1
|
Hill MA, Staut N, Thompson JM, Verhaegen F. Dosimetric validation of SmART-RAD Monte Carlo modelling for x-ray cabinet radiobiology irradiators. Phys Med Biol 2024; 69:095014. [PMID: 38518380 PMCID: PMC11031639 DOI: 10.1088/1361-6560/ad3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective. Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting.Approach. This paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements.Main results. Simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding.Significance. The MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research.
Collapse
Affiliation(s)
- Mark A Hill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - James M Thompson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Frank Verhaegen
- SmART Scientific Solutions BV, Maastricht, The Netherlands
- Department of Radiation Oncology (Maastro), Research Institute for Oncology & Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
2
|
Xu X, Deng Z, Sforza D, Tong Z, Tseng YP, Newman C, Reinhart M, Tsouchlos P, Devling T, Dehghani H, Iordachita I, Wong JW, Wang KKH. Characterization of a commercial bioluminescence tomography-guided system for pre-clinical radiation research. Med Phys 2023; 50:6433-6453. [PMID: 37633836 PMCID: PMC10592094 DOI: 10.1002/mp.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Widely used Cone-beam computed tomography (CBCT)-guided irradiators have limitations in localizing soft tissue targets growing in a low-contrast environment. This hinders small animal irradiators achieving precise focal irradiation. PURPOSE To advance image-guidance for soft tissue targeting, we developed a commercial-grade bioluminescence tomography-guided system (BLT, MuriGlo) for pre-clinical radiation research. We characterized the system performance and demonstrated its capability in target localization. We expect this study can provide a comprehensive guideline for the community in utilizing the BLT system for radiation studies. METHODS MuriGlo consists of four mirrors, filters, lens, and charge-coupled device (CCD) camera, enabling a compact imaging platform and multi-projection and multi-spectral BLT. A newly developed mouse bed allows animals imaged in MuriGlo and transferred to a small animal radiation research platform (SARRP) for CBCT imaging and BLT-guided irradiation. Methods and tools were developed to evaluate the CCD response linearity, minimal detectable signal, focusing, spatial resolution, distortion, and uniformity. A transparent polycarbonate plate covering the middle of the mouse bed was used to support and image animals from underneath the bed. We investigated its effect on 2D Bioluminescence images and 3D BLT reconstruction accuracy, and studied its dosimetric impact along with the rest of mouse bed. A method based on pinhole camera model was developed to map multi-projection bioluminescence images to the object surface generated from CBCT image. The mapped bioluminescence images were used as the input data for the optical reconstruction. To account for free space light propagation from object surface to optical detector, a spectral derivative (SD) method was implemented for BLT reconstruction. We assessed the use of the SD data (ratio imaging of adjacent wavelength) in mitigating out of focusing and non-uniformity seen in the images. A mouse phantom was used to validate the data mapping. The phantom and an in vivo glioblastoma model were utilized to demonstrate the accuracy of the BLT target localization. RESULTS The CCD response shows good linearity with < 0.6% residual from a linear fit. The minimal detectable level is 972 counts for 10 × 10 binning. The focal plane position is within the range of 13-18 mm above the mouse bed. The spatial resolution of 2D optical imaging is < 0.3 mm at Rayleigh criterion. Within the region of interest, the image uniformity is within 5% variation, and image shift due to distortion is within 0.3 mm. The transparent plate caused < 6% light attenuation. The use of the SD imaging data can effectively mitigate out of focusing, image non-uniformity, and the plate attenuation, to support accurate multi-spectral BLT reconstruction. There is < 0.5% attenuation on dose delivery caused by the bed. The accuracy of data mapping from the 2D bioluminescence images to CBCT image is within 0.7 mm. Our phantom test shows the BLT system can localize a bioluminescent target within 1 mm with an optimal threshold and only 0.2 mm deviation was observed for the case with and without a transparent plate. The same localization accuracy can be maintained for the in vivo GBM model. CONCLUSIONS This work is the first systematic study in characterizing the commercial BLT-guided system. The information and methods developed will be useful for the community to utilize the imaging system for image-guided radiation research.
