1
|
Gan N, Song Y, Li Y, Liu P, Chen S, He Y, Zeng T, Wang W, Wu D. Characterization of the effects of bridging linker on the β-Lactoglobulin binding mechanism on the nanoscale metal-organic frameworks. Food Chem 2025; 464:141715. [PMID: 39442220 DOI: 10.1016/j.foodchem.2024.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Revealing the interaction modes between nanoscale metal-organic frameworks (NMOFs) and food matrix is crucial for functional release but it still remains largely unknown to date. This study specifically focused on the milk protein adsorption mechanism of NMOFs using UiO66/UiO66-NH2 and β-lactoglobulin (β-LG) as models. UiO66 and UiO66-NH2 quenched the fluorescence of β-LG via static mechanism. Due to the enhanced electrostatic forces caused by NH2, UiO66-NH2-β-LG (2.83 × 105 mol·L-1) exhibited higher binding constant than UiO66-β-LG (2.61 × 105 mol·L-1), while UiO66 with higher hydrophobicity adsorbed more β-LG. The defects of UiO influenced the binding sites on the β-LG, and the higher the defect degree, the higher the binding energy. For the stability of the system, the H-bonding between UiO66 and SER30/PRO38, and the hydrophobic interaction between UiO66-NH2 and LYS101 played important roles. Furthermore, the secondary structure content of β-LG changed after interacting with both UiO, resulting in reduced density of β-LG.
Collapse
Affiliation(s)
- Na Gan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yilin Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Peiran Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yi He
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Wei Wang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China.
| | - Di Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
2
|
Mauser A, Gensberger-Reigl S, Dalabasmaz S, Schichtl TM, Dittrich D, Pischetsrieder M. Influence of Software Settings on the Identification Rate, Quantification Results, and Reproducibility in Profiling Post-Translational Modifications by Microflow Liquid Chromatography-Ion Mobility-Quadrupole Time-Of-Flight Analysis Using PEAKS Software. J Proteome Res 2024; 23:4242-4253. [PMID: 39284794 DOI: 10.1021/acs.jproteome.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The influence of data evaluation parameters on qualitative and quantitative results of untargeted shotgun profiling of enzymatic and nonenzymatic post-translational modifications (PTMs) was investigated in a model of bovine whey protein α-lactalbumin heated with lactose. Based on the same raw data, individual adjustments to the protein database and enzyme settings of PEAKS studio software increased the identification rate from 27 unmodified peptides to 48 and from 322 peptides in total to 535. The qualitative and quantitative reproducibility was also assessed based on 18 measurements of one sample across three batches. A total of 570 peptides were detected. While 89 peptides were identified in all measurements, the majority of peptides (161) were detected only once and mostly based on nonindicative spectra. The reproducibility of label-free quantification (LFQ) in six measurements of the same sample was similar after processing the data by either the PTM algorithm or the LFQ algorithm. In both cases, about one-third of the peptides showed a coefficient of variation of above 20%. However, the LFQ algorithm increased the number of quantified peptides from 75 to 179. Data are available at the PRIDE Archive with the data set identifier PXD050363.
Collapse
Affiliation(s)
- Andreas Mauser
- Department of Chemistry and Pharmacy, Chair of Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Sabrina Gensberger-Reigl
- Department of Chemistry and Pharmacy, Chair of Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Sevim Dalabasmaz
- Department of Chemistry and Pharmacy, Chair of Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Theresa Maria Schichtl
- Department of Chemistry and Pharmacy, Chair of Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Daniel Dittrich
- Department of Chemistry and Pharmacy, Chair of Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Chair of Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
3
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Liu J, Zhang X, Liu Y, Wu Z, Cui Z, Pan X, Zheng Y, Wang J, Wang K, Zhang Y. Intestinal lymphatic transport of Smilax china L. pectic polysaccharide via Peyer's patches and its uptake and transport mechanisms in mononuclear phagocytes. Carbohydr Polym 2024; 339:122256. [PMID: 38823922 DOI: 10.1016/j.carbpol.2024.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.
Collapse
Affiliation(s)
- Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Xiaoke Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Yan Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Xianglin Pan
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yuheng Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China.
| |
Collapse
|
5
|
Tang J, Teodorowicz M, Boeren S, Wichers HJ, Hettinga KA. sRAGE-binding and antimicrobial bioactivities of soy and pea protein after heating and in vitro infant digestion. Food Res Int 2024; 183:114224. [PMID: 38760143 DOI: 10.1016/j.foodres.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
During infant formula production, proteins are always heated, potentially affecting their digestibility and the bioactivities of resulting peptides. Although plant proteins are a promising dairy alternative for infant formula, they remain understudied, necessitating further investigations. Therefore, this research aimed to fill this gap by assessing the impact of different heating modes on soy protein (SP) and pea protein (PP), focusing on glycation levels, peptide formation during in vitro infant digestion, and immune protection potential (sRAGE-binding and antimicrobial activities) of the resulting peptides. Consequently, dry heating led to increased glycation and glycated peptide production, particularly with higher glycation in PP than SP. Moreover, PP exhibited an overall stronger sRAGE-binding capacity than SP, regardless of heating and digestion conditions. Regarding antimicrobial activity, both SP and PP-derived peptides displayed reduced effectiveness against Enterobacter cloacae after dry heating. Additionally, Staphylococcus epidermidis was differently inhibited, where PP-derived peptides showed inherent inhibition. The primary determinant of sRAGE-binding and antimicrobial potential in digestion-derived peptides was the protein source. Subsequent bioinformatics analysis predicted 519 and 133 potential antimicrobial peptides in SP and PP, respectively. This study emphasises the importance of protein source for infant formula to ensure infant health.
