japanese individuals: Possible supplement for brain health in the elderly. Food Funct 2022; 13:2768-2781. [DOI: 10.1039/d1fo03508h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perilla (Perilla frutescens) seed oil (PO), rich in α-linolenic acid (ALA), can improve cognitive function in healthy elderly Japanese people. Here, supplements containing either PO alone or PO with nobiletin-rich...
Collapse
|
18
|
Kangwan N, Pintha K, Khanaree C, Kongkarnka S, Chewonarin T, Suttajit M. Anti-inflammatory effect of Perilla frutescens seed oil rich in omega-3 fatty acid on dextran sodium sulfate-induced colitis in mice. Res Pharm Sci 2021; 16:464-473. [PMID: 34522194 PMCID: PMC8407152 DOI: 10.4103/1735-5362.323913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023] Open
Abstract
Background and purpose Ulcerative colitis is a chronic inflammatory bowel disease that involves diffused inflammation of the large intestine. Omega-3 fatty acid (FA) has been known to regulate the inflammatory response associated with ulcerative colitis pathogenesis. Perilla frutescens is a valuable source of omega-3 FA and α-linolenic acid (ALA) contained in its seed oil. Therefore, the aim of this study was to evaluate the anti-inflammatory effect of Perilla seed oil (PSO) on colitis induced by dextran sulfate sodium (DSS) in a mouse model. Experimental approach PSO was extracted using a cold-pressed extractor and FA composition of PSO was analyzed by GC-MS. Acute colitis in mice was induced with 3% DSS in drinking water for 7 days. Some mice were treated with PSO (20, 100, 200 mg/kg BW) for 3 weeks before the DSS administration. Sulfasalazine was used as a positive control. The clinical features, histopathologic, serum, and gene expression of proinflammatory cytokines in the colon were assessed. Finding/Results PSO contained the highest proportion of ALA (61.51%). Furthermore, PSO pretreatment evidently reduced body weight loss, diminished diarrhea, gross bleeding, and DSS-induced colon shortening. PSO pretreatment attenuated histopathological changes in response to DSS-induced colitis. PSO pretreatment also markedly decreased inflammatory response in serum and the colon tissue of DSS-induced mice. Conclusion and implication ALA in PSO is suggested to be mainly responsible for the reduction of DSS-induced colitis through suppressing inflammatory markers. PSO could be further developed as a functional health supplement, which would be beneficial for anti-inflammation in the colonic mucosa.
Collapse
Affiliation(s)
- Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Chakkrit Khanaree
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
19
|
Perilla Seed Oil Alleviates Gut Dysbiosis, Intestinal Inflammation and Metabolic Disturbance in Obese-Insulin-Resistant Rats. Nutrients 2021; 13:nu13093141. [PMID: 34579018 PMCID: PMC8467704 DOI: 10.3390/nu13093141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background: High-fat diet (HFD) consumption induced gut dysbiosis, inflammation, obese-insulin resistance. Perilla seed oil (PSO) is a rich source of omega-3 polyunsaturated fatty acids with health promotional effects. However, the effects of PSO on gut microbiota/inflammation and metabolic disturbance in HFD-induced obesity have not been investigated. Therefore, we aimed to compare the effects of different doses of PSO and metformin on gut microbiota/inflammation, and metabolic parameters in HFD-fed rats. Methods: Thirty-six male Wistar rats were fed either a normal diet or an HFD for 24 weeks. At week 13, HFD-fed rats received either 50, 100, and 500 mg/kg/day of PSO or 300 mg/kg/day metformin for 12 weeks. After 24 weeks, the metabolic parameters, gut microbiota, gut barrier, inflammation, and oxidative stress were determined. Results: HFD-fed rats showed gut dysbiosis, gut barrier disruption with inflammation, increased oxidative stress, metabolic endotoxemia, and insulin resistance. Treatment with PSO and metformin not only effectively attenuated gut dysbiosis, but also improved gut barrier integrity and decreased gut inflammation. PSO also decreased oxidative stress, metabolic endotoxemia, and insulin resistance in HFD-fed rats. Metformin had greater benefits than PSO. Conclusion: PSO and metformin had the beneficial effect on attenuating gut inflammation and metabolic disturbance in obese-insulin resistance.