Collapse
Affiliation(s)
- Xiangkun Xu
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zijian Deng
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhishen Tong
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-Pei Tseng
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ciara Newman
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - John W. Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ken Kang-Hsin Wang
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Liu Z, Zheng C, Zhao N, Huang Y, Chen J, Yang Y. A GPU-accelerated Monte Carlo dose computation engine for small animal radiotherapy. Med Phys 2023; 50:5238-5247. [PMID: 37014307 DOI: 10.1002/mp.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Accurate dose computation is critical in precision small animal radiotherapy. The Monte Carlo simulation method is the gold standard for radiation dose computation but has not been widely implemented in practice due to its low computation efficiency. PURPOSE This study aims to develop a GPU-accelerated radiation dose engine (GARDEN) based on the Monte Carlo simulation method for fast and accurate dose computation. METHODS In the GARDEN simulation, Compton scattering, Rayleigh scattering, and photoelectric effect were considered. The Woodcock tracking algorithm and GPU-specific acceleration techniques were used to obtain a high computational efficiency. Benchmark studies against both Geant4 simulations and experimental measurements were performed for various phantoms and beams. Finally, a conformal arc treatment plan was designed for a lung tumor to further evaluate the accuracy and efficiency in small animal radiotherapy. RESULT The engine attained a speed-up of 1232 times in a homogeneous water phantom and 935 times in a water-bone-lung heterogeneous phantom when compared with Geant4. Both the depth-dose curves and cross-sectional dose profiles for various radiation field sizes showed a great match between measurements and the GARDEN calculations. For in vivo dose validation, the differences between calculations and measurements in the mouse thorax and abdomen were 2.50% ± 1.50% and 1.56% ± 1.40%, respectively. The computation time for an arc treatment plan delivered from 36 angles was 2 s at a <1% uncertainty level using an NVIDIA GeForce RTX 2060 SUPER GPU. When compared with Geant4, the 3D gamma comparison passing rate was 98.7% at 2%/0.3 mm criteria. CONCLUSION GARDEN can perform fast and accurate dose computations in heterogeneous tissue environments and is expected to play a vital role in image-guided precision small animal radiotherapy.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Cheng Zheng
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Ning Zhao
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunwen Huang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiahao Chen
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yidong Yang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ion Medical Research Institute, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Verhaegen F, Butterworth KT, Chalmers AJ, Coppes RP, de Ruysscher D, Dobiasch S, Fenwick JD, Granton PV, Heijmans SHJ, Hill MA, Koumenis C, Lauber K, Marples B, Parodi K, Persoon LCGG, Staut N, Subiel A, Vaes RDW, van Hoof S, Verginadis IL, Wilkens JJ, Williams KJ, Wilson GD, Dubois LJ. Roadmap for precision preclinical x-ray radiation studies. Phys Med Biol 2023; 68:06RM01. [PMID: 36584393 DOI: 10.1088/1361-6560/acaf45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.
Collapse
Affiliation(s)
- Frank Verhaegen
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Karl T Butterworth
- Patrick G. Johnston, Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Anthony J Chalmers
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rob P Coppes
- Departments of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Dirk de Ruysscher
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Department of Medical Physics, Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Germany
| | - John D Fenwick
- Department of Medical Physics & Biomedical Engineering University College LondonMalet Place Engineering Building, London WC1E 6BT, United Kingdom
| | | | | | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Germany
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, NY, United States of America
| | - Katia Parodi
- German Cancer Consortium (DKTK), Partner site Munich, Germany
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. Munich, Germany
| | | | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Rianne D W Vaes
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Ioannis L Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Physics Department, Technical University of Munich (TUM), Germany
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health, MI, United States of America
- Henry Ford Health, Detroit, MI, United States of America
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Kampfer S, Duda MA, Dobiasch S, Combs SE, Wilkens JJ. A comprehensive and efficient quality assurance program for an image-guided small animal irradiation system. Z Med Phys 2022; 32:261-272. [PMID: 35370028 PMCID: PMC9948878 DOI: 10.1016/j.zemedi.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
In the field of preclinical radiotherapy, many new developments were driven by technical innovations. To make research of different groups comparable in that context and reliable, high quality has to be maintained. Therefore, standardized protocols and programs should be used. Here we present a guideline for a comprehensive and efficient quality assurance program for an image-guided small animal irradiation system, which is meant to test all the involved subsystems (imaging, treatment planning, and the irradiation system in terms of geometric accuracy and dosimetric aspects) as well as the complete procedure (end-to-end test) in a time efficient way. The suggestions are developed on a Small Animal Radiation Research Platform (SARRP) from Xstrahl (Xstrahl Ltd., Camberley, UK) and are presented together with proposed frequencies (from monthly to yearly) and experiences on the duration of each test. All output and energy related measurements showed stable results within small variation. Also, the motorized parts (couch, gantry) and other geometrical alignments were very stable. For the checks of the imaging system, the results are highly dependent on the chosen protocol and differ according to the settings. We received nevertheless stable and comparably good results for our mainly used protocol. All investigated aspects of treatment planning were exactly fulfilled and also the end-to-end test showed satisfying values. The mean overall time we needed for our checks to have a well monitored machine is less than two hours per month.