Collapse
Affiliation(s)
- Jiaying Tang
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Malgorzata Teodorowicz
- Cell Biology & Immunology, Wageningen University & Research, Wageningen, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Harry J Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Jensen SA, Fiocchi A, Baars T, Jordakieva G, Nowak-Wegrzyn A, Pali-Schöll I, Passanisi S, Pranger CL, Roth-Walter F, Takkinen K, Assa'ad AH, Venter C, Jensen-Jarolim E. Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines update - III - Cow's milk allergens and mechanisms triggering immune activation. World Allergy Organ J 2022; 15:100668. [PMID: 36185551 PMCID: PMC9483786 DOI: 10.1016/j.waojou.2022.100668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background The immunopathogenesis of cow's milk protein allergy (CMPA) is based on different mechanisms related to immune recognition of protein epitopes, which are affected by industrial processing. Purpose The purpose of this WAO DRACMA paper is to: (i) give a comprehensive overview of milk protein allergens, (ii) to review their immunogenicity and allergenicity in the context of industrial processing, and (iii) to review the milk-related immune mechanisms triggering IgE-mediated immediate type hypersensitivity reactions, mixed reactions and non-IgE mediated hypersensitivities. Results The main cow’s milk allergens – α-lactalbumin, β-lactoglobulin, serum albumin, caseins, bovine serum albumins, and others – may determine allergic reactions through a range of mechanisms. All marketed milk and milk products have undergone industrial processing that involves heating, filtration, and defatting. Milk processing results in structural changes of immunomodulatory proteins, leads to a loss of lipophilic compounds in the matrix, and hence to a higher allergenicity of industrially processed milk products. Thereby, the tolerogenic capacity of raw farm milk, associated with the whey proteins α-lactalbumin and β-lactoglobulin and their lipophilic ligands, is lost. Conclusion The spectrum of immunopathogenic mechanisms underlying cow's milk allergy (CMA) is wide. Unprocessed, fresh cow's milk, like human breast milk, contains various tolerogenic factors that are impaired by industrial processing. Further studies focusing on the immunological consequences of milk processing are warranted to understand on a molecular basis to what extent processing procedures make single milk compounds into allergens.
Collapse
Affiliation(s)
- Sebastian A Jensen
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,University Clinics for Ear Nose and Throat, Medical University Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Alessandro Fiocchi
- Allergy Unit - Area of Translational Research in Pediatric Specialities, Bambino Gesù Children's Hospital, Rome, Italy
| | - Ton Baars
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, NYU Grossman School of Medicine, Hassenfeld Childrens' Hospital, New York, NY, USA.,Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Isabella Pali-Schöll
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,AllergyCare - Allergy Diagnosis Center Vienna, Private Clinics Döbling, Vienna, Austria
| | - Stefano Passanisi
- Department of Human Pathology of Adult and Developmental Age, University of Messina, Italy
| | - Christina L Pranger
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- University Clinics for Ear Nose and Throat, Medical University Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | | | - Amal H Assa'ad
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carina Venter
- Childrenás Hospital Colorado, University of Colorado, Denver, CO, USA
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,AllergyCare - Allergy Diagnosis Center Vienna, Private Clinics Döbling, Vienna, Austria
| | | |
Collapse
|
7
|
Receptor Mediated Effects of Advanced Glycation End Products (AGEs) on Innate and Adaptative Immunity: Relevance for Food Allergy. Nutrients 2022; 14:nu14020371. [PMID: 35057553 PMCID: PMC8778532 DOI: 10.3390/nu14020371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
As of late, evidence has been emerging that the Maillard reaction (MR, also referred to as glycation) affects the structure and function of food proteins. MR induces the conformational and chemical modification of food proteins, not only on the level of IgG/IgE recognition, but also by increasing the interaction and recognition of these modified proteins by antigen-presenting cells (APCs). This affects their biological properties, including digestibility, bioavailability, immunogenicity, and ultimately their allergenicity. APCs possess various receptors that recognize glycation structures, which include receptor for advanced glycation end products (RAGE), scavenger receptors (SRs), galectin-3 and CD36. Through these receptors, glycation structures may influence the recognition, uptake and antigen-processing of food allergens by dendritic cells (DCs) and monocytes. This may lead to enhanced cytokine production and maturation of DCs, and may also induce adaptive immune responses to the antigens/allergens as a result of antigen uptake, processing and presentation to T cells. Here, we aim to review the current literature on the immunogenicity of AGEs originating from food (exogenous or dietary AGEs) in relation to AGEs that are formed within the body (endogenous AGEs), their interactions with receptors present on immune cells, and their effects on the activation of the innate as well as the adaptive immune system. Finally, we review the clinical relevance of AGEs in food allergies.