Collapse
|
20
|
Wang F, Hu M, Zhu H, Yang C, Xia H, Yang X, Yang L, Sun G. MyD88 determines the protective effects of fish oil and perilla oil against metabolic disorders and inflammation in adipose tissue from mice fed a high-fat diet. Nutr Diabetes 2021; 11:23. [PMID: 34168108 PMCID: PMC8225863 DOI: 10.1038/s41387-021-00159-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The beneficial effects of ω-3 polyunsaturated fatty acids (PUFA) vary between different sources. However, there is a paucity of comparative studies regarding the effects and mechanisms of marine and plant ω-3 PUFA on obesity. OBJECTIVE The aim of this study was to evaluate the effects of fish oil (FO) and perilla oil (PO) on glucolipid metabolism, inflammation, and adipokine in mice fed a high-fat (HF) diet in association with the contribution of toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) pathway. METHODS C57BL/6J mice and MyD88-/- mice were randomly divided into 4 groups: normal chow diet, HF diet, HF diet accompanied by daily gavage with either FO or PO. After 4 weeks, blood biochemistries, adipocyte histology, mRNA, and protein expression of MyD88-dependent and -independent pathways of TLR4 signaling in epididymal adipose tissue were measured. RESULTS In C57BL/6J mice, there were no statistical differences between FO and PO in decreasing body weight, glucose, insulin, triglyceride, total cholesterol, interleukin-6, and increasing adipocyte counts. FO and PO decreased mRNA and protein expression of TLR4, MyD88, tumor necrosis factor receptor-associated factor 6, inhibitor of nuclear factor kappa B kinase beta and nuclear factor-kappa B p65. In MyD88-/- mice, the beneficial effects of FO and PO on HF diet-induced metabolism abnormalities and inflammation were abolished. FO and PO had no impacts on mRNA and protein expression of receptor-interacting protein-1, interferon regulate factor 3, and nuclear factor-kappa B p65. CONCLUSION FO and PO exhibit similar protective effects on metabolic disorders and inflammation through inhibiting TLR4 signaling in a manner dependent on MyD88. These findings highlight plant ω-3 PUFA as an attractive alternative source of marine ω-3 PUFA and reveal a mechanistic insight for preventive benefits of ω-3 PUFA in obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Mingyuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Wannan Medical College, Wuhu, China
| | - Hangju Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Cancer Hospital, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
21
|
Pan L, Zhou Z, Han Y. Exopolysaccharide from Leuconostoc pseudomesenteroides XG5 delay the onset of autoimmune diabetes by modulating gut microbiota and its metabolites SCFAs in NOD mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Dong XJ, Chen JY, Chen SF, Li Y, Zhao XJ. The composition and anti-inflammatory properties of pumpkin seeds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00783-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Liu H, Zhu H, Xia H, Yang X, Yang L, Wang S, Wen J, Sun G. Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota. Food Res Int 2020; 141:110078. [PMID: 33641963 DOI: 10.1016/j.foodres.2020.110078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
The study aimed to investigate the different effects of high-fat (HF) diets rich in different oils on lipid metabolism, oxidative stress, and gut mirobiota. C57BL/6 mice were divided into 4 groups: (1) control group (CG) was fed with normal diet, (2) olive oil (OO) group was fed with high-fat diet containing OO, (3) lard oil (LO) group was fed with high-fat diet containing LO, (4) soybean oil (SO) group was fed with high-fat diet containing SO. After 12 weeks, serum lipids, and oxidative stress indices were analyzed. Gut microbiota analysis was carried out based on the sequencing results of 16S rRNA. High fat diet can increase serum and liver lipids and upregulate sterol regulatory element-binding protein-1c related genes expression. Serum and liver malondialdehyde (MDA) levels in LO group were significantly higher than those in CG and OO groups. In CG, the family Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Desulfovibrionaceae had the large effect sizes. HF diets resulted in the increase of Actinobacteria and Enterococcaceae abundance, and the decrease of Bacteroidetes, Proteobacteria Lactobacillales and microbiota diversity. The abundance of Actinobacteria and Lactobacillales is the link to the serum TC and MDA levels. HF diets have the harmful influence on the serum lipids, oxidative stress and endothelial function. They can also cause gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Hangju Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University. 42 Baiziting, Nanjing, 2100009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, China.