Collapse
Affiliation(s)
- Severin Kampfer
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany; Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany.
| | - Manuela A. Duda
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany; Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany,German Cancer Consortium (DKTK), Munich, Germany
| | - Jan J. Wilkens
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
6
|
McKelvey KJ, Hudson AL, Donaghy H, Stoner SP, Wheeler HR, Diakos CI, Howell VM. Differential effects of radiation fractionation regimens on glioblastoma. Radiat Oncol 2022; 17:17. [PMID: 35073960 PMCID: PMC8788072 DOI: 10.1186/s13014-022-01990-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is a mainstay of treatment for patients with glioblastoma (GB). Early clinical trials show that short course hypofractionation showed no survival benefit compared to conventional regimens with or without temozolomide chemotherapy (TMZ) but reduces the number of doses required. Concerns around delayed neurological deficits and reduced cognition from short course hypofractionated RT remain a concern. The aim of this study was to evaluate the effect of increased interfractional time using two different radiation fractionation regimens on GB. METHODS The radiobiological effect of increasing doses 0-20 Gy x-ray photon RT on Gl261 and CT2A GB cell lines was compared by colony forming assay, DNA damage by alkaline comet assay, oxidative stress, DNA damage, cell cycle, and caspase-3/7 by MUSE® flow cytometric analyses, and protein expression by western blot analyses. Conventional (20 Gy/10 fractions) and hypofractionated (20 Gy/4 fractions spaced 72 h apart) RT regimens with and without TMZ (200 mg/kg/day) were performed in syngeneic Gl261 and CT2A intracranial mouse models using the Small Animal Radiation Research Platform (Xstrahl Inc.). RESULTS X-ray photon radiation dose-dependently increased reactive oxygen species, DNA damage, autophagy, and caspase 3/7-mediated apoptotic cell death. While the conventional fractionated dose regimen of 20 Gy/10 f was effective at inducing cell death via the above mechanism, this was exceeded by a 20 Gy/4 f regimen which improved median survival and histopathology in Gl261-tumor bearing mice, and eradicated tumors in CT2A tumors with no additional toxicity. CONCLUSIONS Spacing of hypofractionated RT doses 72 h apart showed increased median survival and tumor control via increased activation of RT-mediated cell death, with no observed increased in radiotoxicity. This supports further exploration of differential RT fractionated regimens in GB clinical trials to reduce delayed neurological radiotoxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Heather Donaghy
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Shihani P Stoner
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| | - Helen R Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2065, Australia
| |
Collapse
|
7
|
Rezaee M, Iordachita I, Wong JW. Ultrahigh dose-rate (FLASH) x-ray irradiator for pre-clinical laboratory research. Phys Med Biol 2021; 66. [PMID: 33780922 DOI: 10.1088/1361-6560/abf2fa] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 01/25/2023]
Abstract
FLASH irradiation has been shown to reduce significantly normal tissue toxicity compared to conventional irradiation, while maintaining tumor control probability at similar level. Clinical translation of FLASH irradiation necessitates comprehensive laboratory studies to elucidate biological effects as well as pertinent technological and physical requirements. At present, FLASH research employs complex accelerator technologies of limited accessibilities. Here, we study the feasibility of a novel self-shielded x-ray irradiation cabinet system, as an enabling technology to enhance the preclinical research capabilities. The proposed system employs two commercially available high capacity 150 kVp fluoroscopy x-ray sources with rotating anode technology in a parallel-opposed arrangement. Simulation was performed with the GEANT4 Monte-Carlo platform. Simulated dosimetric properties of the x-ray beam for both FLASH and conventional dose-rate irradiations were characterized. Dose and dose rate from a single kV x-ray fluoroscopy source in solid water phantom were verified with measurements using Gafchromic films. The parallel-opposed x-ray sources can deliver over 50 Gy doses to a 20 mm thick water equivalent medium at ultrahigh dose-rates of 40-240 Gy s-1. A uniform depth-dose rate (±5%) is achieved over 8-12 mm in the central region of the