Collapse
|
8
|
Zenker HE, Teodorowicz M, Wichers HJ, Hettinga KA. No Glycation Required: Interference of Casein in AGE Receptor Binding Tests. Foods 2021; 10:foods10081836. [PMID: 34441613 PMCID: PMC8394258 DOI: 10.3390/foods10081836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
For the determination of the binding of heated cow’s milk whey proteins such as β-lactoglobulin to the receptors expressed on immune cells, inhibition ELISA with the soluble form of the receptor for advanced glycation end products (sRAGE) and scavenger receptor class B (CD36) has been successfully used in the past. However, binding to heated and glycated caseins in this read-out system has not been tested. In this study, inhibition ELISA was applied to measure the binding of cow’s milk casein alone, as well as all milk proteins together, which underwent differential heat treatment, to sRAGE and CD36, and we compared those results to a dot blot read out. Moreover, binding to sRAGE and CD36 of differentially heated milk protein was measured before and after in vitro digestion. Casein showed binding to sRAGE and CD36, independent from the heat treatment, in ELISA, while the dot blot showed only binding to high-temperature-heated milk protein, indicating that the binding is not related to processing but to the physicochemical characteristics of the casein. This binding decreased after passage of casein through the intestinal phase.
Collapse
Affiliation(s)
- Hannah E. Zenker
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
| | - Malgorzata Teodorowicz
- Cell Biology & Immunology, Wageningen University & Research Centre, 6700 AH Wageningen, The Netherlands;
| | - Harry J. Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
| | - Kasper A. Hettinga
- Food Quality & Design Group, Wageningen University & Research Centre, 6708 WG Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
9
|
Teodorowicz M, Zenker HE, Ewaz A, Tsallis T, Mauser A, Gensberger‐Reigl S, de Jong NW, Hettinga KA, Wichers HJ, van Neerven RJJ, Savelkoul HFJ. Enhanced Uptake of Processed Bovine β-Lactoglobulin by Antigen Presenting Cells: Identification of Receptors and Implications for Allergenicity. Mol Nutr Food Res 2021; 65:e2000834. [PMID: 33559978 PMCID: PMC8244112 DOI: 10.1002/mnfr.202000834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Indexed: 12/12/2022]
Abstract
SCOPE β-lactoglobulin (BLG) is a major cow milk allergen encountered by the immune system of infants fed with milk-based formulas. To determine the effect of processing on immunogenicity of BLG, this article characterized how heated and glycated BLG are recognized and internalized by APCs. Also, the effect of heat-induced structural changes as well as gastrointestinal digestion on immunogenicity of BLG is evaluated. METHODS AND RESULTS The binding and uptake of BLG from raw cow milk and heated either alone (BLG-H) or with lactose/glucose (BLG-Lac and BLG-Glu) to the receptors present on APCs are analyzed by ELISA and cell-binding assays. Heated and glycated BLG is internalized via galectin-3 (Gal-3)and scavenger receptors (CD36 and SR-AI) while binding to the receptor for advanced glycation end products (R AGE) does not cause internalization. Receptor affinity of BLG is dependent on increased hydrophobicity, β-sheet exposure and aggregation. Digested glycated BLG maintained binding to sRAGE and Gal-3 but not to CD36 and SR-AI, and is detected on the surface of APCs. This suggests a mechanism via which digested glycated BLG may trigger innate (via RAGE) and adaptive immunity (via Gal-3). CONCLUSIONS This study defines structural characteristics of heated and glycated BLG determining its interaction with APCs via specific receptors thus revealing enhanced immunogenicity of glycated versus heated BLG.
Collapse
Affiliation(s)
- Malgorzata Teodorowicz
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Hannah E. Zenker
- Food Quality & Design GroupWageningen University & Research CentreWageningenthe Netherlands
| | - Arifa Ewaz
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Theodoros Tsallis
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| | - Andreas Mauser
- Food Chemistry, Department of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Sabrina Gensberger‐Reigl
- Food Chemistry, Department of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Nicolette W. de Jong
- Internal Medicine, Allergology & Clinical ImmunologyErasmus University Medical Centre Rotterdam, the Netherlands
| | - Kasper A. Hettinga
- Food Quality & Design GroupWageningen University & Research CentreWageningenthe Netherlands
| | - Harry J. Wichers
- Food & Biobased ResearchWageningen University & Research CentreWageningenthe Netherlands
| | - R. J. Joost van Neerven
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
- Friesland CampinaAmersfoortthe Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology & ImmunologyWageningen University & Research CentreWageningenthe Netherlands
| |
Collapse
|