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, China.
| | - Jingyuan Wen
- The School of Pharmacy, Faculty of Health Science, University of Auckland, New Zealand.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, China.
| |
Collapse
|
24
|
Chen L, Qu S, Yang K, Liu M, Li YX, Keller NP, Zeng X, Tian J. Perillaldehyde: A promising antifungal agent to treat oropharyngeal candidiasis. Biochem Pharmacol 2020; 180:114201. [PMID: 32822688 DOI: 10.1016/j.bcp.2020.114201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Perillaldehyde (PAE), a natural monoterpenoid agent extracted from Perilla frutescence, PAE has been reported to present various physiological capabilities, such as anti-inflammation, anti-oxidative and anti-fungal. In this study, we show that PAE exhibits strong antifungal activity against Candida albicans (C. albicans). C. albicans, a fungal pathogen with high incidence of antifungal resistance in clinical settings, is the major cause of oropharyngeal candidiasis (OPC). OPC is characterized by inflammatory immunological responses to fungal infections. Our in vitro results show PAE inhibited several virulence attributes of C. albicans including biofilm formation, yeast-to-hyphal transition and secreted aspartic proteinases (SAPs) gene expression. Using an experimental murine model of OPC, we found that PAE inhibited NLRP3 inflammasome assembly, reduced the excessive accumulation of ROS and prevented the p65 transfer in nuclear; processes all leading to reduced inflammation burden in the host. Together, this supports use PAE as a promising new agent to improve OPC.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Su Qu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Kunlong Yang
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Man Liu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Yong-Xin Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, and Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen 518037, Guangdong Province, PR China.
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
25
|
Yin R, Xue Y, Hu J, Hu X, Shen Q. The effects of diet and streptozotocin on metabolism and gut microbiota in a type 2 diabetes mellitus mouse model. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1761302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ruiyang Yin
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain processing, National Engineering Research Center for Fruits and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Li P, Huang J, Xiao N, Cai X, Yang Y, Deng J, Zhang LH, Du B. Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats. Food Funct 2020; 11:5827-5841. [PMID: 32648886 DOI: 10.1039/d0fo01178a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary ω-3 polyunsaturated fatty acids (PUFAs) are beneficial for humans against the development of hyperlipidaemia, but the underlying mechanisms are still poorly understood. Here, we demonstrated that oral consumption of sacha inchi oil, which is rich in α-linolenic acid, alleviated dyslipidemia, hepatic steatosis and inflammatory infiltration in high-fat diet (HFD)-fed rats. Sacha inchi oil administration reversed gut microbiota dysbiosis and altered the gut microbiota metabolome and in particular prevented bile acid dysmetabolism caused by a HFD. Sacha inchi oil intake ameliorated hepatic lipid dysmetabolism in HFD-fed rats, via potentiating the biosynthesis and reuptake of bile acids, reducing the de novo lipogenesis, promoting fatty acid beta-oxidation, and alleviating the dysregulation of glycerolipid, glycerophospholipid, and sphingolipid metabolisms. The results showed that dietary sacha inchi oil can alleviate gut microbiota dysbiosis and reduce lipid dysmetabolism in HFD rats, and provide novel insights into the molecular mechanisms by which plant-derived ω-3 PUFAs prevent the development of hyperlipidaemia.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang F, Xu T, Zhang Y, Zheng T, He Y, He F, Jiang Y. Long-term combined administration of Bifidobacterium bifidum TMC3115 and Lactobacillus plantarum 45 alleviates spatial memory impairment and gut dysbiosis in APP/PS1 mice. FEMS Microbiol Lett 2020; 367:5815078. [PMID: 32239209 DOI: 10.1093/femsle/fnaa048] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to determine the effects of Bifidobacterium bifidum TMC3115, Lactobacillus plantarum 45 (LP45) and their combined use on cognitive performance and gut microbiota in APP/PS1 mice. The APP/PS1 mice were randomly divided into four groups: Alzheimer's disease (AD) model group, TMC3115 group [1 × 109 colony forming unit (CFU)], LP45 group (1 × 109 CFU) and a mixture group of TMC3115 (5 × 108 CFU) and LP45 (5 × 108 CFU). The wild-type littermates were chosen as normal control. The mice were sacrificed at the end of 22 weeks after behavioral evaluation. Collected cecum content was analyzed using 16S rRNA sequencing. Combined use of TMC3115 and LP45 significantly increased the times across the platform, time spent in the target quadrant compared with the AD, TMC3115 and LP45 groups in Morris water maze test. Microbiota analysis showed that combined TMC3115 and LP45 supplementation significantly increased observed species and beta diversity, and reversed gut dysbiosis by decreasing the abundance of Bacteroides and increasing the abundance of Acetatifactor and Millionella. These results indicate the long-term combined administration of TMC3115 and LP45 can improve spatial memory impairment in APP/PS1 mice and suggest that modifying the gut microbiome may provide potential benefits for AD patients.