phantom. Mirrored beams minimize heel effect of the source and achieve reasonable cross-beam uniformity (±3%). Conventional dose-rate irradiation (≤0.1 Gy s-1) can also be achieved by reducing the tube current and increasing the distance between the phantom and tubes. The rotating anode x-ray source can be used to deliver both FLASH and conventional dose-rate irradiations with the field dimensions well suitable for small animal and cell-culture irradiations. For FLASH irradiation using parallel-opposed sources, entrance and exit doses can be higher by 30% than the dose at the phantom center. Beam angling can be employed to minimize the high surface doses. Our proposed system is amendable to self-shielding and enhance research in regular laboratory setting.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Faculty of Medicine, Johns Hopkins University, United States of America
| | - Iulian Iordachita
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, United States of America
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Faculty of Medicine, Johns Hopkins University, United States of America
| |
Collapse
|
8
|
Sunbul NB, Oraiqat I, Rosen B, Miller C, Meert C, Matuszak MM, Clarke S, Pozzi S, Moran JM, Naqa IE. Application of radiochromic gel dosimetry to commissioning of a megavoltage research linear accelerator for small-field animal irradiation studies. Med Phys 2021; 48:1404-1416. [PMID: 33378092 PMCID: PMC8917956 DOI: 10.1002/mp.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop and implement an efficient and accurate commissioning procedure for small-field static beam animal irradiation studies on an MV research linear accelerator (Linatron-M9) using radiochromic gel dosimetry. MATERIALS The research linear accelerator (Linatron-M9) is a 9 MV linac with a static fixed collimator opening of 5.08 cm diameter. Lead collimators were manually placed to create smaller fields of 2 × 2 cm2 , 1 × 1 cm2 , and 0.5 × 0.5 cm2 . Relative dosimetry measurements were performed, including profiles, percent depth dose (PDD) curves, beam divergence, and relative output factors using various dosimetry tools, including a small volume ionization chamber (A14), GAFCHROMIC™ EBT3 film, and Clearview gel dosimeters. The gel dosimeter was used to provide a 3D volumetric reference of the irradiated fields. The Linatron profiles and relative output factors were extracted at a reference depth of 2 cm with the output factor measured relative to the 2 × 2 cm2 reference field. Absolute dosimetry was performed using A14 ionization chamber measurements, which were verified using a national standards laboratory remote dosimetry service. RESULTS Absolute dosimetry measurements were confirmed within 1.4% (k = 2, 95% confidence = 5%). The relative output factor of the small fields measured with films and gels agreed with a maximum relative percent error difference between the two methods of 1.1 % for the 1 × 1 cm2 field and 4.3 % for the 0.5 × 0.5 cm2 field. These relative errors were primarily due to the variability in the collimator positioning. The measured beam profiles demonstrated excellent agreement for beam size (measured as FWHM), within approximately 0.8 mm (or less). Film measurements were more accurate in the penumbra region due to the film's finer resolution compared with the gel dosimeter. Following the van Dyk criteria, the PDD values of the film and gel measurements agree within 11% in the buildup region starting from 0.5 cm depth and within 2.6 % beyond maximum dose and into the fall-off region for depths up to 5 cm. The 2D beam profile isodose lines agree within 0.5 mm in all regions for the 0.5 × 0.5 cm2 and the 1 × 1 cm2 fields and within 1 mm for the larger field of 2 × 2 cm2 . The 2D PDD curves agree within approximately 2% of the maximum in the typical therapy region (1-4 cm) for the 1 × 1 cm2 and 2 × 2 cm2 and within 5% for the 0.5 × 0.5 cm2 field. CONCLUSION This work provides a commissioning process to measure the beam characteristics of a fixed beam MV accelerator with detailed dosimetric evaluation for its implementation in megavoltage small animal irradiation studies. Radiochromic gel dosimeters are efficient small-field relative dosimetry tools providing 3D dose measurements allowing for full representation of dose, dosimeter misalignment corrections and high reproducibility with low inter-dosimeter variability. Overall, radiochromic gels are valuable for fast, full relative dosimetry commissioning in comparison to films for application in high-energy small-field animal irradiation studies.
Collapse
Affiliation(s)
- Noora Ba Sunbul
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ibrahim Oraiqat
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Benjamin Rosen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Cameron Miller
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Meert
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Martha M. Matuszak
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Shaun Clarke
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sara Pozzi
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jean M. Moran
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Anvari A, Modiri A, Pandita R, Mahmood J, Sawant A. Online dose delivery verification in small animal image‐guided radiotherapy. Med Phys 2020; 47:1871-1879. [DOI: 10.1002/mp.14070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Akbar Anvari
- Department of Radiation Oncology University of Maryland School of Medicine Baltimore MD 21201USA
- Department of Radiation Oncology Perelman Center for Advanced Medicine University of Pennsylvania Philadelphia PA 19104USA
| | - Arezoo Modiri
- Department of Radiation Oncology University of Maryland School of Medicine Baltimore MD 21201USA
| | - Ravina Pandita
- Department of Radiation Oncology University of Maryland School of Medicine Baltimore MD 21201USA
| | - Javed Mahmood
- Department of Radiation Oncology University of Maryland School of Medicine Baltimore MD 21201USA
| | - Amit Sawant
- Department of Radiation Oncology University of Maryland School of Medicine Baltimore MD 21201USA
| |
Collapse
|
10
|
Schlaak RA, SenthilKumar G, Boerma M, Bergom C. Advances in Preclinical Research Models of Radiation-Induced Cardiac Toxicity. Cancers (Basel) 2020; 12:E415. [PMID: 32053873 PMCID: PMC7072196 DOI: 10.3390/cancers12020415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an important component of cancer therapy, with >50% of cancer patients receiving RT. As the number of cancer survivors increases, the short- and long-term side effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors. An understanding of the biological pathways and mechanisms involved in normal tissue toxicity from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many of these mechanistic studies are performed in animal models of radiation exposure. In this area of research, the use of small animal image-guided RT with treatment planning systems that allow more accurate dose determination has the potential to revolutionize knowledge of clinically relevant tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome to optimize such radiation delivery, including dose verification and calibration, determination of doses received by adjacent normal tissues that can affect outcomes, and motion management and identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun to determine how animal strain and sex affect normal tissue radiation injuries. This review article discusses the known and potential benefits and caveats of newer technologies and methods used for small animal radiation delivery, as well as how the choice of animal models, including variables such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their clinical relevance.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Gopika SenthilKumar
- Medical Scientist Training Program, Medical College of Wisconsin; Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Poirier Y, Johnstone CD, Anvari A, Brodin NP, Santos MD, Bazalova-Carter M, Sawant A. A failure modes and effects analysis quality management framework for image-guided small animal irradiators: A change in paradigm for radiation biology. Med Phys 2020; 47:2013-2022. [PMID: 31986221 DOI: 10.1002/mp.14049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Image-guided small animal irradiators (IGSAI) are increasingly being adopted in radiation biology research. These animal irradiators, designed to deliver radiation with submillimeter accuracy, exhibit complexity similar to that of clinical radiation delivery systems, including image guidance, robotic stage motion, and treatment planning systems. However, physics expertise and resources are scarcer in radiation biology, which makes implementation of conventional prescriptive QA infeasible. In this study, we apply the failure modes and effect analysis (FMEA) popularized by the AAPM task group 100 (TG-100) report to IGSAI and radiation biological research. METHODS Radiation biological research requires a change in paradigm where small errors to large populations of animals are more severe than grievous errors that only affect individuals. To this end, we created a new adverse effects severity table adapted to radiation biology research based on the original AAPM TG-100 severity table. We also produced a process tree which outlines the main components of radiation biology studies performed on an IGSAI, adapted from the original clinical IMRT process tree from TG-100. Using this process tree, we created and distributed a preliminary survey to eight expert IGSAI operators in four institutions. Operators rated proposed failure modes for occurrence, severity, and lack of detectability, and were invited to share their own experienced failure modes. Risk probability numbers (RPN) were calculated and used to identify the failure modes which most urgently require intervention. RESULTS Surveyed operators indicated a number of high (RPN >125) failure modes specific to small animal irradiators. Errors due to equipment breakdown, such as loss of anesthesia or thermal control, received relatively low RPN (12-48) while errors related to the delivery of radiation dose received relatively high RPN (72-360). Errors identified could either be improved by manufacturer intervention (e.g., electronic interlocks for filter/collimator) or physics oversight (errors related to tube calibration or treatment planning system commissioning). Operators identified a number of failure modes including collision between the collimator and the stage, misalignment between imaging and treatment isocenter, inaccurate robotic stage homing/translation, and incorrect SSD applied to hand calculations. These were all relatively highly rated (90-192), indicating a possible bias in operators towards reporting high RPN failure modes. CONCLUSIONS The first FMEA specific to radiation biology research was applied to image-guided small animal irradiators following the TG-100 methodology. A new adverse effects severity table and a process tree recognizing the need for a new paradigm were produced, which will be of great use to future investigators wishing to pursue FMEA in radiation biology research. Future work will focus on expanding scope of user surveys to users of all commercial IGSAI and collaborating with manufacturers to increase the breadth of surveyed expert operators.