Collapse
Affiliation(s)
- Feng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tong Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yujie Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yunling He
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fang He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yugang Jiang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
28
|
Zhu L, Sha L, Li K, Wang Z, Wang T, Li Y, Liu P, Dong X, Dong Y, Zhang X, Wang H. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats. Lipids Health Dis 2020; 19:20. [PMID: 32028957 PMCID: PMC7006389 DOI: 10.1186/s12944-019-1167-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is closely associated with hyperglycemia, abnormal lipid profiles, chronic low-grade inflammation and gut dysbiosis. Dietary intervention plays a crucial role in the control of diabetes. Flaxseed oil (FO), a plant-derived omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), is rich in α-linolenic acid (ALA) which has been proved to benefit for chronic metabolic disease. However, the exact effects of dietary FO on T2DM remains largely unclear. METHODS In the present study, SD rats were randomly allocated into four groups: pair-fed (PF) with corn oil (CO) group (PF/CO); DM with CO group (DM/CO); PF with FO group (PF/FO); DM with FO group (DM/FO). A diabetic rat model was generated by a single intraperitoneal injection of streptozotocin-nicotinamide (STZ-NA). After 5 weeks of intervention, rats were euthanized and associated indications were investigated. RESULTS Dietary FO significantly reduced fasting blood glucose (FBG), glycated hemoglobin (GHb), blood lipid, plasma lipopolysaccharide (LPS), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-17A and malondialdehyde (MDA), compared to control group, respectively. Moreover, body mass (BM) and superoxide dismutase (SOD) in DM/FO group were dramatically increased respectively, compared with those in DM/CO group. But insulin (INS) and homeostasis model assessment of insulin resistance (HOMA-IR) remained no significant difference between DM/CO group and DM/FO group. Sequencing analysis of gut microbiota showed a reduction in the relative abundance of Firmicutes and Blautia, as well as a reduction in the ratio of Bacteroidetes-Firmicutes in DM/FO group compared to DM/CO group. An elevation in the relative abundance of Bacteroidetes and Alistipes were detected in DM/FO group. Acetic acid, propionic acid and butyric acid belonging to short chain fatty acids (SCFAs) as gut microbiota metabolites, were dramatically increased after FO intervention. Correlation analysis revealed that the relative abundance of Firmicutes and Blautia were positively correlated with IL-1β, TNF-α, IL-6, IL-17A or LPS, respectively. Additionally, Bacteroidetes and Alistipes were negatively correlated with LPS. CONCLUSIONS Taken together, dietary FO ameliorated T2DM via suppressing inflammation and modulating gut microbiota, which may potentially contribute to dietary control of diabetes.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Liping Sha
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ke Li
- Endocrinology Department, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, Ningxia, China
| | - Zhen Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ping Liu
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoying Dong
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Youping Dong
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
29
|
Yuan Q, Zhan B, Chang R, Du M, Mao X. Antidiabetic Effect of Casein Glycomacropeptide Hydrolysates on High-Fat Diet and STZ-Induced Diabetic Mice via Regulating Insulin Signaling in Skeletal Muscle and Modulating Gut Microbiota. Nutrients 2020; 12:nu12010220. [PMID: 31952248 PMCID: PMC7019650 DOI: 10.3390/nu12010220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the effects and the underlying mechanisms of casein glycomacropeptide hydrolysate (GHP) on high-fat diet-fed and streptozotocin-induced type 2 diabetes (T2D) in C57BL/6J mice. Results showed that 8-week GHP supplementation significantly decreased fasting blood glucose levels, restored insulin production, improved glucose tolerance and insulin tolerance, and alleviated dyslipidemia in T2D mice. In addition, GHP supplementation reduced the concentration of lipopolysaccharides (LPSs) and pro-inflammatory cytokines in serum, which led to reduced systematic inflammation. Furthermore, GHP supplementation increased muscle glycogen content in diabetic mice, which was probably due to the regulation of glycogen synthase kinase 3 beta and glycogen synthase. GHP regulated the insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B pathway in skeletal muscle, which promoted glucose transporter 4 (GLUT4) translocation. Moreover, GHP modulated the overall structure and diversity of gut microbiota in T2D mice. GHP increased the Bacteroidetes/Firmicutes ratio and the abundance of S24-7, Ruminiclostridium, Blautia and Allobaculum, which might contribute to its antidiabetic effect. Taken together, our findings demonstrate that the antidiabetic effect of GHP may be associated with the recovery of skeletal muscle insulin sensitivity and the regulation of gut microbiota.