Collapse
Affiliation(s)
- Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Daniel Johnstone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Akbar Anvari
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Morgane Dos Santos
- Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Neph R, Ouyang C, Neylon J, Yang Y, Sheng K. Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework. Med Phys 2019; 46:3719-3733. [PMID: 31183871 DOI: 10.1002/mp.13651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Dose calculation is one of the most computationally intensive, yet essential tasks in the treatment planning process. With the recent interest in automatic beam orientation and arc trajectory optimization techniques, there is a great need for more efficient model-based dose calculation algorithms that can accommodate hundreds to thousands of beam candidates at once. Foundational work has shown the translation of dose calculation algorithms to graphical processing units (GPUs), lending to remarkable gains in processing efficiency. But these methods provide parallelization of dose for only a single beamlet, serializing the calculation of multiple beamlets and under-utilizing the potential of modern GPUs. In this paper, the authors propose a framework enabling parallel computation of many beamlet doses using a novel beamlet context transformation and further embed this approach in a scalable network of multi-GPU computational nodes. METHODS The proposed context-based transformation separates beamlet-local density and TERMA into distinct beamlet contexts that independently provide sufficient data for beamlet dose calculation. Beamlet contexts are arranged in a composite context array with dosimetric isolation, and the context array is subjected to a GPU collapsed-cone convolution superposition procedure, producing the set of beamlet-specific dose distributions in a single pass. Dose from each context is converted to a sparse representation for efficient storage and retrieval during treatment plan optimization. The context radius is a new parameter permitting flexibility between the speed and fidelity of the dose calculation process. A distributed manager-worker architecture is constructed around the context-based GPU dose calculation approach supporting an arbitrary number of worker nodes and resident GPUs. Phantom experiments were executed to verify the accuracy of the context-based approach compared to Monte Carlo and a reference CPU-CCCS implementation for single beamlets and broad beams composed by addition of beamlets. Dose for representative 4π beam sets was calculated in lung and prostate cases to compare its efficiency with that of an existing beamlet-sequential GPU-CCCS implementation. Code profiling was also performed to evaluate the scalability of the framework across many networked GPUs. RESULTS The dosimetric accuracy of the context-based method displays <1.35% and 2.35% average error from the existing serialized CPU-CCCS algorithm and Monte Carlo simulation for beamlet-specific PDDs in water and slab phantoms, respectively. The context-based method demonstrates substantial speedup of up to two orders of magnitude over the beamlet-sequential GPU-CCCS method in the tested configurations. The context-based framework demonstrates near linear scaling in the number of distributed compute nodes and GPUs employed, indicating that it is flexible enough to meet the performance requirements of most users by simply increasing the hardware utilization. CONCLUSIONS The context-based approach demonstrates a new expectation of performance for beamlet-based dose calculation methods. This approach has been successful in accelerating the dose calculation process for very large-scale treatment planning problems - such as automatic 4π IMRT beam orientation and VMAT arc trajectory selection, with hundreds of thousands of beamlets - in clinically feasible timeframes. The flexibility of this framework makes it as a strong candidate for use in a variety of other very large-scale treatment planning tasks and clinical workflows.
Collapse
Affiliation(s)
- Ryan Neph
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - Cheng Ouyang
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - John Neylon
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - Youming Yang
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| |
Collapse
|
13
|
Evolution of the Supermodel: Progress in Modelling Radiotherapy Response in Mice. Clin Oncol (R Coll Radiol) 2019; 31:272-282. [PMID: 30871751 DOI: 10.1016/j.clon.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Mouse models are essential tools in cancer research that have been used to understand the genetic basis of tumorigenesis, cancer progression and to test the efficacies of anticancer treatments including radiotherapy. They have played a critical role in our understanding of radiotherapy response in tumours and normal tissues and continue to evolve to better recapitulate the underlying biology of humans. In addition, recent developments in small animal irradiators have significantly improved in vivo irradiation techniques, allowing previously unimaginable experimental approaches to be explored in the laboratory. The combination of contemporary mouse models with small animal irradiators represents a major step forward for the radiobiology field in being able to much more accurately replicate clinical exposure scenarios. As radiobiology studies become ever more sophisticated in reflecting developments in the clinic, it is increasingly important to understand the basis and potential limitations of extrapolating data from mice to humans. This review provides an overview of mouse models and small animal radiotherapy platforms currently being used as advanced radiobiological research tools towards improving the translational power of preclinical studies.
Collapse
|
14
|
Chen Q, Molloy J, Izumi T, Sterpin E. Impact of backscatter material thickness on the depth dose of orthovoltage irradiators for radiobiology research. Phys Med Biol 2019; 64:055001. [PMID: 30673636 DOI: 10.1088/1361-6560/ab0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The orthovoltage x-ray energy frequently used in radiation research is prone to dosimetry errors due to insufficient backscatter conditions. In many radiobiology studies, especially for cell irradiations, precise dose calculation algorithms such as Convolution-Superposition or Monte Carlo are impractical and as such, less accurate hand calculation methods are used for dose estimation. These dose estimation methods typically assume full backscatter conditions. The purpose of this study is to demonstrate the magnitude of the dose error that results from insufficient backscatter, and to provide lookup tables to account this issue. The beam spectra of several widely used commercial systems (XRAD-225, XRAD-320, SARRP) were used in Monte Carlo (MC) simulations on a series of phantom setups to investigate the impact of varying backscatter conditions on dosimetry. The depth dose curves for different field sizes, water phantom thicknesses and beam qualities were generated. In addition, depth dependent backscatter factors for different field sizes and different beam qualities were calculated. It is demonstrated that as much as a 50% dose difference exists for different backscatter conditions at the beam qualities studied. The choice of cell dish size as well as other changes in the experiment setup can have more than 10% impact on the dose. The impact of backscatter is reduced with a decrease in field size. Further, the thickness needed to provide full backscatter can be approximated as being equal to the field size. It is imperative to ensure full backscatter conditions during system and dosimeter calibration, or to use the look-up table provided in this study.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiation Medicine, The University of Kentucky, Lexington, KY 40536, United States of America. Author to whom any correspondence should be addressed. Radiation Medicine, University of Kentucky, Markey Cancer Center, Rm CC063, 800 Rose St., Lexington, KY 40536-0293, United States of America
| | | | | | | |
Collapse
|
15
|
Integrating Small Animal Irradiators withFunctional Imaging for Advanced Preclinical Radiotherapy Research. Cancers (Basel) 2019; 11:cancers11020170. [PMID: 30717307 PMCID: PMC6406472 DOI: 10.3390/cancers11020170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Translational research aims to provide direct support for advancing novel treatment approaches in oncology towards improving patient outcomes. Preclinical studies have a central role in this process and the ability to accurately model biological and physical aspects of the clinical scenario in radiation oncology is critical to translational success. The use of small animal irradiators with disease relevant mouse models and advanced in vivo imaging approaches offers unique possibilities to interrogate the radiotherapy response of tumors and normal tissues with high potential to translate to improvements in clinical outcomes. The present review highlights the current technology and applications of small animal irradiators, and explores how these can be combined with molecular and functional imaging in advanced preclinical radiotherapy research.
Collapse
|
16
|
Anvari A, Poirier Y, Sawant A. Kilovoltage transit and exit dosimetry for a small animal image-guided radiotherapy system using built-in EPID. Med Phys 2018; 45:4642-4651. [DOI: 10.1002/mp.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Akbar Anvari
- Department of Radiation Oncology; University of Maryland School of Medicine; Baltimore MD 21201 USA
| | - Yannick Poirier
- Department of Radiation Oncology; University of Maryland School of Medicine; Baltimore MD 21201 USA
| | - Amit Sawant
- Department of Radiation Oncology; University of Maryland School of Medicine; Baltimore MD 21201 USA
| |
Collapse
|
17
|
Cho NB, Wong J, Kazanzides P. Fast Inverse Planning of Beam Directions and Weights for Small Animal Radiotherapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2805876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|