Collapse
Affiliation(s)
- Qichen Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Y.)
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Biyuan Zhan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Rui Chang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Y.)
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Y.)
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-6273-8684
| |
Collapse
|
30
|
Dhyani A, Chopra R, Garg M. A Review on Nutritional Value, Functional Properties and Pharmacological Application of Perilla (Perilla Frutescens L.). ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Perilla frutescens is an annual herb belonging to the mint family (Lamiaceae). It is majorly produced in countries like China, Japan, India, Thailand and Korea. Recently, Perilla plant is gaining more attention because of its medicinal benefits and phytochemical contents. The major phytochemical compounds reported in this species are phenolic compounds (Rosmarinic acid, caffeic acid, ferulic acid), flavonoids (luteolin, apigenin), Phytosterols, Tocopherols, Policosanols and Fatty acid. Perilla seed oil is also a rich source of essential fatty acid such as α-linolenic acid (54-64%) and linoleic acid (14%). Perilla seeds and its oils have been widely used in traditional nutritional and medicinal formulations. Biological analysis of Perilla seeds revealed that it showed anticancer, ant-diabetic, antiasthma, antimicrobial, anti-inflammatory, antioxidant and cardioprotective effect. The aim of this review is to provide an update on the nutritional composition, phytochemical profile and pharmacological research of Perilla seed.
Collapse
Affiliation(s)
- Akriti Dhyani
- Department of Foods and Nutrition, Institute of Home Economics, University of Delhi, F-4 Hauz Khas Enclave, New Delhi, 110016, India
| | - Rajni Chopra
- Department of Foods and Nutrition, Institute of Home Economics, University of Delhi, F-4 Hauz Khas Enclave, New Delhi, 110016, India
| | - Meenakshi Garg
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi, 110075, India
| |
Collapse
|
31
|
Wang F, Zhu H, Hu M, Wang J, Xia H, Yang X, Yang L, Sun G. Perilla Oil Supplementation Improves Hypertriglyceridemia and Gut Dysbiosis in Diabetic KKAy Mice. Mol Nutr Food Res 2018; 62:e1800299. [PMID: 30358922 PMCID: PMC6646911 DOI: 10.1002/mnfr.201800299] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/13/2018] [Indexed: 12/18/2022]
Abstract
SCOPE The aim of this study is to examine whether perilla oil supplementation improves glucolipid metabolism and modulates gut microbiota in diabetic KKAy mice. METHODS AND RESULTS The successfully established diabetic KKAy mice are randomized into four groups: diabetic model (DM), low-dose perilla oil (LPO), middle-dose perilla oil (MPO), and high-dose perilla oil (HPO). C57BL/6J mice are fed a chow diet as normal control (NC). At the end of 12 weeks, mice are euthanized and glucolipid indications are analyzed. Gut microbiota analysis is carried out based on the sequencing results on V4 region of 16S rRNA. Although serum glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, abundance-based coverage estimator, and shannon are unchanged, serum triglyceride significantly decreases in LPO compared with DM. The histopathological changes of hepatocellular macrovesicular steatosis and adipocyte hypertrophy are ameliorated by perilla oil supplementation. Blautia is significantly decreased in LPO, MPO, and HPO, compared with DM. Nonmetric multidimensional scaling analysis shows NC and LPO are relatively coherent. CONCLUSION These findings indicate that dietary supplementation with perilla oil can improve hypertriglyceridemia and gut dysbiosis in diabetic KKAy mice, which can be associated with potential benefits to human health.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
- Tianjin Institute of Environmental and Operational MedicineTianjinChina
| | - Hangju Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
- Jiangsu Cancer HospitalNanjingChina
| | - Mingyuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Jing Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| |
Collapse
|